1 /*
2  * Copyright (C) 2011 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "exec_utils.h"
18 
19 #include <poll.h>
20 #include <sys/types.h>
21 #include <sys/wait.h>
22 #include <unistd.h>
23 
24 #include <chrono>
25 #include <climits>
26 #include <condition_variable>
27 #include <cstdint>
28 #include <cstring>
29 #include <ctime>
30 #include <mutex>
31 #include <optional>
32 #include <string>
33 #include <string_view>
34 #include <thread>
35 #include <vector>
36 
37 #include "android-base/file.h"
38 #include "android-base/parseint.h"
39 #include "android-base/scopeguard.h"
40 #include "android-base/stringprintf.h"
41 #include "android-base/strings.h"
42 #include "android-base/unique_fd.h"
43 #include "base/macros.h"
44 #include "base/pidfd.h"
45 #include "base/utils.h"
46 #include "runtime.h"
47 
48 namespace art HIDDEN {
49 
50 namespace {
51 
52 using ::android::base::ParseInt;
53 using ::android::base::ReadFileToString;
54 using ::android::base::StringPrintf;
55 using ::android::base::unique_fd;
56 
ToCommandLine(const std::vector<std::string> & args)57 std::string ToCommandLine(const std::vector<std::string>& args) {
58   return android::base::Join(args, ' ');
59 }
60 
61 // Fork and execute a command specified in a subprocess.
62 // If there is a runtime (Runtime::Current != nullptr) then the subprocess is created with the
63 // same environment that existed when the runtime was started.
64 // Returns the process id of the child process on success, -1 otherwise.
ExecWithoutWait(const std::vector<std::string> & arg_vector,bool new_process_group,std::string * error_msg)65 pid_t ExecWithoutWait(const std::vector<std::string>& arg_vector,
66                       bool new_process_group,
67                       std::string* error_msg) {
68   // Convert the args to char pointers.
69   const char* program = arg_vector[0].c_str();
70   std::vector<char*> args;
71   args.reserve(arg_vector.size() + 1);
72   for (const auto& arg : arg_vector) {
73     args.push_back(const_cast<char*>(arg.c_str()));
74   }
75   args.push_back(nullptr);
76 
77   // fork and exec
78   pid_t pid = fork();
79   if (pid == 0) {
80     // no allocation allowed between fork and exec
81 
82     if (new_process_group) {
83       setpgid(0, 0);
84     }
85 
86     // (b/30160149): protect subprocesses from modifications to LD_LIBRARY_PATH, etc.
87     // Use the snapshot of the environment from the time the runtime was created.
88     char** envp = (Runtime::Current() == nullptr) ? nullptr : Runtime::Current()->GetEnvSnapshot();
89     if (envp == nullptr) {
90       execv(program, &args[0]);
91     } else {
92       execve(program, &args[0], envp);
93     }
94     // This should be regarded as a crash rather than a normal return.
95     PLOG(FATAL) << "Failed to execute (" << ToCommandLine(arg_vector) << ")";
96     UNREACHABLE();
97   } else if (pid == -1) {
98     *error_msg = StringPrintf("Failed to execute (%s) because fork failed: %s",
99                               ToCommandLine(arg_vector).c_str(),
100                               strerror(errno));
101     return -1;
102   } else {
103     return pid;
104   }
105 }
106 
WaitChild(pid_t pid,const std::vector<std::string> & arg_vector,bool no_wait,std::string * error_msg)107 ExecResult WaitChild(pid_t pid,
108                      const std::vector<std::string>& arg_vector,
109                      bool no_wait,
110                      std::string* error_msg) {
111   siginfo_t info;
112   // WNOWAIT leaves the child in a waitable state. The call is still blocking.
