1 /* 2 * Copyright (C) 2008 The Android Open Source Project 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * * Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * * Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in 12 * the documentation and/or other materials provided with the 13 * distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 16 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 17 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 18 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 19 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 21 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS 22 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED 23 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 24 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT 25 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 */ 28 29 #define LOG_TAG "resolv" 30 31 #include "resolv_cache.h" 32 33 #include <resolv.h> 34 #include <stdarg.h> 35 #include <stdlib.h> 36 #include <string.h> 37 #include <time.h> 38 #include <algorithm> 39 #include <mutex> 40 #include <set> 41 #include <string> 42 #include <unordered_map> 43 #include <vector> 44 45 #include <arpa/inet.h> 46 #include <arpa/nameser.h> 47 #include <errno.h> 48 #include <linux/if.h> 49 #include <net/if.h> 50 #include <netdb.h> 51 52 #include <aidl/android/net/IDnsResolver.h> 53 #include <android-base/logging.h> 54 #include <android-base/parseint.h> 55 #include <android-base/stringprintf.h> 56 #include <android-base/strings.h> 57 #include <android-base/thread_annotations.h> 58 #include <android/multinetwork.h> // ResNsendFlags 59 60 #include <server_configurable_flags/get_flags.h> 61 62 #include "DnsStats.h" 63 #include "Experiments.h" 64 #include "res_comp.h" 65 #include "res_debug.h" 66 #include "resolv_private.h" 67 #include "util.h" 68 69 using aidl::android::net::IDnsResolver; 70 using aidl::android::net::ResolverOptionsParcel; 71 using android::base::StringAppendF; 72 using android::net::DnsQueryEvent; 73 using android::net::DnsStats; 74 using android::net::Experiments; 75 using android::net::PROTO_DOT; 76 using android::net::PROTO_TCP; 77 using android::net::PROTO_UDP; 78 using android::netdutils::DumpWriter; 79 using android::netdutils::IPSockAddr; 80 81 /* This code implements a small and *simple* DNS resolver cache. 82 * 83 * It is only used to cache DNS answers for a time defined by the smallest TTL 84 * among the answer records in order to reduce DNS traffic. It is not supposed 85 * to be a full DNS cache, since we plan to implement that in the future in a 86 * dedicated process running on the system. 87 * 88 * Note that its design is kept simple very intentionally, i.e.: 89 * 90 * - it takes raw DNS query packet data as input, and returns raw DNS 91 * answer packet data as output 92 * 93 * (this means that two similar queries that encode the DNS name 94 * differently will be treated distinctly). 95 * 96 * the smallest TTL value among the answer records are used as the time 97 * to keep an answer in the cache. 98 * 99 * this is bad, but we absolutely want to avoid parsing the answer packets 100 * (and should be solved by the later full DNS cache process). 101 * 102 * - the implementation is just a (query-data) => (answer-data) hash table 103 * with a trivial least-recently-used expiration policy. 104 * 105 * Doing this keeps the code simple and avoids to deal with a lot of things 106 * that a full DNS cache is expected to do. 107 * 108 * The API is also very simple: 109 * 110 * - the client calls resolv_cache_lookup() before performing a query 111 * 112 * If the function returns RESOLV_CACHE_FOUND, a copy of the answer data 113 * has been copied into the client-provided answer buffer. 114 * 115 * If the function returns RESOLV_CACHE_NOTFOUND, the client should perform 116 * a request normally, *then* call resolv_cache_add() to add the received 117 * answer to the cache. 118 * 119 * If the function returns RESOLV_CACHE_UNSUPPORTED, the client should 120 * perform a request normally, and *not* call resolv_cache_add() 121 * 122 * Note that RESOLV_CACHE_UNSUPPORTED is also returned if the answer buffer 123 * is too short to accomodate the cached result. 124 */ 125 126 /* Default number of entries kept in the cache. This value has been 127 * determined by browsing through various sites and counting the number 128 * of corresponding requests. Keep in mind that our framework is currently 129 * performing two requests per name lookup (one for IPv4, the other for IPv6) 130 * 131 * www.google.com 4 132 * www.ysearch.com 6 133 * www.amazon.com 8 134 * www.nytimes.com 22 135 * www.espn.com 28 136 * www.msn.com 28 137 * www.lemonde.fr 35 138 * 139 * (determined in 2009-2-17 from Paris, France, results may vary depending 140 * on location) 141 * 142 * most high-level websites use lots of media/ad servers with different names 143 * but these are generally reused when browsing through the site. 144 * 145 * As such, a value of 64 should be relatively comfortable at the moment. 146 * 147 * ****************************************** 148 * * NOTE - this has changed. 149 * * 1) we've added IPv6 support so each dns query results in 2 responses 150 * * 2) we've made this a system-wide cache, so the cost is less (it's not 151 * * duplicated in each process) and the need is greater (more processes 152 * * making different requests). 153 * * Upping by 2x for IPv6 154 * * Upping by another 5x for the centralized nature 155 * ***************************************** 156 */ 157 const int CONFIG_MAX_ENTRIES = 64 * 2 * 5; 158 constexpr int DNSEVENT_SUBSAMPLING_MAP_DEFAULT_KEY = -1; 159 160 static time_t _time_now(void) { 161 struct timeval tv; 162 163 gettimeofday(&tv, NULL); 164 return tv.tv_sec; 165 } 166 167 /* reminder: the general format of a DNS packet is the following: 168 * 169 * HEADER (12 bytes) 170 * QUESTION (variable) 171 * ANSWER (variable) 172 * AUTHORITY (variable) 173 * ADDITIONNAL (variable) 174 * 175 * the HEADER is made of: 176 * 177 * ID : 16 : 16-bit unique query identification field 178 * 179 * QR : 1 : set to 0 for queries, and 1 for responses 180 * Opcode : 4 : set to 0 for queries 181 * AA : 1 : set to 0 for queries 182 * TC : 1 : truncation flag, will be set to 0 in queries 183 * RD : 1 : recursion desired 184 * 185 * RA : 1 : recursion available (0 in queries) 186 * Z : 3 : three reserved zero bits 187 * RCODE : 4 : response code (always 0=NOERROR in queries) 188 * 189 * QDCount: 16 : question count 190 * ANCount: 16 : Answer count (0 in queries) 191 * NSCount: 16: Authority Record count (0 in queries) 192 * ARCount: 16: Additionnal Record count (0 in queries) 193 * 194 * the QUESTION is made of QDCount Question Record (QRs) 195 * the ANSWER is made of ANCount RRs 196 * the AUTHORITY is made of NSCount RRs 197 * the ADDITIONNAL is made of ARCount RRs 198 * 199 * Each Question Record (QR) is made of: 200 * 201 * QNAME : variable : Query DNS NAME 202 * TYPE : 16 : type of query (A=1, PTR=12, MX=15, AAAA=28, ALL=255) 203 * CLASS : 16 : class of query (IN=1) 204 * 205 * Each Resource Record (RR) is made of: 206 * 207 * NAME : variable : DNS NAME 208 * TYPE : 16 : type of query (A=1, PTR=12, MX=15, AAAA=28, ALL=255) 209 * CLASS : 16 : class of query (IN=1) 210 * TTL : 32 : seconds to cache this RR (0=none) 211 * RDLENGTH: 16 : size of RDDATA in bytes 212 * RDDATA : variable : RR data (depends on TYPE) 213 * 214 * Each QNAME contains a domain name encoded as a sequence of 'labels' 215 * terminated by a zero. Each label has the following format: 216 * 217 * LEN : 8 : lenght of label (MUST be < 64) 218 * NAME : 8*LEN : label length (must exclude dots) 219 * 220 * A value of 0 in the encoding is interpreted as the 'root' domain and 221 * terminates the encoding. So 'www.android.com' will be encoded as: 222 * 223 * <3>www<7>android<3>com<0> 224 * 225 * Where <n> represents the byte with value 'n' 226 * 227 * Each NAME reflects the QNAME of the question, but has a slightly more 228 * complex encoding in order to provide message compression. This is achieved 229 * by using a 2-byte pointer, with format: 230 * 231 * TYPE : 2 : 0b11 to indicate a pointer, 0b01 and 0b10 are reserved 232 * OFFSET : 14 : offset to another part of the DNS packet 233 * 234 * The offset is relative to the start of the DNS packet and must point 235 * A pointer terminates the encoding. 