1 /*
2  * Copyright (C) 2014 The Android Open Source Project
3  * Copyright (c) 1994, 2018, Oracle and/or its affiliates. All rights reserved.
4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5  *
6  * This code is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 only, as
8  * published by the Free Software Foundation.  Oracle designates this
9  * particular file as subject to the "Classpath" exception as provided
10  * by Oracle in the LICENSE file that accompanied this code.
11  *
12  * This code is distributed in the hope that it will be useful, but WITHOUT
13  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
15  * version 2 for more details (a copy is included in the LICENSE file that
16  * accompanied this code).
17  *
18  * You should have received a copy of the GNU General Public License version
19  * 2 along with this work; if not, write to the Free Software Foundation,
20  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
21  *
22  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
23  * or visit www.oracle.com if you need additional information or have any
24  * questions.
25  */
26 
27 package java.lang;
28 
29 import dalvik.annotation.optimization.FastNative;
30 import dalvik.annotation.optimization.NeverInline;
31 import java.io.ObjectStreamField;
32 import java.io.UnsupportedEncodingException;
33 import java.lang.annotation.Native;
34 import java.lang.invoke.MethodHandles;
35 import java.lang.constant.Constable;
36 import java.lang.constant.ConstantDesc;
37 import java.nio.charset.Charset;
38 import java.nio.ByteBuffer;
39 import java.util.Comparator;
40 import java.util.Formatter;
41 import java.util.List;
42 import java.util.Locale;
43 import java.util.Objects;
44 import java.util.Optional;
45 import java.util.Spliterator;
46 import java.util.StringJoiner;
47 import java.util.function.Function;
48 import java.util.regex.Pattern;
49 import java.util.regex.PatternSyntaxException;
50 import java.util.stream.Collectors;
51 import java.util.stream.IntStream;
52 import java.util.stream.Stream;
53 import java.util.stream.StreamSupport;
54 import jdk.internal.vm.annotation.IntrinsicCandidate;
55 
56 import libcore.util.CharsetUtils;
57 
58 /**
59  * The {@code String} class represents character strings. All
60  * string literals in Java programs, such as {@code "abc"}, are
61  * implemented as instances of this class.
62  * <p>
63  * Strings are constant; their values cannot be changed after they
64  * are created. String buffers support mutable strings.
65  * Because String objects are immutable they can be shared. For example:
66  * <blockquote><pre>
67  *     String str = "abc";
68  * </pre></blockquote><p>
69  * is equivalent to:
70  * <blockquote><pre>
71  *     char data[] = {'a', 'b', 'c'};
72  *     String str = new String(data);
73  * </pre></blockquote><p>
74  * Here are some more examples of how strings can be used:
75  * <blockquote><pre>
76  *     System.out.println("abc");
77  *     String cde = "cde";
78  *     System.out.println("abc" + cde);
79  *     String c = "abc".substring(2,3);
80  *     String d = cde.substring(1, 2);
81  * </pre></blockquote>
82  * <p>
83  * The class {@code String} includes methods for examining
84  * individual characters of the sequence, for comparing strings, for
85  * searching strings, for extracting substrings, and for creating a
86  * copy of a string with all characters translated to uppercase or to
87  * lowercase. Case mapping is based on the Unicode Standard version
88  * specified by the {@link java.lang.Character Character} class.
89  * <p>
90  * The Java language provides special support for the string
91  * concatenation operator (&nbsp;+&nbsp;), and for conversion of
92  * other objects to strings. For additional information on string
93  * concatenation and conversion, see <i>The Java&trade; Language Specification</i>.
94  *
95  * <p> Unless otherwise noted, passing a {@code null} argument to a constructor
96  * or method in this class will cause a {@link NullPointerException} to be
97  * thrown.
98  *
99  * <p>A {@code String} represents a string in the UTF-16 format
100  * in which <em>supplementary characters</em> are represented by <em>surrogate
101  * pairs</em> (see the section <a href="Character.html#unicode">Unicode
102  * Character Representations</a> in the {@code Character} class for
103  * more information).
104  * Index values refer to {@code char} code units, so a supplementary
105  * character uses two positions in a {@code String}.
106  * <p>The {@code String} class provides methods for dealing with
107  * Unicode code points (i.e., characters), in addition to those for
108  * dealing with Unicode code units (i.e., {@code char} values).
109  *
110  * <p>Unless otherwise noted, methods for comparing Strings do not take locale
111  * into account.  The {@link java.text.Collator} class provides methods for
112  * finer-grain, locale-sensitive String comparison.
113  *
114  * @implNote The implementation of the string concatenation operator is left to
115  * the discretion of a Java compiler, as long as the compiler ultimately conforms
116  * to <i>The Java&trade; Language Specification</i>. For example, the {@code javac} compiler
117  * may implement the operator with {@code StringBuffer}, {@code StringBuilder},
118  * or {@code java.lang.invoke.StringConcatFactory} depending on the JDK version. The
119  * implementation of string conversion is typically through the method {@code toString},
120  * defined by {@code Object} and inherited by all classes in Java.
121  *
122  * @author  Lee Boynton
123  * @author  Arthur van Hoff
124  * @author  Martin Buchholz
125  * @author  Ulf Zibis
126  * @see     java.lang.Object#toString()
127  * @see     java.lang.StringBuffer
128  * @see     java.lang.StringBuilder
129  * @see     java.nio.charset.Charset
130  * @since   1.0
131  * @jls     15.18.1 String Concatenation Operator +
132  */
133 
134 public final class String
135     implements java.io.Serializable, Comparable<String>, CharSequence,
136                Constable, ConstantDesc {
137     // BEGIN Android-changed: The character data is managed by the runtime.
138     /*
139     We only keep track of the length here and compression here. This has several consequences
140     throughout this class:
141      - References to value[i] are replaced by charAt(i).
142      - References to value.length are replaced by calls to length().
143      - Sometimes the result of length() is assigned to a local variable to avoid repeated calls.
144      - We skip several attempts at optimization where the values field was assigned to a local
145        variable to avoid the getfield opcode.
146     These changes are not all marked individually.
147 
148     If STRING_COMPRESSION_ENABLED, count stores the length shifted one bit to the left with the
149     lowest bit used to indicate whether or not the bytes are compressed (see GetFlaggedCount in
150     the native code).
151     /**
152      * The value is used for character storage.
153      *
154      * @implNote This field is trusted by the VM, and is a subject to
155      * constant folding if String instance is constant. Overwriting this
156      * field after construction will cause problems.
157      *
158      * Additionally, it is marked with {@link Stable} to trust the contents
159      * of the array. No other facility in JDK provides this functionality (yet).
160      * {@link Stable} is safe here, because value is never null.
161      *
162     @Stable
163     private final byte[] value;
164     */
165     private final int count;
166     // END Android-changed: The character data is managed by the runtime.
167 
168     // Android-changed: We make use of new StringIndexOutOfBoundsException constructor signatures.
169     // These improve some error messages. These changes are not all marked individually.
170 
171     /** Cache the hash code for the string */
172     private int hash; // Default to 0
173 
174     /** use serialVersionUID from JDK 1.0.2 for interoperability */
175     private static final long serialVersionUID = -6849794470754667710L;
176 
177     // Android-changed: Modified the javadoc for the ART environment.
178     // Note that this COMPACT_STRINGS value is mainly used by the StringBuilder, not by String.
179     /**
180      * If String compaction is disabled, the bytes in {@code value} are
181      * always encoded in UTF16.
182      *
183      * For methods with several possible implementation paths, when String
184      * compaction is disabled, only one code path is taken.
185      *
186      * The instance field value is generally opaque to optimizing JIT
187      * compilers. Therefore, in performance-sensitive place, an explicit
188      * check of the static boolean {@code COMPACT_STRINGS} is done first
189      * before checking the {@code coder} field since the static boolean
190      * {@code COMPACT_STRINGS} would be constant folded away by an
191      * optimizing JIT compiler. The idioms for these cases are as follows.