113   int options = WEXITED | (no_wait ? WNOWAIT : 0);
114   if (TEMP_FAILURE_RETRY(waitid(P_PID, pid, &info, options)) != 0) {
115     *error_msg = StringPrintf("waitid failed for (%s) pid %d: %s",
116                               ToCommandLine(arg_vector).c_str(),
117                               pid,
118                               strerror(errno));
119     return {.status = ExecResult::kUnknown};
120   }
121   if (info.si_pid != pid) {
122     *error_msg = StringPrintf("waitid failed for (%s): wanted pid %d, got %d: %s",
123                               ToCommandLine(arg_vector).c_str(),
124                               pid,
125                               info.si_pid,
126                               strerror(errno));
127     return {.status = ExecResult::kUnknown};
128   }
129   if (info.si_code != CLD_EXITED) {
130     *error_msg =
131         StringPrintf("Failed to execute (%s) because the child process is terminated by signal %d",
132                      ToCommandLine(arg_vector).c_str(),
133                      info.si_status);
134     return {.status = ExecResult::kSignaled, .signal = info.si_status};
135   }
136   return {.status = ExecResult::kExited, .exit_code = info.si_status};
137 }
138 
139 // A fallback implementation of `WaitChildWithTimeout` that creates a thread to wait instead of
140 // relying on `pidfd_open`.
WaitChildWithTimeoutFallback(pid_t pid,const std::vector<std::string> & arg_vector,int timeout_ms,std::string * error_msg)141 ExecResult WaitChildWithTimeoutFallback(pid_t pid,
142                                         const std::vector<std::string>& arg_vector,
143                                         int timeout_ms,
144                                         std::string* error_msg) {
145   bool child_exited = false;
146   bool timed_out = false;
147   std::condition_variable cv;
148   std::mutex m;
149 
150   std::thread wait_thread([&]() {
151     std::unique_lock<std::mutex> lock(m);
152     if (!cv.wait_for(lock, std::chrono::milliseconds(timeout_ms), [&] { return child_exited; })) {
153       timed_out = true;
154       kill(pid, SIGKILL);
155     }
156   });
157 
158   ExecResult result = WaitChild(pid, arg_vector, /*no_wait=*/true, error_msg);
159 
160   {
161     std::unique_lock<std::mutex> lock(m);
162     child_exited = true;
163   }
164   cv.notify_all();
165   wait_thread.join();
166 
167   // The timeout error should have a higher priority than any other error.
168   if (timed_out) {
169     *error_msg =
170         StringPrintf("Failed to execute (%s) because the child process timed out after %dms",
171                      ToCommandLine(arg_vector).c_str(),
172                      timeout_ms);
173     return ExecResult{.status = ExecResult::kTimedOut};
174   }
175 
176   return result;
177 }
178 
179 // Waits for the child process to finish and leaves the child in a waitable state.
WaitChildWithTimeout(pid_t pid,unique_fd pidfd,const std::vector<std::string> & arg_vector,int timeout_ms,std::string * error_msg)180 ExecResult WaitChildWithTimeout(pid_t pid,
181                                 unique_fd pidfd,
182                                 const std::vector<std::string>& arg_vector,
183                                 int timeout_ms,
184                                 std::string* error_msg) {
185   auto cleanup = android::base::make_scope_guard([&]() {
186     kill(pid, SIGKILL);
187     std::string ignored_error_msg;
188     WaitChild(pid, arg_vector, /*no_wait=*/true, &ignored_error_msg);
189   });
190 
191   struct pollfd pfd;
192   pfd.fd = pidfd.get();
193   pfd.events = POLLIN;
194   int poll_ret = TEMP_FAILURE_RETRY(poll(&pfd, /*nfds=*/1, timeout_ms));
195 
196   pidfd.reset();
197 
198   if (poll_ret < 0) {
199     *error_msg = StringPrintf("poll failed for pid %d: %s", pid, strerror(errno));
200     return {.status = ExecResult::kUnknown};
201   }
202   if (poll_ret == 0) {
203     *error_msg =
204         StringPrintf("Failed to execute (%s) because the child process timed out after %dms",
205                      ToCommandLine(arg_vector).c_str(),
206                      timeout_ms);
207     return {.status = ExecResult::kTimedOut};
208   }
209 
210   cleanup.Disable();
211   return WaitChild(pid, arg_vector, /*no_wait=*/true, error_msg);
212 }
213 
ParseProcStat(const std::string & stat_content,int64_t uptime_ms,int64_t ticks_per_sec,ProcessStat * stat)214 bool ParseProcStat(const std::string& stat_content,
215                    int64_t uptime_ms,
216                    int64_t ticks_per_sec,
217                    /*out*/ ProcessStat* stat) {
218   size_t pos = stat_content.rfind(") ");
219   if (pos == std::string::npos) {
220     return false;
221   }
222   std::vector<std::string> stat_fields;
223   // Skip the first two fields. The second field is the parenthesized process filename, which can
224   // contain anything, including spaces.