236 * 237 * The NAME can be encoded in one of the following formats: 238 * 239 * - a sequence of simple labels terminated by 0 (like QNAMEs) 240 * - a single pointer 241 * - a sequence of simple labels terminated by a pointer 242 * 243 * A pointer shall always point to either a pointer of a sequence of 244 * labels (which can themselves be terminated by either a 0 or a pointer) 245 * 246 * The expanded length of a given domain name should not exceed 255 bytes. 247 * 248 * NOTE: we don't parse the answer packets, so don't need to deal with NAME 249 * records, only QNAMEs. 250 */ 251 252 #define DNS_HEADER_SIZE 12 253 254 #define DNS_TYPE_A "\00\01" /* big-endian decimal 1 */ 255 #define DNS_TYPE_PTR "\00\014" /* big-endian decimal 12 */ 256 #define DNS_TYPE_MX "\00\017" /* big-endian decimal 15 */ 257 #define DNS_TYPE_AAAA "\00\034" /* big-endian decimal 28 */ 258 #define DNS_TYPE_ALL "\00\0377" /* big-endian decimal 255 */ 259 260 #define DNS_CLASS_IN "\00\01" /* big-endian decimal 1 */ 261 262 struct DnsPacket { 263 const uint8_t* base; 264 const uint8_t* end; 265 const uint8_t* cursor; 266 }; 267 268 static uint8_t res_tolower(uint8_t c) { 269 return (c >= 'A' && c <= 'Z') ? (c | 0x20) : c; 270 } 271 272 static int res_memcasecmp(const unsigned char *s1, const unsigned char *s2, size_t len) { 273 for (size_t i = 0; i < len; i++) { 274 int ch1 = *s1++; 275 int ch2 = *s2++; 276 int d = res_tolower(ch1) - res_tolower(ch2); 277 if (d != 0) { 278 return d; 279 } 280 } 281 return 0; 282 } 283 284 static void _dnsPacket_init(DnsPacket* packet, const uint8_t* buff, int bufflen) { 285 packet->base = buff; 286 packet->end = buff + bufflen; 287 packet->cursor = buff; 288 } 289 290 static void _dnsPacket_rewind(DnsPacket* packet) { 291 packet->cursor = packet->base; 292 } 293 294 static void _dnsPacket_skip(DnsPacket* packet, int count) { 295 const uint8_t* p = packet->cursor + count; 296 297 if (p > packet->end) p = packet->end; 298 299 packet->cursor = p; 300 } 301 302 static int _dnsPacket_readInt16(DnsPacket* packet) { 303 const uint8_t* p = packet->cursor; 304 305 if (p + 2 > packet->end) return -1; 306 307 packet->cursor = p + 2; 308 return (p[0] << 8) | p[1]; 309 } 310 311 /** QUERY CHECKING **/ 312 313 /* check bytes in a dns packet. returns 1 on success, 0 on failure. 314 * the cursor is only advanced in the case of success 315 */ 316 static int _dnsPacket_checkBytes(DnsPacket* packet, int numBytes, const void* bytes) { 317 const uint8_t* p = packet->cursor; 318 319 if (p + numBytes > packet->end) return 0; 320 321 if (memcmp(p, bytes, numBytes) != 0) return 0; 322 323 packet->cursor = p + numBytes; 324 return 1; 325 } 326 327 /* parse and skip a given QNAME stored in a query packet, 328 * from the current cursor position. returns 1 on success, 329 * or 0 for malformed data. 330 */ 331 static int _dnsPacket_checkQName(DnsPacket* packet) { 332 const uint8_t* p = packet->cursor; 333 const uint8_t* end = packet->end; 334 335 for (;;) { 336 int c; 337 338 if (p >= end) break; 339 340 c = *p++; 341 342 if (c == 0) { 343 packet->cursor = p; 344 return 1; 345 } 346 347 /* we don't expect label compression in QNAMEs */ 348 if (c >= 64) break; 349 350 p += c; 351 /* we rely on the bound check at the start 352 * of the loop here */ 353 } 354 /* malformed data */ 355 LOG(INFO) << __func__ << ": malformed QNAME"; 356 return 0; 357 } 358 359 /* parse and skip a given QR stored in a packet. 360 * returns 1 on success, and 0 on failure 361 */ 362 static int _dnsPacket_checkQR(DnsPacket* packet) { 363 if (!_dnsPacket_checkQName(packet)) return 0; 364 365 /* TYPE must be one of the things we support */ 366 if (!_dnsPacket_checkBytes(packet, 2, DNS_TYPE_A) && 367 !_dnsPacket_checkBytes(packet, 2, DNS_TYPE_PTR) && 368 !_dnsPacket_checkBytes(packet, 2, DNS_TYPE_MX) && 369 !_dnsPacket_checkBytes(packet, 2, DNS_TYPE_AAAA) && 370 !_dnsPacket_checkBytes(packet, 2, DNS_TYPE_ALL)) { 371 LOG(INFO) << __func__ << ": unsupported TYPE"; 372 return 0; 373 } 374 /* CLASS must be IN */ 375 if (!_dnsPacket_checkBytes(packet, 2, DNS_CLASS_IN)) { 376 LOG(INFO) << __func__ << ": unsupported CLASS"; 377 return 0; 378 } 379 380 return 1; 381 } 382 383 /* check the header of a DNS Query packet, return 1 if it is one 384 * type of query we can cache, or 0 otherwise 385 */ 386 static int _dnsPacket_checkQuery(DnsPacket* packet) { 387 const uint8_t* p = packet->base; 388 int qdCount, anCount, dnCount, arCount; 389 390 if (p + DNS_HEADER_SIZE > packet->end) { 391 LOG(INFO) << __func__ << ": query packet too small"; 392 return 0; 393 } 394 395 /* QR must be set to 0, opcode must be 0 and AA must be 0 */ 396 /* RA, Z, and RCODE must be 0 */ 397 if ((p[2] & 0xFC) != 0 || (p[3] & 0xCF) != 0) { 398 LOG(INFO) << __func__ << ": query packet flags unsupported"; 399 return 0; 400 } 401 402 /* Note that we ignore the TC, RD, CD, and AD bits here for the 403 * following reasons: 404 * 405 * - there is no point for a query packet sent to a server 406 * to have the TC bit set, but the implementation might 407 * set the bit in the query buffer for its own needs 408 * between a resolv_cache_lookup and a resolv_cache_add. 409 * We should not freak out if this is the case. 410 * 411 * - we consider that the result from a query might depend on 412 * the RD, AD, and CD bits, so these bits 413 * should be used to differentiate cached result. 414 * 415 * this implies that these bits are checked when hashing or 416 * comparing query packets, but not TC 417 */ 418 419 /* ANCOUNT, DNCOUNT and ARCOUNT must be 0 */ 420 qdCount = (p[4] << 8) | p[5]; 421 anCount = (p[6] << 8) | p[7]; 422 dnCount = (p[8] << 8) | p[9]; 423 arCount = (p[10] << 8) | p[11]; 424 425 if (anCount != 0 || dnCount != 0 || arCount > 1) { 426 LOG(INFO) << __func__ << ": query packet contains non-query records"; 427 return 0; 428 } 429 430 if (qdCount == 0) { 431 LOG(INFO) << __func__ << ": query packet doesn't contain query record"; 432 return 0; 433 } 434 435 /* Check QDCOUNT QRs */ 436 packet->cursor = p + DNS_HEADER_SIZE; 437 438 for (; qdCount > 0; qdCount--) 439 if (!_dnsPacket_checkQR(packet)) return 0; 440 441 return 1; 442 } 443 444 /** QUERY HASHING SUPPORT 445 ** 446 ** THE FOLLOWING CODE ASSUMES THAT THE INPUT PACKET HAS ALREADY 447 ** BEEN SUCCESFULLY CHECKED. 448 **/ 449 450 /* use 32-bit FNV hash function */ 451 #define FNV_MULT 16777619U 452 #define FNV_BASIS 2166136261U 453 454 static unsigned _dnsPacket_hashBytes(DnsPacket* packet, int numBytes, unsigned hash) { 455 const uint8_t* p = packet->cursor; 456 const uint8_t* end = packet->end; 457 458 while (numBytes > 0 && p < end) { 459 hash = hash * FNV_MULT ^ *p++; 460 numBytes--; 461 } 462 packet->cursor = p; 463 return hash; 464 } 465 466 static unsigned _dnsPacket_hashQName(DnsPacket* packet, unsigned hash) { 467 const uint8_t* p = packet->cursor; 468 const uint8_t* end = packet->end; 469 470 for (;;) { 471 if (p >= end) { /* should not happen */ 472 LOG(INFO) << __func__ << ": INTERNAL_ERROR: read-overflow"; 473 break; 474 } 475 476 int c = *p++; 477 478 if (c == 0) break; 479 480 if (c >= 64) { 481 LOG(INFO) << __func__ << ": INTERNAL_ERROR: malformed domain"; 482 break; 483 } 484 if (p + c >= end) { 485 LOG(INFO) << __func__ << ": INTERNAL_ERROR: simple label read-overflow"; 486 break; 487 } 488 489 while (c > 0) { 490 uint8_t ch = *p++; 491 ch = res_tolower(ch); 492 hash = hash * FNV_MULT ^ ch; 493 c--; 494 } 495 } 496 packet->cursor = p; 497 return hash; 498 } 499 500 static unsigned _dnsPacket_hashQR(DnsPacket* packet, unsigned hash) { 501 hash = _dnsPacket_hashQName(packet, hash); 502 hash = _dnsPacket_hashBytes(packet, 4, hash); /* TYPE and CLASS */ 503 return hash; 504 } 505 506 static unsigned _dnsPacket_hashRR(DnsPacket* packet, unsigned hash) { 507 int rdlength; 508 hash = _dnsPacket_hashQR(packet, hash); 509 hash = _dnsPacket_hashBytes(packet, 4, hash); /* TTL */ 510 rdlength = _dnsPacket_readInt16(packet); 511 hash = _dnsPacket_hashBytes(packet, rdlength, hash); /* RDATA */ 512 return hash; 513 } 514 515 static unsigned _dnsPacket_hashQuery(DnsPacket* packet) { 516 unsigned hash = FNV_BASIS; 517 int count, arcount; 518 _dnsPacket_rewind(packet); 519 520 /* ignore the ID */ 521 _dnsPacket_skip(packet, 2); 522 523 /* we ignore the TC bit for reasons explained in 524 * _dnsPacket_checkQuery(). 525 * 526 * however we hash the RD bit to differentiate 527 * between answers for recursive and non-recursive 528 * queries. 