192      *
193      * For code such as:
194      *
195      *    if (coder == LATIN1) { ... }
196      *
197      * can be written more optimally as
198      *
199      *    if (coder() == LATIN1) { ... }
200      *
201      * or:
202      *
203      *    if (COMPACT_STRINGS && coder == LATIN1) { ... }
204      *
205      * An optimizing JIT compiler can fold the above conditional as:
206      *
207      *    COMPACT_STRINGS == true  => if (coder == LATIN1) { ... }
208      *    COMPACT_STRINGS == false => if (false)           { ... }
209      */
210     // Android-changed: Inline the constant on ART.
211     static final boolean COMPACT_STRINGS = true;
212 
213     // Android-added: Add a canonical empty string used by ART.
214     /** @hide */
215     public static final String EMPTY = "";
216 
217     @Native static final byte LATIN1 = 0;
218     @Native static final byte UTF16  = 1;
219 
220     /**
221      * Class String is special cased within the Serialization Stream Protocol.
222      *
223      * A String instance is written into an ObjectOutputStream according to
224      * <a href="{@docRoot}/../specs/serialization/protocol.html#stream-elements">
225      * Object Serialization Specification, Section 6.2, "Stream Elements"</a>
226      */
227     private static final ObjectStreamField[] serialPersistentFields =
228         new ObjectStreamField[0];
229 
230     /**
231      * Initializes a newly created {@code String} object so that it represents
232      * an empty character sequence.  Note that use of this constructor is
233      * unnecessary since Strings are immutable.
234      */
String()235     public String() {
236         // BEGIN Android-changed: Implemented as compiler and runtime intrinsics.
237         /*
238         this.value = "".value;
239         this.coder = "".coder;
240          */
241         throw new UnsupportedOperationException("Use StringFactory instead.");
242         // END Android-changed: Implemented as compiler and runtime intrinsics.
243     }
244 
245     /**
246      * Initializes a newly created {@code String} object so that it represents
247      * the same sequence of characters as the argument; in other words, the
248      * newly created string is a copy of the argument string. Unless an
249      * explicit copy of {@code original} is needed, use of this constructor is
250      * unnecessary since Strings are immutable.
251      *
252      * @param  original
253      *         A {@code String}
254      */
255     @IntrinsicCandidate
String(String original)256     public String(String original) {
257         // BEGIN Android-changed: Implemented as compiler and runtime intrinsics.
258         /*
259         this.value = original.value;
260         this.coder = original.coder;
261         this.hash = original.hash;
262          */
263         throw new UnsupportedOperationException("Use StringFactory instead.");
264         // END Android-changed: Implemented as compiler and runtime intrinsics.
265     }
266 
267     /**
268      * Allocates a new {@code String} so that it represents the sequence of
269      * characters currently contained in the character array argument. The
270      * contents of the character array are copied; subsequent modification of
271      * the character array does not affect the newly created string.
272      *
273      * @param  value
274      *         The initial value of the string
275      */
String(char value[])276     public String(char value[]) {
277         // BEGIN Android-changed: Implemented as compiler and runtime intrinsics.
278         /*
279         this(value, 0, value.length, null);
280          */
281         throw new UnsupportedOperationException("Use StringFactory instead.");
282         // END Android-changed: Implemented as compiler and runtime intrinsics.
283     }
284 
285     /**
286      * Allocates a new {@code String} that contains characters from a subarray
287      * of the character array argument. The {@code offset} argument is the
288      * index of the first character of the subarray and the {@code count}
289      * argument specifies the length of the subarray. The contents of the
290      * subarray are copied; subsequent modification of the character array does
291      * not affect the newly created string.
292      *
293      * @param  value
294      *         Array that is the source of characters
295      *
296      * @param  offset
297      *         The initial offset
298      *
299      * @param  count
300      *         The length
301      *
302      * @throws  IndexOutOfBoundsException
303      *          If {@code offset} is negative, {@code count} is negative, or
304      *          {@code offset} is greater than {@code value.length - count}
305      */
String(char value[], int offset, int count)306     public String(char value[], int offset, int count) {
307         // BEGIN Android-changed: Implemented as compiler and runtime intrinsics.
308         /*
309         this(value, offset, count, rangeCheck(value, offset, count));
310     }
311 
312     private static Void rangeCheck(char[] value, int offset, int count) {
313         checkBoundsOffCount(offset, count, value.length);
314         return null;
315          */
316         throw new UnsupportedOperationException("Use StringFactory instead.");
317         // END Android-changed: Implemented as compiler and runtime intrinsics.
318     }
319 
320     /**
321      * Allocates a new {@code String} that contains characters from a subarray
322      * of the <a href="Character.html#unicode">Unicode code point</a> array
323      * argument.  The {@code offset} argument is the index of the first code
324      * point of the subarray and the {@code count} argument specifies the
325      * length of the subarray.  The contents of the subarray are converted to
326      * {@code char}s; subsequent modification of the {@code int} array does not
327      * affect the newly created string.
328      *
329      * @param  codePoints
330      *         Array that is the source of Unicode code points
331      *
332      * @param  offset
333      *         The initial offset
334      *
335      * @param  count
336      *         The length
337      *
338      * @throws  IllegalArgumentException
339      *          If any invalid Unicode code point is found in {@code
340      *          codePoints}
341      *
342      * @throws  IndexOutOfBoundsException
343      *          If {@code offset} is negative, {@code count} is negative, or
344      *          {@code offset} is greater than {@code codePoints.length - count}
345      *
346      * @since  1.5
347      */
String(int[] codePoints, int offset, int count)348     public String(int[] codePoints, int offset, int count) {
349         // BEGIN Android-changed: Implemented as compiler and runtime intrinsics.
350         /*
351         checkBoundsOffCount(offset, count, codePoints.length);
352         if (count == 0) {
353             this.value = "".value;
354             this.coder = "".coder;
355             return;
356         }
357         if (COMPACT_STRINGS) {
358             byte[] val = StringLatin1.toBytes(codePoints, offset, count);
359             if (val != null) {
360                 this.coder = LATIN1;
361                 this.value = val;
362                 return;
363             }
364         }
365         this.coder = UTF16;
366         this.value = StringUTF16.toBytes(codePoints, offset, count);
367         */
368         throw new UnsupportedOperationException("Use StringFactory instead.");
369         // END Android-changed: Implemented as compiler and runtime intrinsics.
370     }
371 
372     /**
373      * Allocates a new {@code String} constructed from a subarray of an array
374      * of 8-bit integer values.
375      *
376      * <p> The {@code offset} argument is the index of the first byte of the
377      * subarray, and the {@code count} argument specifies the length of the
378      * subarray.
379      *
380      * <p> Each {@code byte} in the subarray is converted to a {@code char} as
381      * specified in the {@link #String(byte[],int) String(byte[],int)} constructor.
382      *
383      * @deprecated This method does not properly convert bytes into characters.
384      * As of JDK&nbsp;1.1, the preferred way to do this is via the
385      * {@code String} constructors that take a {@link
386      * java.nio.charset.Charset}, charset name, or that use the platform's
387      * default charset.
388      *
389      * @param  ascii
390      *         The bytes to be converted to characters
391      *
392      * @param  hibyte
393      *         The top 8 bits of each 16-bit Unicode code unit
394      *
395      * @param  offset
396      *         The initial offset
397      * @param  count
398      *         The length
399      *
400      * @throws  IndexOutOfBoundsException
401      *          If {@code offset} is negative, {@code count} is negative, or
402      *          {@code offset} is greater than {@code ascii.length - count}
403      *
404      * @see  #String(byte[], int)
405      * @see  #String(byte[], int, int, java.lang.String)
406      * @see  #String(byte[], int, int, java.nio.charset.Charset)
407      * @see  #String(byte[], int, int)
408      * @see  #String(byte[], java.lang.String)
409      * @see  #String(byte[], java.nio.charset.Charset)
410      * @see  #String(byte[])
411      */
412     @Deprecated(since="1.1")
String(byte ascii[], int hibyte, int offset, int count)413     public String(byte ascii[], int hibyte, int offset, int count) {
414         // BEGIN Android-changed: Implemented as compiler and runtime intrinsics.