225   Split(std::string_view(stat_content).substr(pos + 2), ' ', &stat_fields);
226   constexpr int kSkippedFields = 2;
227   int64_t utime, stime, cutime, cstime, starttime;
228   if (stat_fields.size() < 22 - kSkippedFields ||
229       !ParseInt(stat_fields[13 - kSkippedFields], &utime) ||
230       !ParseInt(stat_fields[14 - kSkippedFields], &stime) ||
231       !ParseInt(stat_fields[15 - kSkippedFields], &cutime) ||
232       !ParseInt(stat_fields[16 - kSkippedFields], &cstime) ||
233       !ParseInt(stat_fields[21 - kSkippedFields], &starttime)) {
234     return false;
235   }
236   if (starttime == 0) {
237     // The start time is the time the process started after system boot, so it's not supposed to be
238     // zero unless the process is `init`.
239     return false;
240   }
241   stat->cpu_time_ms = (utime + stime + cutime + cstime) * 1000 / ticks_per_sec;
242   stat->wall_time_ms = uptime_ms - starttime * 1000 / ticks_per_sec;
243   return true;
244 }
245 
246 }  // namespace
247 
ExecAndReturnCode(const std::vector<std::string> & arg_vector,std::string * error_msg) const248 int ExecUtils::ExecAndReturnCode(const std::vector<std::string>& arg_vector,
249                                  std::string* error_msg) const {
250   return ExecAndReturnResult(arg_vector, /*timeout_sec=*/-1, error_msg).exit_code;
251 }
252 
ExecAndReturnResult(const std::vector<std::string> & arg_vector,int timeout_sec,std::string * error_msg) const253 ExecResult ExecUtils::ExecAndReturnResult(const std::vector<std::string>& arg_vector,
254                                           int timeout_sec,
255                                           std::string* error_msg) const {
256   return ExecAndReturnResult(arg_vector,
257                              timeout_sec,
258                              ExecCallbacks(),
259                              /*new_process_group=*/false,
260                              /*stat=*/nullptr,
261                              error_msg);
262 }
263 
ExecAndReturnResult(const std::vector<std::string> & arg_vector,int timeout_sec,const ExecCallbacks & callbacks,bool new_process_group,ProcessStat * stat,std::string * error_msg) const264 ExecResult ExecUtils::ExecAndReturnResult(const std::vector<std::string>& arg_vector,
265                                           int timeout_sec,
266                                           const ExecCallbacks& callbacks,
267                                           bool new_process_group,
268                                           /*out*/ ProcessStat* stat,
269                                           /*out*/ std::string* error_msg) const {
270   if (timeout_sec > INT_MAX / 1000) {
271     *error_msg = "Timeout too large";
272     return {.status = ExecResult::kStartFailed};
273   }
274 
275   // Start subprocess.
276   pid_t pid = ExecWithoutWait(arg_vector, new_process_group, error_msg);
277   if (pid == -1) {
278     return {.status = ExecResult::kStartFailed};
279   }
280 
281   callbacks.on_start(pid);
282 
283   // Wait for subprocess to finish.