529 */ 530 hash = hash * FNV_MULT ^ (packet->base[2] & 1); 531 532 /* mark the first header byte as processed */ 533 _dnsPacket_skip(packet, 1); 534 535 /* process the second header byte */ 536 hash = _dnsPacket_hashBytes(packet, 1, hash); 537 538 /* read QDCOUNT */ 539 count = _dnsPacket_readInt16(packet); 540 541 /* assume: ANcount and NScount are 0 */ 542 _dnsPacket_skip(packet, 4); 543 544 /* read ARCOUNT */ 545 arcount = _dnsPacket_readInt16(packet); 546 547 /* hash QDCOUNT QRs */ 548 for (; count > 0; count--) hash = _dnsPacket_hashQR(packet, hash); 549 550 /* hash ARCOUNT RRs */ 551 for (; arcount > 0; arcount--) hash = _dnsPacket_hashRR(packet, hash); 552 553 return hash; 554 } 555 556 /** QUERY COMPARISON 557 ** 558 ** THE FOLLOWING CODE ASSUMES THAT THE INPUT PACKETS HAVE ALREADY 559 ** BEEN SUCCESSFULLY CHECKED. 560 **/ 561 562 static int _dnsPacket_isEqualDomainName(DnsPacket* pack1, DnsPacket* pack2) { 563 const uint8_t* p1 = pack1->cursor; 564 const uint8_t* end1 = pack1->end; 565 const uint8_t* p2 = pack2->cursor; 566 const uint8_t* end2 = pack2->end; 567 568 for (;;) { 569 if (p1 >= end1 || p2 >= end2) { 570 LOG(INFO) << __func__ << ": INTERNAL_ERROR: read-overflow"; 571 break; 572 } 573 int c1 = *p1++; 574 int c2 = *p2++; 575 if (c1 != c2) break; 576 577 if (c1 == 0) { 578 pack1->cursor = p1; 579 pack2->cursor = p2; 580 return 1; 581 } 582 if (c1 >= 64) { 583 LOG(INFO) << __func__ << ": INTERNAL_ERROR: malformed domain"; 584 break; 585 } 586 if ((p1 + c1 > end1) || (p2 + c1 > end2)) { 587 LOG(INFO) << __func__ << ": INTERNAL_ERROR: simple label read-overflow"; 588 break; 589 } 590 if (res_memcasecmp(p1, p2, c1) != 0) break; 591 p1 += c1; 592 p2 += c1; 593 /* we rely on the bound checks at the start of the loop */ 594 } 595 /* not the same, or one is malformed */ 596 LOG(INFO) << __func__ << ": different DN"; 597 return 0; 598 } 599 600 static int _dnsPacket_isEqualBytes(DnsPacket* pack1, DnsPacket* pack2, int numBytes) { 601 const uint8_t* p1 = pack1->cursor; 602 const uint8_t* p2 = pack2->cursor; 603 604 if (p1 + numBytes > pack1->end || p2 + numBytes > pack2->end) return 0; 605 606 if (memcmp(p1, p2, numBytes) != 0) return 0; 607 608 pack1->cursor += numBytes; 609 pack2->cursor += numBytes; 610 return 1; 611 } 612 613 static int _dnsPacket_isEqualQR(DnsPacket* pack1, DnsPacket* pack2) { 614 /* compare domain name encoding + TYPE + CLASS */ 615 if (!_dnsPacket_isEqualDomainName(pack1, pack2) || 616 !_dnsPacket_isEqualBytes(pack1, pack2, 2 + 2)) 617 return 0; 618 619 return 1; 620 } 621 622 static int _dnsPacket_isEqualRR(DnsPacket* pack1, DnsPacket* pack2) { 623 int rdlength1, rdlength2; 624 /* compare query + TTL */ 625 if (!_dnsPacket_isEqualQR(pack1, pack2) || !_dnsPacket_isEqualBytes(pack1, pack2, 4)) return 0; 626 627 /* compare RDATA */ 628 rdlength1 = _dnsPacket_readInt16(pack1); 629 rdlength2 = _dnsPacket_readInt16(pack2); 630 if (rdlength1 != rdlength2 || !_dnsPacket_isEqualBytes(pack1, pack2, rdlength1)) return 0; 631 632 return 1; 633 } 634 635 static int _dnsPacket_isEqualQuery(DnsPacket* pack1, DnsPacket* pack2) { 636 int count1, count2, arcount1, arcount2; 637 638 /* compare the headers, ignore most fields */ 639 _dnsPacket_rewind(pack1); 640 _dnsPacket_rewind(pack2); 641 642 /* compare RD, ignore TC, see comment in _dnsPacket_checkQuery */ 643 if ((pack1->base[2] & 1) != (pack2->base[2] & 1)) { 644 LOG(INFO) << __func__ << ": different RD"; 645 return 0; 646 } 647 648 if (pack1->base[3] != pack2->base[3]) { 649 LOG(INFO) << __func__ << ": different CD or AD"; 650 return 0; 651 } 652 653 /* mark ID and header bytes as compared */ 654 _dnsPacket_skip(pack1, 4); 655 _dnsPacket_skip(pack2, 4); 656 657 /* compare QDCOUNT */ 658 count1 = _dnsPacket_readInt16(pack1); 659 count2 = _dnsPacket_readInt16(pack2); 660 if (count1 != count2 || count1 < 0) { 661 LOG(INFO) << __func__ << ": different QDCOUNT"; 662 return 0; 663 } 664 665 /* assume: ANcount and NScount are 0 */ 666 _dnsPacket_skip(pack1, 4); 667 _dnsPacket_skip(pack2, 4); 668 669 /* compare ARCOUNT */ 670 arcount1 = _dnsPacket_readInt16(pack1); 671 arcount2 = _dnsPacket_readInt16(pack2); 672 if (arcount1 != arcount2 || arcount1 < 0) { 673 LOG(INFO) << __func__ << ": different ARCOUNT"; 674 return 0; 675 } 676 677 /* compare the QDCOUNT QRs */ 678 for (; count1 > 0; count1--) { 679 if (!_dnsPacket_isEqualQR(pack1, pack2)) { 680 LOG(INFO) << __func__ << ": different QR"; 681 return 0; 682 } 683 } 684 685 /* compare the ARCOUNT RRs */ 686 for (; arcount1 > 0; arcount1--) { 687 if (!_dnsPacket_isEqualRR(pack1, pack2)) { 688 LOG(INFO) << __func__ << ": different additional RR"; 689 return 0; 690 } 691 } 692 return 1; 693 } 694 695 /* cache entry. for simplicity, 'hash' and 'hlink' are inlined in this 696 * structure though they are conceptually part of the hash table. 697 * 698 * similarly, mru_next and mru_prev are part of the global MRU list 699 */ 700 struct Entry { 701 unsigned int hash; /* hash value */ 702 struct Entry* hlink; /* next in collision chain */ 703 struct Entry* mru_prev; 704 struct Entry* mru_next; 705 706 const uint8_t* query; 707 int querylen; 708 const uint8_t* answer; 709 int answerlen; 710 time_t expires; /* time_t when the entry isn't valid any more */ 711 int id; /* for debugging purpose */ 712 }; 713 714 /* 715 * Find the TTL for a negative DNS result. This is defined as the minimum 716 * of the SOA records TTL and the MINIMUM-TTL field (RFC-2308). 717 * 718 * Return 0 if not found. 719 */ 720 static uint32_t answer_getNegativeTTL(ns_msg handle) { 721 int n, nscount; 722 uint32_t result = 0; 723 ns_rr rr; 724 725 nscount = ns_msg_count(handle, ns_s_ns); 726 for (n = 0; n < nscount; n++) { 727 if ((ns_parserr(&handle, ns_s_ns, n, &rr) == 0) && (ns_rr_type(rr) == ns_t_soa)) { 728 const uint8_t* rdata = ns_rr_rdata(rr); // find the data 729 const uint8_t* edata = rdata + ns_rr_rdlen(rr); // add the len to find the end 730 int len; 731 uint32_t ttl, rec_result = rr.ttl; 732 733 // find the MINIMUM-TTL field from the blob of binary data for this record 734 // skip the server name 735 len = dn_skipname(rdata, edata); 736 if (len == -1) continue; // error skipping 737 rdata += len; 738 739 // skip the admin name 740 len = dn_skipname(rdata, edata); 741 if (len == -1) continue; // error skipping 742 rdata += len; 743 744 if (edata - rdata != 5 * NS_INT32SZ) continue; 745 // skip: serial number + refresh interval + retry interval + expiry 746 rdata += NS_INT32SZ * 4; 747 // finally read the MINIMUM TTL 748 ttl = ntohl(*reinterpret_cast<const uint32_t*>(rdata)); 749 if (ttl < rec_result) { 750 rec_result = ttl; 751 } 752 // Now that the record is read successfully, apply the new min TTL 753 if (n == 0 || rec_result < result) { 754 result = rec_result; 755 } 756 } 757 } 758 return result; 759 } 760 761 /* 762 * Parse the answer records and find the appropriate 763 * smallest TTL among the records. This might be from 764 * the answer records if found or from the SOA record 765 * if it's a negative result. 766 * 767 * The returned TTL is the number of seconds to 768 * keep the answer in the cache. 769 * 770 * In case of parse error zero (0) is returned which 771 * indicates that the answer shall not be cached. 772 */ 773 static uint32_t answer_getTTL(const void* answer, int answerlen) { 774 ns_msg handle; 775 int ancount, n; 776 uint32_t result, ttl; 777 ns_rr rr; 778 779 result = 0; 780 if (ns_initparse((const uint8_t*) answer, answerlen, &handle) >= 0) { 781 // get number of answer records 782 ancount = ns_msg_count(handle, ns_s_an); 783 784 if (ancount == 0) { 785 // a response with no answers? Cache this negative result. 