415         /*
416         checkBoundsOffCount(offset, count, ascii.length);
417         if (count == 0) {
418             this.value = "".value;
419             this.coder = "".coder;
420             return;
421         }
422         if (COMPACT_STRINGS && (byte)hibyte == 0) {
423             this.value = Arrays.copyOfRange(ascii, offset, offset + count);
424             this.coder = LATIN1;
425         } else {
426             hibyte <<= 8;
427             byte[] val = StringUTF16.newBytesFor(count);
428             for (int i = 0; i < count; i++) {
429                 StringUTF16.putChar(val, i, hibyte | (ascii[offset++] & 0xff));
430             }
431             this.value = val;
432             this.coder = UTF16;
433         }
434         */
435         throw new UnsupportedOperationException("Use StringFactory instead.");
436         // END Android-changed: Implemented as compiler and runtime intrinsics.
437     }
438 
439     /**
440      * Allocates a new {@code String} containing characters constructed from
441      * an array of 8-bit integer values. Each character <i>c</i> in the
442      * resulting string is constructed from the corresponding component
443      * <i>b</i> in the byte array such that:
444      *
445      * <blockquote><pre>
446      *     <b><i>c</i></b> == (char)(((hibyte &amp; 0xff) &lt;&lt; 8)
447      *                         | (<b><i>b</i></b> &amp; 0xff))
448      * </pre></blockquote>
449      *
450      * @deprecated  This method does not properly convert bytes into
451      * characters.  As of JDK&nbsp;1.1, the preferred way to do this is via the
452      * {@code String} constructors that take a {@link
453      * java.nio.charset.Charset}, charset name, or that use the platform's
454      * default charset.
455      *
456      * @param  ascii
457      *         The bytes to be converted to characters
458      *
459      * @param  hibyte
460      *         The top 8 bits of each 16-bit Unicode code unit
461      *
462      * @see  #String(byte[], int, int, java.lang.String)
463      * @see  #String(byte[], int, int, java.nio.charset.Charset)
464      * @see  #String(byte[], int, int)
465      * @see  #String(byte[], java.lang.String)
466      * @see  #String(byte[], java.nio.charset.Charset)
467      * @see  #String(byte[])
468      */
469     @Deprecated(since="1.1")
String(byte ascii[], int hibyte)470     public String(byte ascii[], int hibyte) {
471         // BEGIN Android-changed: Implemented as compiler and runtime intrinsics.
472         /*
473         this(ascii, hibyte, 0, ascii.length);
474         */
475         throw new UnsupportedOperationException("Use StringFactory instead.");
476         // END Android-changed: Implemented as compiler and runtime intrinsics.
477     }
478 
479     // BEGIN Android-removed: checkBounds(byte[] bytes, int offset, int length) utility method.
480     /* Common private utility method used to bounds check the byte array
481      * and requested offset & length values used by the String(byte[],..)
482      * constructors.
483      *
484     private static void checkBounds(byte[] bytes, int offset, int length) {
485         if (length < 0)
486             throw new StringIndexOutOfBoundsException(length);
487         if (offset < 0)
488             throw new StringIndexOutOfBoundsException(offset);
489         if (offset > bytes.length - length)
490             throw new StringIndexOutOfBoundsException(offset + length);
491     }
492     // END Android-removed: checkBounds(byte[] bytes, int offset, int length) utility method.
493 
494     /**
495      * Constructs a new {@code String} by decoding the specified subarray of
496      * bytes using the specified charset.  The length of the new {@code String}
497      * is a function of the charset, and hence may not be equal to the length
498      * of the subarray.
499      *
500      * <p> The behavior of this constructor when the given bytes are not valid
501      * in the given charset is unspecified.  The {@link
502      * java.nio.charset.CharsetDecoder} class should be used when more control
503      * over the decoding process is required.
504      *
505      * @param  bytes
506      *         The bytes to be decoded into characters
507      *
508      * @param  offset
509      *         The index of the first byte to decode
510      *
511      * @param  length
512      *         The number of bytes to decode
513 
514      * @param  charsetName
515      *         The name of a supported {@linkplain java.nio.charset.Charset
516      *         charset}
517      *
518      * @throws  UnsupportedEncodingException
519      *          If the named charset is not supported
520      *
521      * @throws  IndexOutOfBoundsException
522      *          If {@code offset} is negative, {@code length} is negative, or
523      *          {@code offset} is greater than {@code bytes.length - length}
524      *
525      * @since  1.1
526      */
String(byte bytes[], int offset, int length, String charsetName)527     public String(byte bytes[], int offset, int length, String charsetName)
528             throws UnsupportedEncodingException {
529         // BEGIN Android-changed: Implemented as compiler and runtime intrinsics.
530         /*
531         if (charsetName == null)
532             throw new NullPointerException("charsetName");
533         checkBoundsOffCount(offset, length, bytes.length);
534         StringCoding.Result ret =
535             StringCoding.decode(charsetName, bytes, offset, length);
536         this.value = ret.value;
537         this.coder = ret.coder;
538         */
539         throw new UnsupportedOperationException("Use StringFactory instead.");
540         // END Android-changed: Implemented as compiler and runtime intrinsics.
541     }
542 
543     /**
544      * Constructs a new {@code String} by decoding the specified subarray of
545      * bytes using the specified {@linkplain java.nio.charset.Charset charset}.
546      * The length of the new {@code String} is a function of the charset, and
547      * hence may not be equal to the length of the subarray.
548      *
549      * <p> This method always replaces malformed-input and unmappable-character
550      * sequences with this charset's default replacement string.  The {@link
551      * java.nio.charset.CharsetDecoder} class should be used when more control
552      * over the decoding process is required.
553      *
554      * @param  bytes
555      *         The bytes to be decoded into characters
556      *
557      * @param  offset
558      *         The index of the first byte to decode
559      *
560      * @param  length
561      *         The number of bytes to decode
562      *
563      * @param  charset
564      *         The {@linkplain java.nio.charset.Charset charset} to be used to
565      *         decode the {@code bytes}
566      *
567      * @throws  IndexOutOfBoundsException
568      *          If {@code offset} is negative, {@code length} is negative, or
569      *          {@code offset} is greater than {@code bytes.length - length}
570      *
571      * @since  1.6
572      */
String(byte bytes[], int offset, int length, Charset charset)573     public String(byte bytes[], int offset, int length, Charset charset) {
574         // BEGIN Android-changed: Implemented as compiler and runtime intrinsics.
575         /*
576         if (charset == null)
577             throw new NullPointerException("charset");
578         checkBoundsOffCount(offset, length, bytes.length);
579         StringCoding.Result ret =
580             StringCoding.decode(charset, bytes, offset, length);
581         this.value = ret.value;
582         this.coder = ret.coder;
583         */
584         throw new UnsupportedOperationException("Use StringFactory instead.");
585         // END Android-changed: Implemented as compiler and runtime intrinsics.
586     }
587 
588     /**
589      * Constructs a new {@code String} by decoding the specified array of bytes
590      * using the specified {@linkplain java.nio.charset.Charset charset}.  The
591      * length of the new {@code String} is a function of the charset, and hence
592      * may not be equal to the length of the byte array.
593      *
594      * <p> The behavior of this constructor when the given bytes are not valid
595      * in the given charset is unspecified.  The {@link
596      * java.nio.charset.CharsetDecoder} class should be used when more control
597      * over the decoding process is required.