284   ExecResult result;
285   if (timeout_sec >= 0) {
286     unique_fd pidfd = PidfdOpen(pid);
287     if (pidfd.get() >= 0) {
288       result =
289           WaitChildWithTimeout(pid, std::move(pidfd), arg_vector, timeout_sec * 1000, error_msg);
290     } else {
291       LOG(DEBUG) << StringPrintf(
292           "pidfd_open failed for pid %d: %s, falling back", pid, strerror(errno));
293       result = WaitChildWithTimeoutFallback(pid, arg_vector, timeout_sec * 1000, error_msg);
294     }
295   } else {
296     result = WaitChild(pid, arg_vector, /*no_wait=*/true, error_msg);
297   }
298 
299   if (stat != nullptr) {
300     std::string local_error_msg;
301     if (!GetStat(pid, stat, &local_error_msg)) {
302       LOG(ERROR) << "Failed to get process stat: " << local_error_msg;
303     }
304   }
305 
306   callbacks.on_end(pid);
307 
308   std::string local_error_msg;
309   // TODO(jiakaiz): Use better logic to detect waitid failure.
310   if (WaitChild(pid, arg_vector, /*no_wait=*/false, &local_error_msg).status ==
311       ExecResult::kUnknown) {
312     LOG(ERROR) << "Failed to clean up child process '" << arg_vector[0] << "': " << local_error_msg;
313   }
314 
315   return result;
316 }
317 
Exec(const std::vector<std::string> & arg_vector,std::string * error_msg) const318 bool ExecUtils::Exec(const std::vector<std::string>& arg_vector, std::string* error_msg) const {
319   int status = ExecAndReturnCode(arg_vector, error_msg);
320   if (status < 0) {
321     // Internal error. The error message is already set.
322     return false;
323   }
324   if (status > 0) {
325     *error_msg =
326         StringPrintf("Failed to execute (%s) because the child process returns non-zero exit code",
327                      ToCommandLine(arg_vector).c_str());
328     return false;
329   }
330   return true;
331 }
332 
PidfdOpen(pid_t pid) const333 unique_fd ExecUtils::PidfdOpen(pid_t pid) const { return art::PidfdOpen(pid, /*flags=*/0); }
334 
GetProcStat(pid_t pid) const335 std::string ExecUtils::GetProcStat(pid_t pid) const {
336   std::string stat_content;
337   if (!ReadFileToString(StringPrintf("/proc/%d/stat", pid), &stat_content)) {
338     stat_content = "";
339   }
340   return stat_content;
341 }
342 
GetUptimeMs(std::string * error_msg) const343 std::optional<int64_t> ExecUtils::GetUptimeMs(std::string* error_msg) const {
344   timespec t;
345   if (clock_gettime(CLOCK_MONOTONIC, &t) != 0) {
346     *error_msg = ART_FORMAT("Failed to get uptime: {}", strerror(errno));
347     return std::nullopt;
348   }
349   return t.tv_sec * 1000 + t.tv_nsec / 1000000;
350 }
351 
GetTicksPerSec() const352 int64_t ExecUtils::GetTicksPerSec() const { return sysconf(_SC_CLK_TCK); }
353 
GetStat(pid_t pid,ProcessStat * stat,std::string * error_msg) const354 bool ExecUtils::GetStat(pid_t pid,
355                         /*out*/ ProcessStat* stat,
356                         /*out*/ std::string* error_msg) const {
357   std::optional<int64_t> uptime_ms = GetUptimeMs(error_msg);
358   if (!uptime_ms.has_value()) {
359     return false;
360   }
361   std::string stat_content = GetProcStat(pid);
362   if (stat_content.empty()) {
363     *error_msg = StringPrintf("Failed to read /proc/%d/stat: %s", pid, strerror(errno));
364     return false;
365   }
366   int64_t ticks_per_sec = GetTicksPerSec();
367   if (!ParseProcStat(stat_content, *uptime_ms, ticks_per_sec, stat)) {
368     *error_msg = StringPrintf("Failed to parse /proc/%d/stat '%s'", pid, stat_content.c_str());
369     return false;
370   }
371   return true;
372 }
373 
374 }  // namespace art
375