786 result = answer_getNegativeTTL(handle); 787 } else { 788 for (n = 0; n < ancount; n++) { 789 if (ns_parserr(&handle, ns_s_an, n, &rr) == 0) { 790 ttl = rr.ttl; 791 if (n == 0 || ttl < result) { 792 result = ttl; 793 } 794 } else { 795 PLOG(INFO) << __func__ << ": ns_parserr failed ancount no = " << n; 796 } 797 } 798 } 799 } else { 800 PLOG(INFO) << __func__ << ": ns_initparse failed"; 801 } 802 803 LOG(INFO) << __func__ << ": TTL = " << result; 804 return result; 805 } 806 807 static void entry_free(Entry* e) { 808 /* everything is allocated in a single memory block */ 809 if (e) { 810 free(e); 811 } 812 } 813 814 static void entry_mru_remove(Entry* e) { 815 e->mru_prev->mru_next = e->mru_next; 816 e->mru_next->mru_prev = e->mru_prev; 817 } 818 819 static void entry_mru_add(Entry* e, Entry* list) { 820 Entry* first = list->mru_next; 821 822 e->mru_next = first; 823 e->mru_prev = list; 824 825 list->mru_next = e; 826 first->mru_prev = e; 827 } 828 829 /* compute the hash of a given entry, this is a hash of most 830 * data in the query (key) */ 831 static unsigned entry_hash(const Entry* e) { 832 DnsPacket pack[1]; 833 834 _dnsPacket_init(pack, e->query, e->querylen); 835 return _dnsPacket_hashQuery(pack); 836 } 837 838 /* initialize an Entry as a search key, this also checks the input query packet 839 * returns 1 on success, or 0 in case of unsupported/malformed data */ 840 static int entry_init_key(Entry* e, const void* query, int querylen) { 841 DnsPacket pack[1]; 842 843 memset(e, 0, sizeof(*e)); 844 845 e->query = (const uint8_t*) query; 846 e->querylen = querylen; 847 e->hash = entry_hash(e); 848 849 _dnsPacket_init(pack, e->query, e->querylen); 850 851 return _dnsPacket_checkQuery(pack); 852 } 853 854 /* allocate a new entry as a cache node */ 855 static Entry* entry_alloc(const Entry* init, const void* answer, int answerlen) { 856 Entry* e; 857 int size; 858 859 size = sizeof(*e) + init->querylen + answerlen; 860 e = (Entry*) calloc(size, 1); 861 if (e == NULL) return e; 862 863 e->hash = init->hash; 864 e->query = (const uint8_t*) (e + 1); 865 e->querylen = init->querylen; 866 867 memcpy((char*) e->query, init->query, e->querylen); 868 869 e->answer = e->query + e->querylen; 870 e->answerlen = answerlen; 871 872 memcpy((char*) e->answer, answer, e->answerlen); 873 874 return e; 875 } 876 877 static int entry_equals(const Entry* e1, const Entry* e2) { 878 DnsPacket pack1[1], pack2[1]; 879 880 if (e1->querylen != e2->querylen) { 881 return 0; 882 } 883 _dnsPacket_init(pack1, e1->query, e1->querylen); 884 _dnsPacket_init(pack2, e2->query, e2->querylen); 885 886 return _dnsPacket_isEqualQuery(pack1, pack2); 887 } 888 889 /* We use a simple hash table with external collision lists 890 * for simplicity, the hash-table fields 'hash' and 'hlink' are 891 * inlined in the Entry structure. 892 */ 893 894 /* Maximum time for a thread to wait for an pending request */ 895 constexpr int PENDING_REQUEST_TIMEOUT = 20; 896 897 // lock protecting everything in NetConfig. 898 static std::mutex cache_mutex; 899 static std::condition_variable cv; 900 901 namespace { 902 903 // Map format: ReturnCode:rate_denom 904 // if the ReturnCode is not associated with any rate_denom, use default 905 // Sampling rate varies by return code; events to log are chosen randomly, with a 906 // probability proportional to the sampling rate. 907 constexpr const char DEFAULT_SUBSAMPLING_MAP[] = "default:8 0:400 2:110 7:110"; 908 909 std::unordered_map<int, uint32_t> resolv_get_dns_event_subsampling_map() { 910 using android::base::ParseInt; 911 using android::base::ParseUint; 912 using android::base::Split; 913 using server_configurable_flags::GetServerConfigurableFlag; 914 std::unordered_map<int, uint32_t> sampling_rate_map{}; 915 std::vector<std::string> subsampling_vector = 916 Split(GetServerConfigurableFlag("netd_native", "dns_event_subsample_map", 917 DEFAULT_SUBSAMPLING_MAP), 918 " "); 919 for (const auto& pair : subsampling_vector) { 920 std::vector<std::string> rate_denom = Split(pair, ":"); 921 int return_code; 922 uint32_t denom; 923 if (rate_denom.size() != 2) { 924 LOG(ERROR) << __func__ << ": invalid subsampling_pair = " << pair; 925 continue; 926 } 927 if (rate_denom[0] == "default") { 928 return_code = DNSEVENT_SUBSAMPLING_MAP_DEFAULT_KEY; 929 } else if (!ParseInt(rate_denom[0], &return_code)) { 930 LOG(ERROR) << __func__ << ": parse subsampling_pair failed = " << pair; 931 continue; 932 } 933 if (!ParseUint(rate_denom[1], &denom)) { 934 LOG(ERROR) << __func__ << ": parse subsampling_pair failed = " << pair; 935 continue; 936 } 937 sampling_rate_map[return_code] = denom; 938 } 939 return sampling_rate_map; 940 } 941 942 } // namespace 943 944 // Note that Cache is not thread-safe per se, access to its members must be protected 945 // by an external mutex. 946 // 947 // TODO: move all cache manipulation code here and make data members private. 948 struct Cache { 949 Cache() { 950 entries.resize(CONFIG_MAX_ENTRIES); 951 mru_list.mru_prev = mru_list.mru_next = &mru_list; 952 } 953 ~Cache() { flush(); } 954 955 void flush() { 956 for (int nn = 0; nn < CONFIG_MAX_ENTRIES; nn++) { 957 Entry** pnode = (Entry**)&entries[nn]; 958 959 while (*pnode) { 960 Entry* node = *pnode; 961 *pnode = node->hlink; 962 entry_free(node); 963 } 964 } 965 966 flushPendingRequests(); 967 968 mru_list.mru_next = mru_list.mru_prev = &mru_list; 969 num_entries = 0; 970 last_id = 0; 971 972 LOG(INFO) << "DNS cache flushed"; 973 } 974 975 void flushPendingRequests() { 976 pending_req_info* ri = pending_requests.next; 977 while (ri) { 978 pending_req_info* tmp = ri; 979 ri = ri->next; 980 free(tmp); 981 } 982 983 pending_requests.next = nullptr; 984 cv.notify_all(); 985 } 986 987 int num_entries = 0; 988 989 // TODO: convert to std::list 990 Entry mru_list; 991 int last_id = 0; 992 std::vector<Entry> entries; 993 994 // TODO: convert to std::vector 995 struct pending_req_info { 996 unsigned int hash; 997 struct pending_req_info* next; 998 } pending_requests{}; 999 }; 1000 1001 struct NetConfig { 1002 explicit NetConfig(unsigned netId) : netid(netId) { 1003 cache = std::make_unique<Cache>(); 1004 dns_event_subsampling_map = resolv_get_dns_event_subsampling_map(); 1005 } 1006 int nameserverCount() { return nameserverSockAddrs.size(); } 1007 int setOptions(const ResolverOptionsParcel& resolverOptions) { 1008 customizedTable.clear(); 1009 for (const auto& host : resolverOptions.hosts) { 1010 if (!host.hostName.empty() && !host.ipAddr.empty()) 1011 customizedTable.emplace(host.hostName, host.ipAddr); 1012 } 1013 1014 if (resolverOptions.tcMode < aidl::android::net::IDnsResolver::TC_MODE_DEFAULT || 1015 resolverOptions.tcMode > aidl::android::net::IDnsResolver::TC_MODE_UDP_TCP) { 1016 LOG(WARNING) << __func__ << ": netid = " << netid 1017 << ", invalid TC mode: " << resolverOptions.tcMode; 1018 return -EINVAL; 1019 } 1020 tc_mode = resolverOptions.tcMode; 1021 enforceDnsUid = resolverOptions.enforceDnsUid; 1022 return 0; 1023 } 1024 const unsigned netid; 1025 std::unique_ptr<Cache> cache; 1026 std::vector<std::string> nameservers; 1027 std::vector<IPSockAddr> nameserverSockAddrs; 1028 int revision_id = 0; // # times the nameservers have been replaced 1029 res_params params{}; 1030 res_stats nsstats[MAXNS]{}; 1031 std::vector<std::string> search_domains; 1032 int wait_for_pending_req_timeout_count = 0; 1033 // Map format: ReturnCode:rate_denom 1034 std::unordered_map<int, uint32_t> dns_event_subsampling_map; 1035 DnsStats dnsStats; 1036 1037 // Customized hostname/address table will be stored in customizedTable. 1038 // If resolverParams.hosts is empty, the existing customized table will be erased. 1039 typedef std::multimap<std::string /* hostname */, std::string /* IPv4/IPv6 address */> 1040 HostMapping; 1041 HostMapping customizedTable = {}; 1042 1043 int tc_mode = aidl::android::net::IDnsResolver::TC_MODE_DEFAULT; 1044 bool enforceDnsUid = false; 1045 std::vector<int32_t> transportTypes; 1046 }; 1047 1048 /* gets cache associated with a network, or NULL if none exists */ 1049 static Cache* find_named_cache_locked(unsigned netid) REQUIRES(cache_mutex); 1050 1051 // Return true - if there is a pending request in |cache| matching |key|. 1052 // Return false - if no pending request is found matching the key. Optionally 1053 // link a new one if parameter append_if_not_found is true. 1054 static bool cache_has_pending_request_locked(Cache* cache, const Entry* key, 1055 bool append_if_not_found) { 1056 if (!cache || !key) return false; 1057 1058 Cache::pending_req_info* ri = cache->pending_requests.next; 1059 Cache::pending_req_info* prev = &cache->pending_requests; 1060 while (ri) { 1061 if (ri->hash == key->hash) { 1062 return true; 1063 } 1064 prev = ri; 1065 ri = ri->next; 1066 } 1067 1068 if (append_if_not_found) { 1069 ri = (Cache::pending_req_info*)calloc(1, sizeof(Cache::pending_req_info)); 1070 if (ri) { 1071 ri->hash = key->hash; 1072 prev->next = ri; 1073 } 1074 } 1075 return false; 1076 } 1077 1078 // Notify all threads that the cache entry |key| has become available 1079 static void cache_notify_waiting_tid_locked(struct Cache* cache, const Entry* key) { 1080 if (!cache || !key) return; 1081 1082 Cache::pending_req_info* ri = cache->pending_requests.next; 1083 Cache::pending_req_info* prev = &cache->pending_requests; 1084 while (ri) { 1085 if (ri->hash == key->hash) { 1086 // remove item from list and destroy 1087 prev->next = ri->next; 1088 free(ri); 1089 cv.notify_all(); 1090 return; 1091 } 1092 prev = ri; 1093 ri = ri->next; 1094 } 1095 } 1096 1097 void _resolv_cache_query_failed(unsigned netid, const void* query, int querylen, uint32_t flags) { 1098 // We should not notify with these flags. 