598      *
599      * @param  bytes
600      *         The bytes to be decoded into characters
601      *
602      * @param  charsetName
603      *         The name of a supported {@linkplain java.nio.charset.Charset
604      *         charset}
605      *
606      * @throws  UnsupportedEncodingException
607      *          If the named charset is not supported
608      *
609      * @since  1.1
610      */
String(byte bytes[], String charsetName)611     public String(byte bytes[], String charsetName)
612             throws UnsupportedEncodingException {
613         // BEGIN Android-changed: Implemented as compiler and runtime intrinsics.
614         /*
615         this(bytes, 0, bytes.length, charsetName);
616          */
617         throw new UnsupportedOperationException("Use StringFactory instead.");
618         // END Android-changed: Implemented as compiler and runtime intrinsics.
619     }
620 
621     /**
622      * Constructs a new {@code String} by decoding the specified array of
623      * bytes using the specified {@linkplain java.nio.charset.Charset charset}.
624      * The length of the new {@code String} is a function of the charset, and
625      * hence may not be equal to the length of the byte array.
626      *
627      * <p> This method always replaces malformed-input and unmappable-character
628      * sequences with this charset's default replacement string.  The {@link
629      * java.nio.charset.CharsetDecoder} class should be used when more control
630      * over the decoding process is required.
631      *
632      * @param  bytes
633      *         The bytes to be decoded into characters
634      *
635      * @param  charset
636      *         The {@linkplain java.nio.charset.Charset charset} to be used to
637      *         decode the {@code bytes}
638      *
639      * @since  1.6
640      */
String(byte bytes[], Charset charset)641     public String(byte bytes[], Charset charset) {
642         // BEGIN Android-changed: Implemented as compiler and runtime intrinsics.
643         /*
644         this(bytes, 0, bytes.length, charset);
645          */
646         throw new UnsupportedOperationException("Use StringFactory instead.");
647         // END Android-changed: Implemented as compiler and runtime intrinsics.
648     }
649 
650     /**
651      * Constructs a new {@code String} by decoding the specified subarray of
652      * bytes using the platform's default charset.  The length of the new
653      * {@code String} is a function of the charset, and hence may not be equal
654      * to the length of the subarray.
655      *
656      * <p> The behavior of this constructor when the given bytes are not valid
657      * in the default charset is unspecified.  The {@link
658      * java.nio.charset.CharsetDecoder} class should be used when more control
659      * over the decoding process is required.
660      *
661      * @param  bytes
662      *         The bytes to be decoded into characters
663      *
664      * @param  offset
665      *         The index of the first byte to decode
666      *
667      * @param  length
668      *         The number of bytes to decode
669      *
670      * @throws  IndexOutOfBoundsException
671      *          If {@code offset} is negative, {@code length} is negative, or
672      *          {@code offset} is greater than {@code bytes.length - length}
673      *
674      * @since  1.1
675      */
String(byte bytes[], int offset, int length)676     public String(byte bytes[], int offset, int length) {
677         // BEGIN Android-changed: Implemented as compiler and runtime intrinsics.
678         /*
679         checkBoundsOffCount(offset, length, bytes.length);
680         StringCoding.Result ret = StringCoding.decode(bytes, offset, length);
681         this.value = ret.value;
682         this.coder = ret.coder;
683          */
684         throw new UnsupportedOperationException("Use StringFactory instead.");
685         // END Android-changed: Implemented as compiler and runtime intrinsics.
686     }
687 
688     /**
689      * Constructs a new {@code String} by decoding the specified array of bytes
690      * using the platform's default charset.  The length of the new {@code
691      * String} is a function of the charset, and hence may not be equal to the
692      * length of the byte array.
693      *
694      * <p> The behavior of this constructor when the given bytes are not valid
695      * in the default charset is unspecified.  The {@link
696      * java.nio.charset.CharsetDecoder} class should be used when more control
697      * over the decoding process is required.
698      *
699      * @param  bytes
700      *         The bytes to be decoded into characters
701      *
702      * @since  1.1
703      */
String(byte[] bytes)704     public String(byte[] bytes) {
705         // BEGIN Android-changed: Implemented as compiler and runtime intrinsics.
706         /*
707         this(bytes, 0, bytes.length);
708          */
709         throw new UnsupportedOperationException("Use StringFactory instead.");
710         // END Android-changed: Implemented as compiler and runtime intrinsics.
711     }
712 
713     /**
714      * Allocates a new string that contains the sequence of characters
715      * currently contained in the string buffer argument. The contents of the
716      * string buffer are copied; subsequent modification of the string buffer
717      * does not affect the newly created string.
718      *
719      * @param  buffer
720      *         A {@code StringBuffer}
721      */
String(StringBuffer buffer)722     public String(StringBuffer buffer) {
723         // BEGIN Android-changed: Implemented as compiler and runtime intrinsics.
724         /*
725         this(buffer.toString());
726          */
727         throw new UnsupportedOperationException("Use StringFactory instead.");
728         // END Android-changed: Implemented as compiler and runtime intrinsics.
729     }
730 
731     /**
732      * Allocates a new string that contains the sequence of characters
733      * currently contained in the string builder argument. The contents of the
734      * string builder are copied; subsequent modification of the string builder
735      * does not affect the newly created string.
736      *
737      * <p> This constructor is provided to ease migration to {@code
738      * StringBuilder}. Obtaining a string from a string builder via the {@code
739      * toString} method is likely to run faster and is generally preferred.
740      *
741      * @param   builder
742      *          A {@code StringBuilder}
743      *
744      * @since  1.5
745      */
String(StringBuilder builder)746     public String(StringBuilder builder) {
747         // BEGIN Android-changed: Implemented as compiler and runtime intrinsics.
748         /*
749         this(builder, null);
750          */
751         throw new UnsupportedOperationException("Use StringFactory instead.");
752         // END Android-changed: Implemented as compiler and runtime intrinsics.
753     }
754 
755     // BEGIN Android-removed: Unused package-private constructor String(char[] value, boolean share).
756     /*
757     /*
758     * Package private constructor which shares value array for speed.
759     * this constructor is always expected to be called with share==true.
760     * a separate constructor is needed because we already have a public
761     * String(char[]) constructor that makes a copy of the given char[].
762     *
763     String(char[] value, boolean share) {
764         // assert share : "unshared not supported";
765         this.value = value;
766     }
767     */
768     // END Android-removed: Unused package-private constructor String(char[] value, boolean share).
769 
770     // BEGIN Android-added: Constructor for internal use.
771     // Not implemented in java as all calls are intercepted by the runtime.
772     /**
773      * Package private constructor
774      *
775      * @deprecated Use {@link #String(char[],int,int)} instead.
776      */
777     @Deprecated
String(int offset, int count, char[] value)778     String(int offset, int count, char[] value) {
779         throw new UnsupportedOperationException("Use StringFactory instead.");
780     }
781     // END Android-added: Constructor for internal use.
782 
783     /**
784      * Returns the length of this string.
785      * The length is equal to the number of <a href="Character.html#unicode">Unicode
786      * code units</a> in the string.
787      *
788      * @return  the length of the sequence of characters represented by this
789      *          object.
790      */
length()791     public int length() {
792         // BEGIN Android-changed: Get length from count field rather than value array (see above).
793         /*
794         return value.length >> coder();
795         */
796         final boolean STRING_COMPRESSION_ENABLED = true;
797         if (STRING_COMPRESSION_ENABLED) {
798             // For the compression purposes (save the characters as 8-bit if all characters
799             // are ASCII), the least significant bit of "count" is used as the compression flag.
800             return (count >>> 1);
801         } else {
802             return count;
803         }
804         // END Android-changed: Get length from count field rather than value array (see above).
805     }
806 
807     /**
808      * Returns {@code true} if, and only if, {@link #length()} is {@code 0}.
809      *
810      * @return {@code true} if {@link #length()} is {@code 0}, otherwise
811      * {@code false}
812      *
813      * @since 1.6
814      */
815     @Override
isEmpty()816     public boolean isEmpty() {
817         // BEGIN Android-changed: Get length from count field rather than value array (see above).
818         // Empty string has {@code count == 0} with or without string compression enabled.
819         /*
820         return value.length == 0;
821          */
822         return count == 0;
823         // END Android-changed: Get length from count field rather than value array (see above).
824     }
825 
826     /**
827      * Returns the {@code char} value at the
828      * specified index. An index ranges from {@code 0} to
829      * {@code length() - 1}. The first {@code char} value of the sequence
830      * is at index {@code 0}, the next at index {@code 1},
831      * and so on, as for array indexing.
832      *
833      * <p>If the {@code char} value specified by the index is a
834      * <a href="Character.html#unicode">surrogate</a>, the surrogate
835      * value is returned.
836      *
837      * @param      index   the index of the {@code char} value.
838      * @return     the {@code char} value at the specified index of this string.
839      *             The first {@code char} value is at index {@code 0}.
840      * @exception  IndexOutOfBoundsException  if the {@code index}
841      *             argument is negative or not less than the length of this
842      *             string.
843      */
844     // BEGIN Android-changed: Replace with implementation in runtime to access chars (see above).
845     /*
846     public char charAt(int index) {
847         if (isLatin1()) {
848             return StringLatin1.charAt(value, index);
849         } else {
850             return StringUTF16.charAt(value, index);
851         }
852     }
853     */
854     @FastNative
charAt(int index)855     public native char charAt(int index);
856     // END Android-changed: Replace with implementation in runtime to access chars (see above).
857 
858     /**
859      * Returns the character (Unicode code point) at the specified
860      * index. The index refers to {@code char} values
861      * (Unicode code units) and ranges from {@code 0} to
862      * {@link #length()}{@code  - 1}.
863      *
864      * <p> If the {@code char} value specified at the given index
865      * is in the high-surrogate range, the following index is less
866      * than the length of this {@code String}, and the
867      * {@code char} value at the following index is in the
868      * low-surrogate range, then the supplementary code point
869      * corresponding to this surrogate pair is returned. Otherwise,
870      * the {@code char} value at the given index is returned.
871      *
872      * @param      index the index to the {@code char} values
873      * @return     the code point value of the character at the
874      *             {@code index}
875      * @exception  IndexOutOfBoundsException  if the {@code index}
876      *             argument is negative or not less than the length of this
877      *             string.
878      * @since      1.5
879      */
codePointAt(int index)880     public int codePointAt(int index) {
881         // BEGIN Android-changed: delegate codePointAt() to Character class.
882         /*
883         if (isLatin1()) {
884             checkIndex(index, value.length);
885             return value[index] & 0xff;
886         }
887         int length = value.length >> 1;
888         checkIndex(index, length);
889         return StringUTF16.codePointAt(value, index, length);
890          */
891         checkIndex(index, length());
892         return Character.codePointAt(this, index);
893     }
894 
895     /**
896      * Returns the character (Unicode code point) before the specified
897      * index. The index refers to {@code char} values
898      * (Unicode code units) and ranges from {@code 1} to {@link
899      * CharSequence#length() length}.
900      *
901      * <p> If the {@code char} value at {@code (index - 1)}
902      * is in the low-surrogate range, {@code (index - 2)} is not
903      * negative, and the {@code char} value at {@code (index -
904      * 2)} is in the high-surrogate range, then the
905      * supplementary code point value of the surrogate pair is
906      * returned. If the {@code char} value at {@code index -
907      * 1} is an unpaired low-surrogate or a high-surrogate, the
908      * surrogate value is returned.
909      *
910      * @param     index the index following the code point that should be returned
911      * @return    the Unicode code point value before the given index.
912      * @exception IndexOutOfBoundsException if the {@code index}
913      *            argument is less than 1 or greater than the length
914      *            of this string.
915      * @since     1.5
916      */
codePointBefore(int index)917     public int codePointBefore(int index) {
918         int i = index - 1;
919         if (i < 0 || i >= length()) {
920             throw new StringIndexOutOfBoundsException(index);
921         }
922         // BEGIN Android-changed: delegate codePointBefore to Character class.
923         /*
924         if (isLatin1()) {
925             return (value[i] & 0xff);
926         }
927         return StringUTF16.codePointBefore(value, index);
928          */
929         return Character.codePointBefore(this, index);
930     }
931 
932     /**
933      * Returns the number of Unicode code points in the specified text
934      * range of this {@code String}. The text range begins at the
935      * specified {@code beginIndex} and extends to the
936      * {@code char} at index {@code endIndex - 1}. Thus the
937      * length (in {@code char}s) of the text range is
938      * {@code endIndex-beginIndex}. Unpaired surrogates within
939      * the text range count as one code point each.
940      *
941      * @param beginIndex the index to the first {@code char} of
942      * the text range.
943      * @param endIndex the index after the last {@code char} of
944      * the text range.
945      * @return the number of Unicode code points in the specified text
946      * range
947      * @exception IndexOutOfBoundsException if the
948      * {@code beginIndex} is negative, or {@code endIndex}
949      * is larger than the length of this {@code String}, or
950      * {@code beginIndex} is larger than {@code endIndex}.
951      * @since  1.5
952      */
codePointCount(int beginIndex, int endIndex)953     public int codePointCount(int beginIndex, int endIndex) {
954         if (beginIndex < 0 || beginIndex > endIndex ||
955             endIndex > length()) {
956             throw new IndexOutOfBoundsException();
957         }
958         // BEGIN Android-changed: delegate codePointCount to Character class.
959         /*
960         if (isLatin1()) {
961             return endIndex - beginIndex;
962         }
963         return StringUTF16.codePointCount(value, beginIndex, endIndex);
964          */
965         return Character.codePointCount(this, beginIndex, endIndex);
966         // END Android-changed: delegate codePointCount to Character class.
967     }
968 
969     /**
970      * Returns the index within this {@code String} that is
971      * offset from the given {@code index} by
972      * {@code codePointOffset} code points. Unpaired surrogates
973      * within the text range given by {@code index} and
974      * {@code codePointOffset} count as one code point each.
975      *
976      * @param index the index to be offset
977      * @param codePointOffset the offset in code points
978      * @return the index within this {@code String}
979      * @exception IndexOutOfBoundsException if {@code index}
980      *   is negative or larger then the length of this
981      *   {@code String}, or if {@code codePointOffset} is positive
982      *   and the substring starting with {@code index} has fewer
983      *   than {@code codePointOffset} code points,
984      *   or if {@code codePointOffset} is negative and the substring
985      *   before {@code index} has fewer than the absolute value
986      *   of {@code codePointOffset} code points.
987      * @since 1.5
988      */
offsetByCodePoints(int index, int codePointOffset)989     public int offsetByCodePoints(int index, int codePointOffset) {
990         if (index < 0 || index > length()) {
991             throw new IndexOutOfBoundsException();
992         }
993         return Character.offsetByCodePoints(this, index, codePointOffset);
994     }
995 
996     /**
997      * Copy characters from this string into dst starting at dstBegin.
998      * This method doesn't perform any range checking.
999      */
getChars(char dst[], int dstBegin)1000     void getChars(char dst[], int dstBegin) {
1001         // Android-changed: Replace arraycopy with native call since chars are managed by runtime.
1002         // System.arraycopy(value, 0, dst, dstBegin, value.length);
1003         getCharsNoCheck(0, length(), dst, dstBegin);
1004     }
1005 
1006     /**
1007      * Copies characters from this string into the destination character
1008      * array.