1099 if (flags & (ANDROID_RESOLV_NO_CACHE_STORE | ANDROID_RESOLV_NO_CACHE_LOOKUP)) { 1100 return; 1101 } 1102 Entry key[1]; 1103 1104 if (!entry_init_key(key, query, querylen)) return; 1105 1106 std::lock_guard guard(cache_mutex); 1107 1108 Cache* cache = find_named_cache_locked(netid); 1109 1110 if (cache) { 1111 cache_notify_waiting_tid_locked(cache, key); 1112 } 1113 } 1114 1115 static void cache_dump_mru_locked(Cache* cache) { 1116 std::string buf; 1117 1118 StringAppendF(&buf, "MRU LIST (%2d): ", cache->num_entries); 1119 for (Entry* e = cache->mru_list.mru_next; e != &cache->mru_list; e = e->mru_next) { 1120 StringAppendF(&buf, " %d", e->id); 1121 } 1122 1123 LOG(INFO) << __func__ << ": " << buf; 1124 } 1125 1126 /* This function tries to find a key within the hash table 1127 * In case of success, it will return a *pointer* to the hashed key. 1128 * In case of failure, it will return a *pointer* to NULL 1129 * 1130 * So, the caller must check '*result' to check for success/failure. 1131 * 1132 * The main idea is that the result can later be used directly in 1133 * calls to resolv_cache_add or _resolv_cache_remove as the 'lookup' 1134 * parameter. This makes the code simpler and avoids re-searching 1135 * for the key position in the htable. 1136 * 1137 * The result of a lookup_p is only valid until you alter the hash 1138 * table. 1139 */ 1140 static Entry** _cache_lookup_p(Cache* cache, Entry* key) { 1141 int index = key->hash % CONFIG_MAX_ENTRIES; 1142 Entry** pnode = (Entry**) &cache->entries[index]; 1143 1144 while (*pnode != NULL) { 1145 Entry* node = *pnode; 1146 1147 if (node == NULL) break; 1148 1149 if (node->hash == key->hash && entry_equals(node, key)) break; 1150 1151 pnode = &node->hlink; 1152 } 1153 return pnode; 1154 } 1155 1156 /* Add a new entry to the hash table. 'lookup' must be the 1157 * result of an immediate previous failed _lookup_p() call 1158 * (i.e. with *lookup == NULL), and 'e' is the pointer to the 1159 * newly created entry 1160 */ 1161 static void _cache_add_p(Cache* cache, Entry** lookup, Entry* e) { 1162 *lookup = e; 1163 e->id = ++cache->last_id; 1164 entry_mru_add(e, &cache->mru_list); 1165 cache->num_entries += 1; 1166 1167 LOG(INFO) << __func__ << ": entry " << e->id << " added (count=" << cache->num_entries << ")"; 1168 } 1169 1170 /* Remove an existing entry from the hash table, 1171 * 'lookup' must be the result of an immediate previous 1172 * and succesful _lookup_p() call. 1173 */ 1174 static void _cache_remove_p(Cache* cache, Entry** lookup) { 1175 Entry* e = *lookup; 1176 1177 LOG(INFO) << __func__ << ": entry " << e->id << " removed (count=" << cache->num_entries - 1 1178 << ")"; 1179 1180 entry_mru_remove(e); 1181 *lookup = e->hlink; 1182 entry_free(e); 1183 cache->num_entries -= 1; 1184 } 1185 1186 /* Remove the oldest entry from the hash table. 1187 */ 1188 static void _cache_remove_oldest(Cache* cache) { 1189 Entry* oldest = cache->mru_list.mru_prev; 1190 Entry** lookup = _cache_lookup_p(cache, oldest); 1191 1192 if (*lookup == NULL) { /* should not happen */ 1193 LOG(INFO) << __func__ << ": OLDEST NOT IN HTABLE ?"; 1194 return; 1195 } 1196 LOG(INFO) << __func__ << ": Cache full - removing oldest"; 1197 res_pquery(oldest->query, oldest->querylen); 1198 _cache_remove_p(cache, lookup); 1199 } 1200 1201 /* Remove all expired entries from the hash table. 1202 */ 1203 static void _cache_remove_expired(Cache* cache) { 1204 Entry* e; 1205 time_t now = _time_now(); 1206 1207 for (e = cache->mru_list.mru_next; e != &cache->mru_list;) { 1208 // Entry is old, remove 1209 if (now >= e->expires) { 1210 Entry** lookup = _cache_lookup_p(cache, e); 1211 if (*lookup == NULL) { /* should not happen */ 1212 LOG(INFO) << __func__ << ": ENTRY NOT IN HTABLE ?"; 1213 return; 1214 } 1215 e = e->mru_next; 1216 _cache_remove_p(cache, lookup); 1217 } else { 1218 e = e->mru_next; 1219 } 1220 } 1221 } 1222 1223 // Get a NetConfig associated with a network, or nullptr if not found. 1224 static NetConfig* find_netconfig_locked(unsigned netid) REQUIRES(cache_mutex); 1225 1226 ResolvCacheStatus resolv_cache_lookup(unsigned netid, const void* query, int querylen, void* answer, 1227 int answersize, int* answerlen, uint32_t flags) { 1228 // Skip cache lookup, return RESOLV_CACHE_NOTFOUND directly so that it is 1229 // possible to cache the answer of this query. 1230 // If ANDROID_RESOLV_NO_CACHE_STORE is set, return RESOLV_CACHE_SKIP to skip possible cache 1231 // storing. 1232 // (b/150371903): ANDROID_RESOLV_NO_CACHE_STORE should imply ANDROID_RESOLV_NO_CACHE_LOOKUP 1233 // to avoid side channel attack. 1234 if (flags & (ANDROID_RESOLV_NO_CACHE_LOOKUP | ANDROID_RESOLV_NO_CACHE_STORE)) { 1235 return flags & ANDROID_RESOLV_NO_CACHE_STORE ? RESOLV_CACHE_SKIP : RESOLV_CACHE_NOTFOUND; 1236 } 1237 Entry key; 1238 Entry** lookup; 1239 Entry* e; 1240 time_t now; 1241 1242 LOG(INFO) << __func__ << ": lookup"; 1243 1244 /* we don't cache malformed queries */ 1245 if (!entry_init_key(&key, query, querylen)) { 1246 LOG(INFO) << __func__ << ": unsupported query"; 1247 return RESOLV_CACHE_UNSUPPORTED; 1248 } 1249 /* lookup cache */ 1250 std::unique_lock lock(cache_mutex); 1251 android::base::ScopedLockAssertion assume_lock(cache_mutex); 1252 Cache* cache = find_named_cache_locked(netid); 1253 if (cache == nullptr) { 1254 return RESOLV_CACHE_UNSUPPORTED; 1255 } 1256 1257 /* see the description of _lookup_p to understand this. 1258 * the function always return a non-NULL pointer. 1259 */ 1260 lookup = _cache_lookup_p(cache, &key); 1261 e = *lookup; 1262 1263 if (e == NULL) { 1264 LOG(INFO) << __func__ << ": NOT IN CACHE"; 1265 1266 if (!cache_has_pending_request_locked(cache, &key, true)) { 1267 return RESOLV_CACHE_NOTFOUND; 1268 1269 } else { 1270 LOG(INFO) << __func__ << ": Waiting for previous request"; 1271 // wait until (1) timeout OR 1272 // (2) cv is notified AND no pending request matching the |key| 1273 // (cv notifier should delete pending request before sending notification.) 1274 bool ret = cv.wait_for(lock, std::chrono::seconds(PENDING_REQUEST_TIMEOUT), 1275 [netid, &cache, &key]() REQUIRES(cache_mutex) { 1276 // Must update cache as it could have been deleted 1277 cache = find_named_cache_locked(netid); 1278 return !cache_has_pending_request_locked(cache, &key, false); 1279 }); 1280 if (!cache) { 1281 return RESOLV_CACHE_NOTFOUND; 1282 } 1283 if (ret == false) { 1284 NetConfig* info = find_netconfig_locked(netid); 1285 if (info != NULL) { 1286 info->wait_for_pending_req_timeout_count++; 1287 } 1288 } 1289 lookup = _cache_lookup_p(cache, &key); 1290 e = *lookup; 1291 if (e == NULL) { 1292 return RESOLV_CACHE_NOTFOUND; 1293 } 1294 } 1295 } 1296 1297 now = _time_now(); 1298 1299 /* remove stale entries here */ 1300 if (now >= e->expires) { 1301 LOG(INFO) << __func__ << ": NOT IN CACHE (STALE ENTRY " << *lookup << "DISCARDED)"; 1302 res_pquery(e->query, e->querylen); 1303 _cache_remove_p(cache, lookup); 1304 return RESOLV_CACHE_NOTFOUND; 1305 } 1306 1307 *answerlen = e->answerlen; 1308 if (e->answerlen > answersize) { 1309 /* NOTE: we return UNSUPPORTED if the answer buffer is too short */ 1310 LOG(INFO) << __func__ << ": ANSWER TOO LONG"; 1311 return RESOLV_CACHE_UNSUPPORTED; 1312 } 1313 1314 memcpy(answer, e->answer, e->answerlen); 1315 1316 /* bump up this entry to the top of the MRU list */ 1317 if (e != cache->mru_list.mru_next) { 1318 entry_mru_remove(e); 1319 entry_mru_add(e, &cache->mru_list); 1320 } 1321 1322 LOG(INFO) << __func__ << ": FOUND IN CACHE entry=" << e; 1323 return RESOLV_CACHE_FOUND; 1324 } 1325 1326 int resolv_cache_add(unsigned netid, const void* query, int querylen, const void* answer, 1327 int answerlen) { 1328 Entry key[1]; 1329 Entry* e; 1330 Entry** lookup; 1331 uint32_t ttl; 1332 Cache* cache = NULL; 1333 1334 /* don't assume that the query has already been cached 1335 */ 1336 if (!entry_init_key(key, query, querylen)) { 1337 LOG(INFO) << __func__ << ": passed invalid query?"; 1338 return -EINVAL; 1339 } 1340 1341 std::lock_guard guard(cache_mutex); 1342 1343 cache = find_named_cache_locked(netid); 1344 if (cache == nullptr) { 1345 return -ENONET; 1346 } 1347 1348 lookup = _cache_lookup_p(cache, key); 1349 e = *lookup; 1350 1351 // Should only happen on