1009      * <p>
1010      * The first character to be copied is at index {@code srcBegin};
1011      * the last character to be copied is at index {@code srcEnd-1}
1012      * (thus the total number of characters to be copied is
1013      * {@code srcEnd-srcBegin}). The characters are copied into the
1014      * subarray of {@code dst} starting at index {@code dstBegin}
1015      * and ending at index:
1016      * <blockquote><pre>
1017      *     dstBegin + (srcEnd-srcBegin) - 1
1018      * </pre></blockquote>
1019      *
1020      * @param      srcBegin   index of the first character in the string
1021      *                        to copy.
1022      * @param      srcEnd     index after the last character in the string
1023      *                        to copy.
1024      * @param      dst        the destination array.
1025      * @param      dstBegin   the start offset in the destination array.
1026      * @exception IndexOutOfBoundsException If any of the following
1027      *            is true:
1028      *            <ul><li>{@code srcBegin} is negative.
1029      *            <li>{@code srcBegin} is greater than {@code srcEnd}
1030      *            <li>{@code srcEnd} is greater than the length of this
1031      *                string
1032      *            <li>{@code dstBegin} is negative
1033      *            <li>{@code dstBegin+(srcEnd-srcBegin)} is larger than
1034      *                {@code dst.length}</ul>
1035      */
getChars(int srcBegin, int srcEnd, char dst[], int dstBegin)1036     public void getChars(int srcBegin, int srcEnd, char dst[], int dstBegin) {
1037         // BEGIN Android-added: Null pointer check.
1038         if (dst == null) {
1039             throw new NullPointerException("dst == null");
1040         }
1041         // END Android-added: Null pointer check.
1042         checkBoundsBeginEnd(srcBegin, srcEnd, length());
1043         // BEGIN Android-changed: Implement in terms of length() and native getCharsNoCheck method.
1044         /*
1045         checkBoundsOffCount(dstBegin, srcEnd - srcBegin, dst.length);
1046         if (isLatin1()) {
1047             StringLatin1.getChars(value, srcBegin, srcEnd, dst, dstBegin);
1048         } else {
1049             StringUTF16.getChars(value, srcBegin, srcEnd, dst, dstBegin);
1050         }
1051         */
1052         if (dstBegin < 0) {
1053             throw new ArrayIndexOutOfBoundsException("dstBegin < 0. dstBegin=" + dstBegin);
1054         }
1055         // dstBegin can be equal to dst.length, but only in the case where zero chars are to be
1056         // copied.
1057         if (dstBegin > dst.length) {
1058             throw new ArrayIndexOutOfBoundsException(
1059                     "dstBegin > dst.length. dstBegin=" + dstBegin + ", dst.length=" + dst.length);
1060         }
1061 
1062         int n = srcEnd - srcBegin;
1063         if (n > dst.length - dstBegin) {
1064             throw new ArrayIndexOutOfBoundsException(
1065                     "n > dst.length - dstBegin. n=" + n + ", dst.length=" + dst.length
1066                             + "dstBegin=" + dstBegin);
1067         }
1068 
1069         getCharsNoCheck(srcBegin, srcEnd, dst, dstBegin);
1070         // END Android-changed: Implement in terms of length() and native getCharsNoCheck method.
1071     }
1072 
1073     // BEGIN Android-added: Native method to access char storage managed by runtime.
1074     /**
1075      * getChars without bounds checks, for use by other classes
1076      * within the java.lang package only.  The caller is responsible for
1077      * ensuring that start >= 0 && start <= end && end <= count.
1078      */
1079     @FastNative
getCharsNoCheck(int start, int end, char[] buffer, int index)1080     native void getCharsNoCheck(int start, int end, char[] buffer, int index);
1081     // END Android-added: Native method to access char storage managed by runtime.
1082 
1083     /**
1084      * Copies characters from this string into the destination byte array. Each
1085      * byte receives the 8 low-order bits of the corresponding character. The
1086      * eight high-order bits of each character are not copied and do not
1087      * participate in the transfer in any way.
1088      *
1089      * <p> The first character to be copied is at index {@code srcBegin}; the
1090      * last character to be copied is at index {@code srcEnd-1}.  The total
1091      * number of characters to be copied is {@code srcEnd-srcBegin}. The
1092      * characters, converted to bytes, are copied into the subarray of {@code
1093      * dst} starting at index {@code dstBegin} and ending at index:
1094      *
1095      * <blockquote><pre>
1096      *     dstBegin + (srcEnd-srcBegin) - 1
1097      * </pre></blockquote>
1098      *
1099      * @deprecated  This method does not properly convert characters into
1100      * bytes.  As of JDK&nbsp;1.1, the preferred way to do this is via the
1101      * {@link #getBytes()} method, which uses the platform's default charset.
1102      *
1103      * @param  srcBegin
1104      *         Index of the first character in the string to copy
1105      *
1106      * @param  srcEnd
1107      *         Index after the last character in the string to copy
1108      *
1109      * @param  dst
1110      *         The destination array
1111      *
1112      * @param  dstBegin
1113      *         The start offset in the destination array
1114      *
1115      * @throws  IndexOutOfBoundsException
1116      *          If any of the following is true:
1117      *          <ul>
1118      *            <li> {@code srcBegin} is negative
1119      *            <li> {@code srcBegin} is greater than {@code srcEnd}
1120      *            <li> {@code srcEnd} is greater than the length of this String
1121      *            <li> {@code dstBegin} is negative
1122      *            <li> {@code dstBegin+(srcEnd-srcBegin)} is larger than {@code
1123      *                 dst.length}
1124      *          </ul>
1125      */
1126     @Deprecated(since="1.1")
getBytes(int srcBegin, int srcEnd, byte dst[], int dstBegin)1127     public void getBytes(int srcBegin, int srcEnd, byte dst[], int dstBegin) {
1128         checkBoundsBeginEnd(srcBegin, srcEnd, length());
1129         Objects.requireNonNull(dst);
1130         checkBoundsOffCount(dstBegin, srcEnd - srcBegin, dst.length);
1131         // BEGIN Android-changed: Implement in terms of charAt().
1132         /*
1133         if (isLatin1()) {
1134             StringLatin1.getBytes(value, srcBegin, srcEnd, dst, dstBegin);
1135         } else {
1136             StringUTF16.getBytes(value, srcBegin, srcEnd, dst, dstBegin);
1137         }
1138          */
1139         int j = dstBegin;
1140         int n = srcEnd;
1141         int i = srcBegin;
1142 
1143         while (i < n) {
1144             dst[j++] = (byte)charAt(i++);
1145         }
1146         // END Android-changed: Implement in terms of charAt().
1147     }
1148 
1149     /**
1150      * Encodes this {@code String} into a sequence of bytes using the named
1151      * charset, storing the result into a new byte array.
1152      *
1153      * <p> The behavior of this method when this string cannot be encoded in
1154      * the given charset is unspecified.  The {@link
1155      * java.nio.charset.CharsetEncoder} class should be used when more control
1156      * over the encoding process is required.
1157      *
1158      * @param  charsetName
1159      *         The name of a supported {@linkplain java.nio.charset.Charset
1160      *         charset}
1161      *
1162      * @return  The resultant byte array
1163      *
1164      * @throws  UnsupportedEncodingException
1165      *          If the named charset is not supported
1166      *
1167      * @since  1.1
1168      */
getBytes(String charsetName)1169     public byte[] getBytes(String charsetName)
1170             throws UnsupportedEncodingException {
1171         if (charsetName == null) throw new NullPointerException();
1172         // BEGIN Android-changed: Skip StringCoding optimization that needs access to java chars.
1173         /*
1174         return StringCoding.encode(charsetName, coder(), value);
1175          */
1176         return getBytes(Charset.forNameUEE(charsetName));
1177         // END Android-changed: Skip StringCoding optimization that needs access to java chars.
1178     }
1179 
1180     /**
1181      * Encodes this {@code String} into a sequence of bytes using the given
1182      * {@linkplain java.nio.charset.Charset charset}, storing the result into a
1183      * new byte array.
1184      *
1185      * <p> This method always replaces malformed-input and unmappable-character
1186      * sequences with this charset's default replacement byte array.  The
1187      * {@link java.nio.charset.CharsetEncoder} class should be used when more
1188      * control over the encoding process is required.
1189      *
1190      * @param  charset
1191      *         The {@linkplain java.nio.charset.Charset} to be used to encode
1192      *         the {@code String}
1193      *
1194      * @return  The resultant byte array
1195      *
1196      * @since  1.6
1197      */
getBytes(Charset charset)1198     public byte[] getBytes(Charset charset) {
1199         if (charset == null) throw new NullPointerException();
1200         // BEGIN Android-changed: Skip StringCoding optimization that needs access to java chars.
1201         /*
1202         return StringCoding.encode(charset, coder(), value);
1203         */
1204         final int len = length();
1205         final String name = charset.name();
1206         if ("UTF-8".equals(name)) {
1207             return CharsetUtils.toUtf8Bytes(this, 0, len);
1208         } else if ("ISO-8859-1".equals(name)) {
1209             return CharsetUtils.toIsoLatin1Bytes(this, 0, len);
1210         } else if ("US-ASCII".equals(name)) {
1211             return CharsetUtils.toAsciiBytes(this, 0, len);
1212         } else if ("UTF-16BE".equals(name)) {
1213             return CharsetUtils.toBigEndianUtf16Bytes(this, 0, len);
1214         }
1215 
1216         ByteBuffer buffer = charset.encode(this);
1217         byte[] bytes = new byte[buffer.limit()];
1218         buffer.get(bytes);
1219         return bytes;
1220         // END Android-changed: Skip StringCoding optimization that needs access to java chars.
1221     }
1222 
1223     /**
1224      * Encodes this {@code String} into a sequence of bytes using the
1225      * platform's default charset, storing the result into a new byte array.
1226      *
1227      * <p> The behavior of this method when this string cannot be encoded in
1228      * the default charset is unspecified.  The {@link
1229      * java.nio.charset.CharsetEncoder} class should be used when more control
1230      * over the encoding process is required.
1231      *
1232      * @return  The resultant byte array
1233      *
1234      * @since      1.1
1235      */
getBytes()1236     public byte[] getBytes() {
1237         // BEGIN Android-changed: Skip StringCoding optimization that needs access to java chars.
1238         /*
1239         return StringCoding.encode(coder(), value);
1240          */
1241         return getBytes(Charset.defaultCharset());
1242         // END Android-changed: Skip StringCoding optimization that needs access to java chars.
1243     }
1244 
1245     /**
1246      * Compares this string to the specified object.  The result is {@code
1247      * true} if and only if the argument is not {@code null} and is a {@code
1248      * String} object that represents the same sequence of characters as this
1249      * object.
1250      *
1251      * <p>For finer-grained String comparison, refer to
1252      * {@link java.text.Collator}.
1253      *
1254      * @param  anObject
1255      *         The object to compare this {@code String} against
1256      *
1257      * @return  {@code true} if the given object represents a {@code String}
1258      *          equivalent to this string, {@code false} otherwise
1259      *
1260      * @see  #compareTo(String)
1261      * @see  #equalsIgnoreCase(String)
1262      */
equals(Object anObject)1263     public boolean equals(Object anObject) {
1264         if (this == anObject) {
1265             return true;
1266         }
1267         if (anObject instanceof String) {
1268             // BEGIN Android-changed: Implement in terms of charAt().
1269             /*
1270             String aString = (String)anObject;
1271             if (coder() == aString.coder()) {
1272                 return isLatin1() ? StringLatin1.equals(value, aString.value)
1273                                   : StringUTF16.equals(value, aString.value);
1274             }
1275              */
1276             String anotherString = (String)anObject;
1277             int n = length();
1278             if (n == anotherString.length()) {
1279                 int i = 0;
1280                 while (n-- != 0) {
1281                     if (charAt(i) != anotherString.charAt(i))
1282                             return false;
1283                     i++;
1284                 }
1285                 return true;
1286             }
1287             // END Android-changed: Implement in terms of charAt().
1288         }
1289         return false;
1290     }
1291 
1292     /**
1293      * Compares this string to the specified {@code StringBuffer}.  The result
1294      * is {@code true} if and only if this {@code String} represents the same
1295      * sequence of characters as the specified {@code StringBuffer}. This method
1296      * synchronizes on the {@code StringBuffer}.
1297      *
1298      * <p>For finer-grained String comparison, refer to
1299      * {@link java.text.Collator}.
1300      *
1301      * @param  sb
1302      *         The {@code StringBuffer} to compare this {@code String} against
1303      *
1304      * @return  {@code true} if this {@code String} represents the same
1305      *          sequence of characters as the specified {@code StringBuffer},
1306      *          {@code false} otherwise
1307      *
1308      * @since  1.4
1309      */
contentEquals(StringBuffer sb)1310     public boolean contentEquals(StringBuffer sb) {
1311         return contentEquals((CharSequence)sb);
1312     }
1313 
nonSyncContentEquals(AbstractStringBuilder sb)1314     private boolean nonSyncContentEquals(AbstractStringBuilder sb) {
1315         int len = length();
1316         if (len != sb.length()) {
1317             return false;
1318         }
1319         // BEGIN Android-changed: Implement in terms of charAt().
1320         /*
1321         byte v1[] = value;
1322         byte v2[] = sb.getValue();
1323         if (coder() == sb.getCoder()) {
1324             int n = v1.length;
1325             for (int i = 0; i < n; i++) {
1326                 if (v1[i] != v2[i]) {
1327                     return false;
1328                 }
1329             }
1330         } else {
1331             if (!isLatin1()) {  // utf16 str and latin1 abs can never be "equal"
1332                 return false;
1333             }
1334             return StringUTF16.contentEquals(v1, v2, len);
1335         }
1336          */
1337         for (int i = 0; i < len; i++) {
1338             if (charAt(i) != sb.charAt(i)) {
1339                 return false;
1340             }
1341         }
1342         // END Android-changed: Implement in terms of charAt().
1343         return true;
1344     }
1345 
1346     /**
1347      * Compares this string to the specified {@code CharSequence}.  The
1348      * result is {@code true} if and only if this {@code String} represents the
1349      * same sequence of char values as the specified sequence. Note that if the
1350      * {@code CharSequence} is a {@code StringBuffer} then the method
1351      * synchronizes on it.
1352      *
1353      * <p>For finer-grained String comparison, refer to
1354      * {@link java.text.Collator}.
1355      *
1356      * @param  cs
1357      *         The sequence to compare this {@code String} against
1358      *
1359      * @return  {@code true} if this {@code String} represents the same
1360      *          sequence of char values as the specified sequence, {@code
1361      *          false} otherwise
1362      *
1363      * @since  1.5
1364      */
contentEquals(CharSequence cs)1365     public boolean contentEquals(CharSequence cs) {
1366         // Argument is a StringBuffer, StringBuilder
1367         if (cs instanceof AbstractStringBuilder) {
1368             if (cs instanceof StringBuffer) {
1369                 synchronized(cs) {
1370                    return nonSyncContentEquals((AbstractStringBuilder)cs);
1371                 }
1372             } else {
1373                 return nonSyncContentEquals((AbstractStringBuilder)cs);
1374             }
1375         }
1376         // Argument is a String
1377         if (cs instanceof String) {
1378             return equals(cs);
1379         }
1380         // Argument is a generic CharSequence
1381         int n = cs.length();
1382         if (n != length()) {
1383             return false;
1384         }
1385         // BEGIN Android-changed: Implement in terms of charAt().