ANDROID_RESOLV_NO_CACHE_LOOKUP 1352 if (e != NULL) { 1353 LOG(INFO) << __func__ << ": ALREADY IN CACHE (" << e << ") ? IGNORING ADD"; 1354 cache_notify_waiting_tid_locked(cache, key); 1355 return -EEXIST; 1356 } 1357 1358 if (cache->num_entries >= CONFIG_MAX_ENTRIES) { 1359 _cache_remove_expired(cache); 1360 if (cache->num_entries >= CONFIG_MAX_ENTRIES) { 1361 _cache_remove_oldest(cache); 1362 } 1363 // TODO: It looks useless, remove below code after having test to prove it. 1364 lookup = _cache_lookup_p(cache, key); 1365 e = *lookup; 1366 if (e != NULL) { 1367 LOG(INFO) << __func__ << ": ALREADY IN CACHE (" << e << ") ? IGNORING ADD"; 1368 cache_notify_waiting_tid_locked(cache, key); 1369 return -EEXIST; 1370 } 1371 } 1372 1373 ttl = answer_getTTL(answer, answerlen); 1374 if (ttl > 0) { 1375 e = entry_alloc(key, answer, answerlen); 1376 if (e != NULL) { 1377 e->expires = ttl + _time_now(); 1378 _cache_add_p(cache, lookup, e); 1379 } 1380 } 1381 1382 cache_dump_mru_locked(cache); 1383 cache_notify_waiting_tid_locked(cache, key); 1384 1385 return 0; 1386 } 1387 1388 bool resolv_gethostbyaddr_from_cache(unsigned netid, char domain_name[], size_t domain_name_size, 1389 const char* ip_address, int af) { 1390 if (domain_name_size > NS_MAXDNAME) { 1391 LOG(WARNING) << __func__ << ": invalid domain_name_size " << domain_name_size; 1392 return false; 1393 } else if (ip_address == nullptr || ip_address[0] == '\0') { 1394 LOG(WARNING) << __func__ << ": invalid ip_address"; 1395 return false; 1396 } else if (af != AF_INET && af != AF_INET6) { 1397 LOG(WARNING) << __func__ << ": unsupported AF"; 1398 return false; 1399 } 1400 1401 Cache* cache = nullptr; 1402 Entry* node = nullptr; 1403 1404 ns_rr rr; 1405 ns_msg handle; 1406 ns_rr rr_query; 1407 1408 struct sockaddr_in sa; 1409 struct sockaddr_in6 sa6; 1410 char* addr_buf = nullptr; 1411 1412 std::lock_guard guard(cache_mutex); 1413 1414 cache = find_named_cache_locked(netid); 1415 if (cache == nullptr) { 1416 return false; 1417 } 1418 1419 for (node = cache->mru_list.mru_next; node != nullptr && node != &cache->mru_list; 1420 node = node->mru_next) { 1421 if (node->answer == nullptr) { 1422 continue; 1423 } 1424 1425 memset(&handle, 0, sizeof(handle)); 1426 1427 if (ns_initparse(node->answer, node->answerlen, &handle) < 0) { 1428 continue; 1429 } 1430 1431 for (int n = 0; n < ns_msg_count(handle, ns_s_an); n++) { 1432 memset(&rr, 0, sizeof(rr)); 1433 1434 if (ns_parserr(&handle, ns_s_an, n, &rr)) { 1435 continue; 1436 } 1437 1438 if (ns_rr_type(rr) == ns_t_a && af == AF_INET) { 1439 addr_buf = (char*)&(sa.sin_addr); 1440 } else if (ns_rr_type(rr) == ns_t_aaaa && af == AF_INET6) { 1441 addr_buf = (char*)&(sa6.sin6_addr); 1442 } else { 1443 continue; 1444 } 1445 1446 if (inet_pton(af, ip_address, addr_buf) != 1) { 1447 LOG(WARNING) << __func__ << ": inet_pton() fail"; 1448 return false; 1449 } 1450 1451 if (memcmp(ns_rr_rdata(rr), addr_buf, ns_rr_rdlen(rr)) == 0) { 1452 int query_count = ns_msg_count(handle, ns_s_qd); 1453 for (int i = 0; i < query_count; i++) { 1454 memset(&rr_query, 0, sizeof(rr_query)); 1455 if (ns_parserr(&handle, ns_s_qd, i, &rr_query)) { 1456 continue; 1457 } 1458 strlcpy(domain_name, ns_rr_name(rr_query), domain_name_size); 1459 if (domain_name[0] != '\0') { 1460 return true; 1461 } 1462 } 1463 } 1464 } 1465 } 1466 1467 return false; 1468 } 1469 1470 static std::unordered_map<unsigned, std::unique_ptr<NetConfig>> sNetConfigMap 1471 GUARDED_BY(cache_mutex); 1472 1473 // Clears nameservers set for |netconfig| and clears the stats 1474 static void free_nameservers_locked(NetConfig* netconfig); 1475 // Order-insensitive comparison for the two set of servers. 1476 static bool resolv_is_nameservers_equal(const std::vector<std::string>& oldServers, 1477 const std::vector<std::string>& newServers); 1478 // clears the stats samples contained withing the given netconfig. 1479 static void res_cache_clear_stats_locked(NetConfig* netconfig); 1480 1481 // public API for netd to query if name server is set on specific netid 1482 bool resolv_has_nameservers(unsigned netid) { 1483 std::lock_guard guard(cache_mutex); 1484 NetConfig* info = find_netconfig_locked(netid); 1485 return (info != nullptr) && (info->nameserverCount() > 0); 1486 } 1487 1488 int resolv_create_cache_for_net(unsigned netid) { 1489 std::lock_guard guard(cache_mutex); 1490 if (sNetConfigMap.find(netid) != sNetConfigMap.end()) { 1491 LOG(ERROR) << __func__ << ": Cache is already created, netId: " << netid; 1492 return -EEXIST; 1493 } 1494 1495 sNetConfigMap[netid] = std::make_unique<NetConfig>(netid); 1496 return 0; 1497 } 1498 1499 void resolv_delete_cache_for_net(unsigned netid) { 1500 std::lock_guard guard(cache_mutex); 1501 sNetConfigMap.erase(netid); 1502 } 1503 1504 int resolv_flush_cache_for_net(unsigned netid) { 1505 std::lock_guard guard(cache_mutex); 1506 1507 NetConfig* netconfig = find_netconfig_locked(netid); 1508 if (netconfig == nullptr) { 1509 return -ENONET; 1510 } 1511 netconfig->cache->flush(); 1512 1513 // Also clear the NS statistics. 1514 res_cache_clear_stats_locked(netconfig); 1515 return 0; 1516 } 1517 1518 std::vector<unsigned> resolv_list_caches() { 1519 std::lock_guard guard(cache_mutex); 1520 std::vector<unsigned> result; 1521 result.reserve(sNetConfigMap.size()); 1522 for (const auto& [netId, _] : sNetConfigMap) { 1523 result.push_back(netId); 1524 } 1525 return result; 1526 } 1527 1528 static Cache* find_named_cache_locked(unsigned netid) { 1529 NetConfig* info = find_netconfig_locked(netid); 1530 if (info != nullptr) return info->cache.get(); 1531 return nullptr; 1532 } 1533 1534 static NetConfig* find_netconfig_locked(unsigned netid) { 1535 if (auto it = sNetConfigMap.find(netid); it != sNetConfigMap.end()) { 1536 return it->second.get(); 1537 } 1538 return nullptr; 1539 } 1540 1541 static void resolv_set_experiment_params(res_params* params) { 1542 if (params->retry_count == 0) { 1543 params->retry_count = getExperimentFlagInt("retry_count", RES_DFLRETRY); 1544 } 1545 1546 if (params->base_timeout_msec == 0) { 1547 params->base_timeout_msec = 1548 getExperimentFlagInt("retransmission_time_interval", RES_TIMEOUT); 1549 } 1550 } 1551 1552 android::net::NetworkType resolv_get_network_types_for_net(unsigned netid) { 1553 std::lock_guard guard(cache_mutex); 1554 NetConfig* netconfig = find_netconfig_locked(netid); 1555 if (netconfig == nullptr) return android::net::NT_UNKNOWN; 1556 return convert_network_type(netconfig->transportTypes); 1557 } 1558 1559 namespace { 1560 1561 // Returns valid domains without duplicates which are limited to max size |MAXDNSRCH|. 1562 std::vector<std::string> filter_domains(const std::vector<std::string>& domains) { 1563 std::set<std::string> tmp_set; 1564 std::vector<std::string> res; 1565 1566 std::copy_if(domains.begin(), domains.end(), std::back_inserter(res), 1567 [&tmp_set](const std::string& str) { 1568 return !(str.size() > MAXDNSRCHPATH - 1) && (tmp_set.insert(str).second); 1569 }); 1570 if (res.size() > MAXDNSRCH) { 1571 LOG(WARNING) << __func__ << ": valid domains=" << res.size() 1572 << ", but MAXDNSRCH=" << MAXDNSRCH; 1573 res.resize(MAXDNSRCH); 1574 } 1575 return res; 1576 } 1577 1578 std::vector<std::string> filter_nameservers(const std::vector<std::string>& servers) { 1579 std::vector<std::string> res = servers; 1580 if (res.size() > MAXNS) { 1581 LOG(WARNING) << __func__ << ": too many servers: " << res.size(); 1582 res.resize(MAXNS); 1583 } 1584 return res; 1585 } 1586 1587 bool isValidServer(const std::string& server) { 1588 const addrinfo hints = { 1589 .ai_family = AF_UNSPEC, 1590 .ai_socktype = SOCK_DGRAM, 1591 }; 1592 addrinfo* result = nullptr; 1593 if (int err = getaddrinfo_numeric(server.c_str(), "53", hints, &result); err != 0) { 1594 LOG(WARNING) << __func__ << ": getaddrinfo_numeric(" << server 1595 << ") = " << gai_strerror(err); 1596 return false; 1597 } 1598 freeaddrinfo(result); 1599 return true; 1600 } 1601 1602 } // namespace 1603 1604 std::vector<std::string> getCustomizedTableByName(const size_t netid, const char* hostname) { 1605 std::lock_guard guard(cache_mutex); 1606 NetConfig* netconfig = find_netconfig_locked(netid); 1607 1608 std::vector<std::string> result; 1609 if (netconfig != nullptr) { 1610 const auto& hosts = netconfig->customizedTable.equal_range(hostname); 1611 for (auto i = hosts.first; i != hosts.second; ++i) { 1612 result.push_back(i->second); 1613 } 1614 } 1615 return result; 1616 } 1617 1618 int resolv_set_nameservers(unsigned netid, const std::vector<std::string>& servers, 1619 const std::vector<std::string>& domains, const res_params& params, 1620 const std::optional<ResolverOptionsParcel> optionalResolverOptions, 1621 const std::vector<int32_t>& transportTypes) { 1622 std::vector<std::string> nameservers = filter_nameservers(servers); 1623 const int numservers = static_cast<int>(nameservers.size()); 1624 1625 LOG(INFO) << __func__ << ": netId = " << netid << ", numservers = " << numservers; 1626 1627 // Parse the addresses before actually locking or changing any state, in case there is an error. 1628 // As a side effect this also reduces the time the lock is kept. 1629 std::vector<IPSockAddr> ipSockAddrs; 1630 ipSockAddrs.reserve(nameservers.size()); 1631 for (const auto& server : nameservers) { 1632 if (!isValidServer(server)) return -EINVAL; 1633 ipSockAddrs.push_back(IPSockAddr::toIPSockAddr(server, 53)); 1634 } 1635 1636 std::lock_guard guard(cache_mutex); 1637 NetConfig* netconfig = find_netconfig_locked(netid); 1638 1639 if (netconfig == nullptr) return -ENONET; 1640 1641 uint8_t old_max_samples = netconfig->params.max_samples; 1642 netconfig->params = params; 1643 resolv_set_experiment_params(&netconfig->params); 1644 if (!resolv_is_nameservers_equal(netconfig->nameservers, nameservers)) { 1645 // free current before adding new 1646 free_nameservers_locked(netconfig); 1647 netconfig->nameservers = std::move(nameservers); 1648 for (int i = 0; i < numservers; i++) { 1649 LOG(INFO) << __func__ << ": netid = " << netid 1650 << ", addr = " << netconfig->nameservers[i]; 1651 } 1652 netconfig->nameserverSockAddrs = std::move(ipSockAddrs); 1653 } else { 1654 if (netconfig->params.max_samples != old_max_samples) { 1655 // If the maximum number of samples changes, the overhead of keeping the most recent 1656 // samples around is not considered worth the effort, so they are cleared instead. 1657 // All other parameters do not affect shared state: Changing these parameters does 1658 // not invalidate the samples, as they only affect aggregation and the conditions 1659 // under which servers are considered usable. 1660 res_cache_clear_stats_locked(netconfig); 1661 } 1662 } 1663 1664 // Always update the search paths. Cache-flushing however is not necessary, 1665 // since the stored cache entries do contain the domain, not just the host name. 1666 netconfig->search_domains = filter_domains(domains); 1667 1668 // Setup stats for cleartext dns servers. 1669 if (!netconfig->dnsStats.setServers(netconfig->nameserverSockAddrs, PROTO_TCP) || 1670 !netconfig->dnsStats.setServers(netconfig->nameserverSockAddrs, PROTO_UDP)) { 1671 LOG(WARNING) << __func__ << ": netid = " << netid << ", failed to set dns stats"; 1672 return -EINVAL; 1673 } 1674 netconfig->transportTypes = transportTypes; 1675 if (optionalResolverOptions.has_value()) { 1676 const ResolverOptionsParcel& resolverOptions = optionalResolverOptions.value(); 1677 return netconfig->setOptions(resolverOptions); 1678 } 1679 return 0; 1680 } 1681 1682 int resolv_set_options(unsigned netid, const ResolverOptionsParcel& options) { 1683 std::lock_guard guard(cache_mutex); 1684 NetConfig* netconfig = find_netconfig_locked(netid); 1685 1686 if (netconfig == nullptr) return -ENONET; 1687 return netconfig->setOptions(options); 1688 } 1689 1690 static bool resolv_is_nameservers_equal(const std::vector<std::string>& oldServers, 1691 const std::vector<std::string>& newServers) { 1692 const std::set<std::string> olds(oldServers.begin(), oldServers.end()); 1693 const std::set<std::string> news(newServers.begin(), newServers.end()); 1694 1695 // TODO: this is incorrect if the list of current or previous nameservers 1696 // contains duplicates. This does not really matter because the framework 1697 // filters out duplicates, but we should probably fix it. It's also 1698 // insensitive to the order of the nameservers; we should probably fix that 1699 // too. 1700 return olds == news; 1701 } 1702 1703 static void free_nameservers_locked(NetConfig* netconfig) { 1704 netconfig->nameservers.clear(); 1705 netconfig->nameserverSockAddrs.clear(); 1706 res_cache_clear_stats_locked(netconfig); 1707 } 1708 1709 void resolv_populate_res_for_net(ResState* statp) { 1710 if (statp == nullptr) { 1711 return; 1712 } 1713 LOG(INFO) << __func__ << ": netid=" << statp->netid; 1714 1715 std::lock_guard guard(cache_mutex); 1716 NetConfig* info = find_netconfig_locked(statp->netid); 1717 if (info == nullptr) return; 1718 1719 const bool sortNameservers = Experiments::getInstance()->getFlag("sort_nameservers", 0); 1720 statp->sort_nameservers = sortNameservers; 1721 statp->nsaddrs = sortNameservers ? info->dnsStats.getSortedServers(PROTO_UDP) 1722 : info->nameserverSockAddrs; 1723 statp->search_domains = info->search_domains; 1724 statp->tc_mode = info->tc_mode; 1725 statp->enforce_dns_uid = info->enforceDnsUid; 1726 } 1727 1728 /* Resolver reachability statistics. */ 1729 1730 static void res_cache_add_stats_sample_locked(res_stats* stats, const res_sample& sample, 1731 int max_samples) { 1732 // Note: This function expects max_samples > 0, otherwise a (harmless) modification of the 1733 // allocated but supposedly unused memory for samples[0] will happen 1734 LOG(INFO) << __func__ << ": adding sample to stats, next = " << unsigned(stats->sample_next) 1735 << ", count = " << unsigned(stats->sample_count); 1736 stats->samples[stats->sample_next] = sample; 1737 if (stats->sample_count < max_samples) { 1738 ++stats->sample_count; 1739 } 1740 if (++stats->sample_next >= max_samples) { 1741 stats->sample_next = 0; 1742 } 1743 } 1744 1745 static void res_cache_clear_stats_locked(NetConfig* netconfig) { 1746 for (int i = 0; i < MAXNS; ++i) { 1747 netconfig->nsstats[i].sample_count = 0; 1748 netconfig->nsstats[i].sample_next = 0; 1749 } 1750 1751 // Increment the revision id to ensure that sample state is not written back if the 1752 // servers change; in theory it would suffice to do so only if the servers or 1753 // max_samples actually change, in practice the overhead of checking is higher than the 1754 // cost, and overflows are unlikely. 1755 ++netconfig->revision_id; 1756 } 1757 1758 int android_net_res_stats_get_info_for_net(unsigned netid, int* nscount, 1759 struct sockaddr_storage servers[MAXNS], int* dcount, 1760 char domains[MAXDNSRCH][MAXDNSRCHPATH], 1761 res_params* params, struct res_stats stats[MAXNS], 1762 int* wait_for_pending_req_timeout_count) { 1763 std::lock_guard guard(cache_mutex); 1764 NetConfig* info = find_netconfig_locked(netid); 1765 if (!info) return -1; 1766 1767 const int num = info->nameserverCount(); 1768 if (num > MAXNS) { 1769 LOG(INFO) << __func__ << ": nscount " << num << " > MAXNS " << MAXNS; 1770 errno = EFAULT; 1771 return -1; 1772 } 1773 1774 for (int i = 0; i < num; i++) { 1775 servers[i] = info->nameserverSockAddrs[i]; 1776 stats[i] = info->nsstats[i]; 1777 } 1778 1779 for (size_t i = 0; i < info->search_domains.size(); i++) { 1780 strlcpy(domains[i], info->search_domains[i].c_str(), MAXDNSRCHPATH); 1781 } 1782 1783 *nscount = num; 1784 *dcount = static_cast<int>(info->search_domains.size()); 1785 *params = info->params; 1786 *wait_for_pending_req_timeout_count = info->wait_for_pending_req_timeout_count; 1787 1788 return info->revision_id; 1789 } 1790 1791 std::vector<std::string> resolv_cache_dump_subsampling_map(unsigned netid) { 1792 using android::base::StringPrintf; 1793 std::lock_guard guard(cache_mutex); 1794 NetConfig* netconfig = find_netconfig_locked(netid); 1795 if (netconfig == nullptr) return {}; 1796 std::vector<std::string> result; 1797 for (const auto& pair : netconfig->dns_event_subsampling_map) { 1798 result.push_back(StringPrintf("%s:%d", 1799 (pair.first == DNSEVENT_SUBSAMPLING_MAP_DEFAULT_KEY) 1800 ? "default" 1801 : std::to_string(pair.first).c_str(), 1802 pair.second)); 1803 } 1804 return result; 1805 } 1806 1807 // Decides whether an event should be sampled using a random number generator and 1808 // a sampling factor derived from the netid and the return code. 1809 // 1810 // Returns the subsampling rate if the event should be sampled, or 0 if it should be discarded. 1811 uint32_t resolv_cache_get_subsampling_denom(unsigned netid, int return_code) { 1812 std::lock_guard guard(cache_mutex); 1813 NetConfig* netconfig = find_netconfig_locked(netid); 1814 if (netconfig == nullptr) return 0; // Don't log anything at all. 1815 const auto& subsampling_map = netconfig->dns_event_subsampling_map; 1816 auto search_returnCode = subsampling_map.find(return_code); 1817 uint32_t denom; 1818 if (search_returnCode != subsampling_map.end()) { 1819 denom = search_returnCode->second; 1820 } else { 1821 auto search_default = subsampling_map.find(DNSEVENT_SUBSAMPLING_MAP_DEFAULT_KEY); 1822 denom = (search_default == subsampling_map.end()) ? 0 : search_default->second; 1823 } 1824 return denom; 1825 } 1826 1827 int resolv_cache_get_resolver_stats(unsigned netid, res_params* params, res_stats stats[MAXNS], 1828 const std::vector<IPSockAddr>& serverSockAddrs) { 1829 std::lock_guard guard(cache_mutex); 1830 NetConfig* info = find_netconfig_locked(netid); 1831 if (!info) return -1; 1832 1833 for (size_t i = 0; i < serverSockAddrs.size(); i++) { 1834 for (size_t j = 0; j < info->nameserverSockAddrs.size(); j++) { 1835 // Should never happen. Just in case because of the fix-sized array |stats|. 1836 if (j >= MAXNS) { 1837 LOG(WARNING) << __func__ << ": unexpected size " << j; 1838 return -1; 1839 } 1840 1841 // It's possible that the server is not found, e.g. when a new list of nameservers 1842 // is updated to the NetConfig just after this look up thread being populated. 1843 // Keep the server valid as-is (by means of keeping stats[i] unset), but we should 1844 // think about if there's a better way. 1845 if (info->nameserverSockAddrs[j] == serverSockAddrs[i]) { 1846 stats[i] = info->nsstats[j]; 1847 break; 1848 } 1849 } 1850 } 1851 1852 *params = info->params; 1853 return info->revision_id; 1854 } 1855 1856 void resolv_cache_add_resolver_stats_sample(unsigned netid, int revision_id, 1857 const IPSockAddr& serverSockAddr, 1858 const res_sample& sample, int max_samples) { 1859 if (max_samples <= 0) return; 1860 1861 std::lock_guard guard(cache_mutex); 1862 NetConfig* info = find_netconfig_locked(netid); 1863 1864 if (info && info->revision_id == revision_id) { 1865 const int serverNum = std::min(MAXNS, static_cast<int>(info->nameserverSockAddrs.size())); 1866 for (int ns = 0; ns < serverNum; ns++) { 1867 if (serverSockAddr == info->nameserverSockAddrs[ns]) { 1868 res_cache_add_stats_sample_locked(&info->nsstats[ns], sample, max_samples); 1869 return; 1870 } 1871 } 1872 } 1873 } 1874 1875 bool has_named_cache(unsigned netid) { 1876 std::lock_guard guard(cache_mutex); 1877 return find_named_cache_locked(netid) != nullptr; 1878 } 1879 1880 int resolv_cache_get_expiration(unsigned netid, const std::vector<char>& query, 1881 time_t* expiration) { 1882 Entry key; 1883 *expiration = -1; 1884 1885 // A malformed query is not allowed. 1886 if (!entry_init_key(&key, query.data(), query.size())) { 1887 LOG(WARNING) << __func__ << ": unsupported query"; 1888 return -EINVAL; 1889 } 1890 1891 // lookup cache. 1892 Cache* cache; 1893 std::lock_guard guard(cache_mutex); 1894 if (cache = find_named_cache_locked(netid); cache == nullptr) { 1895 LOG(WARNING) << __func__ << ": cache not created in the network " << netid; 1896 return -ENONET; 1897 } 1898 Entry** lookup = _cache_lookup_p(cache, &key); 1899 Entry* e = *lookup; 1900 if (e == NULL) { 1901 LOG(WARNING) << __func__ << ": not in cache"; 1902 return -ENODATA; 1903 } 1904 1905 if (_time_now() >= e->expires) { 1906 LOG(WARNING) << __func__ << ": entry expired"; 1907 return -ENODATA; 1908 } 1909 1910 *expiration = e->expires; 1911 return 0; 1912 } 1913 1914 int resolv_stats_set_servers_for_dot(unsigned netid, const std::vector<std::string>& servers) { 1915 std::lock_guard guard(cache_mutex); 1916 const auto info = find_netconfig_locked(netid); 1917 1918 if (info == nullptr) return -ENONET; 1919 1920 std::vector<IPSockAddr> serverSockAddrs; 1921 serverSockAddrs.reserve(servers.size()); 1922 for (const auto& server : servers) { 1923 serverSockAddrs.push_back(IPSockAddr::toIPSockAddr(server, 853)); 1924 } 1925 1926 if (!info->dnsStats.setServers(serverSockAddrs, android::net::PROTO_DOT)) { 1927 LOG(WARNING) << __func__ << ": netid = " << netid << ", failed to set dns stats"; 1928 return -EINVAL; 1929 } 1930 1931 return 0; 1932 } 1933 1934 bool resolv_stats_add(unsigned netid, const android::netdutils::IPSockAddr& server, 1935 const DnsQueryEvent* record) { 1936 if (record == nullptr) return false; 1937 1938 std::lock_guard guard(cache_mutex); 1939 if (const auto info = find_netconfig_locked(netid); info != nullptr) { 1940 return info->dnsStats.addStats(server, *record); 1941 } 1942 return false; 1943 } 1944 1945 static const char* tc_mode_to_str(const int mode) { 1946 switch (mode) { 1947 case aidl::android::net::IDnsResolver::TC_MODE_DEFAULT: 1948 return "default"; 1949 case aidl::android::net::IDnsResolver::TC_MODE_UDP_TCP: 1950 return "UDP_TCP"; 1951 default: 1952 return "unknown"; 1953 } 1954 } 1955 1956 static android::net::NetworkType to_stats_network_type(int32_t mainType, bool withVpn) { 1957 switch (mainType) { 1958 case IDnsResolver::TRANSPORT_CELLULAR: 1959 return withVpn ? android::net::NT_CELLULAR_VPN : android::net::NT_CELLULAR; 1960 case IDnsResolver::TRANSPORT_WIFI: 1961 return withVpn ? android::net::NT_WIFI_VPN : android::net::NT_WIFI; 1962 case IDnsResolver::TRANSPORT_BLUETOOTH: 1963 return withVpn ? android::net::NT_BLUETOOTH_VPN : android::net::NT_BLUETOOTH; 1964 case IDnsResolver::TRANSPORT_ETHERNET: 1965 return withVpn ? android::net::NT_ETHERNET_VPN : android::net::NT_ETHERNET; 1966 case IDnsResolver::TRANSPORT_VPN: 1967 return withVpn ? android::net::NT_UNKNOWN : android::net::NT_VPN; 1968 case IDnsResolver::TRANSPORT_WIFI_AWARE: 1969 return withVpn ? android::net::NT_UNKNOWN : android::net::NT_WIFI_AWARE; 1970 case IDnsResolver::TRANSPORT_LOWPAN: 1971 return withVpn ? android::net::NT_UNKNOWN : android::net::NT_LOWPAN; 1972 default: 1973 return android::net::NT_UNKNOWN; 1974 } 1975 } 1976 1977 android::net::NetworkType convert_network_type(const std::vector<int32_t>& transportTypes) { 1978 // The valid transportTypes size is 1 to 3. 1979 if (transportTypes.size() > 3 || transportTypes.size() == 0) return android::net::NT_UNKNOWN; 1980 // TransportTypes size == 1, map the type to stats network type directly. 1981 if (transportTypes.size() == 1) return to_stats_network_type(transportTypes[0], false); 1982 // TransportTypes size == 3, only cellular + wifi + vpn is valid. 1983 if (transportTypes.size() == 3) { 1984 std::vector<int32_t> sortedTransTypes = transportTypes; 1985 std::sort(sortedTransTypes.begin(), sortedTransTypes.end()); 1986 if (sortedTransTypes != std::vector<int32_t>{IDnsResolver::TRANSPORT_CELLULAR, 1987 IDnsResolver::TRANSPORT_WIFI, 1988 IDnsResolver::TRANSPORT_VPN}) { 1989 return android::net::NT_UNKNOWN; 1990 } 1991 return android::net::NT_WIFI_CELLULAR_VPN; 1992 } 1993 // TransportTypes size == 2, it shoud be 1 main type + vpn type. 1994 // Otherwise, consider it as UNKNOWN. 1995 bool hasVpn = false; 1996 int32_t mainType = IDnsResolver::TRANSPORT_UNKNOWN; 1997 for (const auto& transportType : transportTypes) { 1998 if (transportType == IDnsResolver::TRANSPORT_VPN) { 1999 hasVpn = true; 2000 continue; 2001 } 2002 mainType = transportType; 2003 } 2004 return hasVpn ? to_stats_network_type(mainType, true) : android::net::NT_UNKNOWN; 2005 } 2006 2007 static const char* transport_type_to_str(const std::vector<int32_t>& transportTypes) { 2008 switch (convert_network_type(transportTypes)) { 2009 case android::net::NT_CELLULAR: 2010 return "CELLULAR"; 2011 case android::net::NT_WIFI: 2012 return "WIFI"; 2013 case android::net::NT_BLUETOOTH: 2014 return "BLUETOOTH"; 2015 case android::net::NT_ETHERNET: 2016 return "ETHERNET"; 2017 case android::net::NT_VPN: 2018 return "VPN"; 2019 case android::net::NT_WIFI_AWARE: 2020 return "WIFI_AWARE"; 2021 case android::net::NT_LOWPAN: 2022 return "LOWPAN"; 2023 case android::net::NT_CELLULAR_VPN: 2024 return "CELLULAR_VPN"; 2025 case android::net::NT_WIFI_VPN: 2026 return "WIFI_VPN"; 2027 case android::net::NT_BLUETOOTH_VPN: 2028 return "BLUETOOTH_VPN"; 2029 case android::net::NT_ETHERNET_VPN: 2030 return "ETHERNET_VPN"; 2031 case android::net::NT_WIFI_CELLULAR_VPN: 2032 return "WIFI_CELLULAR_VPN"; 2033 default: 2034 return "UNKNOWN"; 2035 } 2036 } 2037 2038 void resolv_netconfig_dump(DumpWriter& dw, unsigned netid) { 2039 std::lock_guard guard(cache_mutex); 2040 if (const auto info = find_netconfig_locked(netid); info != nullptr) { 2041 info->dnsStats.dump(dw); 2042 // TODO: dump info->hosts 2043 dw.println("TC mode: %s", tc_mode_to_str(info->tc_mode)); 2044 dw.println("TransportType: %s", transport_type_to_str(info->transportTypes)); 2045 } 2046 } 2047