1386         /*
1387         byte[] val = this.value;
1388         if (isLatin1()) {
1389             for (int i = 0; i < n; i++) {
1390                 if ((val[i] & 0xff) != cs.charAt(i)) {
1391                     return false;
1392                 }
1393             }
1394         } else {
1395             if (!StringUTF16.contentEquals(val, cs, n)) {
1396          */
1397         for (int i = 0; i < n; i++) {
1398             if (charAt(i) != cs.charAt(i)) {
1399         // END Android-changed: Implement in terms of charAt().
1400                 return false;
1401             }
1402         }
1403         return true;
1404     }
1405 
1406     /**
1407      * Compares this {@code String} to another {@code String}, ignoring case
1408      * considerations.  Two strings are considered equal ignoring case if they
1409      * are of the same length and corresponding characters in the two strings
1410      * are equal ignoring case.
1411      *
1412      * <p> Two characters {@code c1} and {@code c2} are considered the same
1413      * ignoring case if at least one of the following is true:
1414      * <ul>
1415      *   <li> The two characters are the same (as compared by the
1416      *        {@code ==} operator)
1417      *   <li> Calling {@code Character.toLowerCase(Character.toUpperCase(char))}
1418      *        on each character produces the same result
1419      * </ul>
1420      *
1421      * <p>Note that this method does <em>not</em> take locale into account, and
1422      * will result in unsatisfactory results for certain locales.  The
1423      * {@link java.text.Collator} class provides locale-sensitive comparison.
1424      *
1425      * @param  anotherString
1426      *         The {@code String} to compare this {@code String} against
1427      *
1428      * @return  {@code true} if the argument is not {@code null} and it
1429      *          represents an equivalent {@code String} ignoring case; {@code
1430      *          false} otherwise
1431      *
1432      * @see  #equals(Object)
1433      */
equalsIgnoreCase(String anotherString)1434     public boolean equalsIgnoreCase(String anotherString) {
1435         // Android-added: Cache length() result so it's called once.
1436         final int len = length();
1437         return (this == anotherString) ? true
1438                 : (anotherString != null)
1439                 && (anotherString.length() == len)
1440                 && regionMatches(true, 0, anotherString, 0, len);
1441     }
1442 
1443     /**
1444      * Compares two strings lexicographically.
1445      * The comparison is based on the Unicode value of each character in
1446      * the strings. The character sequence represented by this
1447      * {@code String} object is compared lexicographically to the
1448      * character sequence represented by the argument string. The result is
1449      * a negative integer if this {@code String} object
1450      * lexicographically precedes the argument string. The result is a
1451      * positive integer if this {@code String} object lexicographically
1452      * follows the argument string. The result is zero if the strings
1453      * are equal; {@code compareTo} returns {@code 0} exactly when
1454      * the {@link #equals(Object)} method would return {@code true}.
1455      * <p>
1456      * This is the definition of lexicographic ordering. If two strings are
1457      * different, then either they have different characters at some index
1458      * that is a valid index for both strings, or their lengths are different,
1459      * or both. If they have different characters at one or more index
1460      * positions, let <i>k</i> be the smallest such index; then the string
1461      * whose character at position <i>k</i> has the smaller value, as
1462      * determined by using the {@code <} operator, lexicographically precedes the
1463      * other string. In this case, {@code compareTo} returns the
1464      * difference of the two character values at position {@code k} in
1465      * the two string -- that is, the value:
1466      * <blockquote><pre>
1467      * this.charAt(k)-anotherString.charAt(k)
1468      * </pre></blockquote>
1469      * If there is no index position at which they differ, then the shorter
1470      * string lexicographically precedes the longer string. In this case,
1471      * {@code compareTo} returns the difference of the lengths of the
1472      * strings -- that is, the value:
1473      * <blockquote><pre>
1474      * this.length()-anotherString.length()
1475      * </pre></blockquote>
1476      *
1477      * <p>For finer-grained String comparison, refer to
1478      * {@link java.text.Collator}.
1479      *
1480      * @param   anotherString   the {@code String} to be compared.
1481      * @return  the value {@code 0} if the argument string is equal to
1482      *          this string; a value less than {@code 0} if this string
1483      *          is lexicographically less than the string argument; and a
1484      *          value greater than {@code 0} if this string is
1485      *          lexicographically greater than the string argument.
1486      */
1487     // BEGIN Android-changed: Replace with implementation in runtime to access chars (see above).
1488     /*
1489     public int compareTo(String anotherString) {
1490         byte v1[] = value;
1491         byte v2[] = anotherString.value;
1492         if (coder() == anotherString.coder()) {
1493             return isLatin1() ? StringLatin1.compareTo(v1, v2)
1494                               : StringUTF16.compareTo(v1, v2);
1495         }
1496         return isLatin1() ? StringLatin1.compareToUTF16(v1, v2)
1497                           : StringUTF16.compareToLatin1(v1, v2);
1498      }
1499     */
1500     @FastNative
compareTo(String anotherString)1501     public native int compareTo(String anotherString);
1502     // END Android-changed: Replace with implementation in runtime to access chars (see above).
1503 
1504     /**
1505      * A Comparator that orders {@code String} objects as by
1506      * {@code compareToIgnoreCase}. This comparator is serializable.
1507      * <p>
1508      * Note that this Comparator does <em>not</em> take locale into account,
1509      * and will result in an unsatisfactory ordering for certain locales.
1510      * The {@link java.text.Collator} class provides locale-sensitive comparison.
1511      *
1512      * @see     java.text.Collator
1513      * @since   1.2
1514      */
1515     public static final Comparator<String> CASE_INSENSITIVE_ORDER
1516                                          = new CaseInsensitiveComparator();
1517     private static class CaseInsensitiveComparator
1518             implements Comparator<String>, java.io.Serializable {
1519         // use serialVersionUID from JDK 1.2.2 for interoperability
1520         private static final long serialVersionUID = 8575799808933029326L;
1521 
compare(String s1, String s2)1522         public int compare(String s1, String s2) {
1523             // BEGIN Android-changed: Implement in terms of charAt().
1524             /*
1525             byte v1[] = s1.value;
1526             byte v2[] = s2.value;
1527             if (s1.coder() == s2.coder()) {
1528                 return s1.isLatin1() ? StringLatin1.compareToCI(v1, v2)
1529                                      : StringUTF16.compareToCI(v1, v2);
1530             }
1531             return s1.isLatin1() ? StringLatin1.compareToCI_UTF16(v1, v2)
1532                                  : StringUTF16.compareToCI_Latin1(v1, v2);
1533              */
1534             int n1 = s1.length();
1535             int n2 = s2.length();
1536             int min = Math.min(n1, n2);
1537             for (int i = 0; i < min; i++) {
1538                 char c1 = s1.charAt(i);
1539                 char c2 = s2.charAt(i);
1540                 if (c1 != c2) {
1541                     c1 = Character.toUpperCase(c1);
1542                     c2 = Character.toUpperCase(c2);
1543                     if (c1 != c2) {
1544                         c1 = Character.toLowerCase(c1);
1545                         c2 = Character.toLowerCase(c2);
1546                         if (c1 != c2) {
1547                             // No overflow because of numeric promotion
1548                             return c1 - c2;
1549                         }
1550                     }
1551                 }
1552             }
1553             return n1 - n2;
1554             // END Android-changed: Implement in terms of charAt().
1555         }
1556 
1557         /** Replaces the de-serialized object. */
readResolve()1558         private Object readResolve() { return CASE_INSENSITIVE_ORDER; }
1559     }
1560 
1561     /**
1562      * Compares two strings lexicographically, ignoring case
1563      * differences. This method returns an integer whose sign is that of
1564      * calling {@code compareTo} with normalized versions of the strings
1565      * where case differences have been eliminated by calling
1566      * {@code Character.toLowerCase(Character.toUpperCase(character))} on
1567      * each character.
1568      * <p>
1569      * Note that this method does <em>not</em> take locale into account,
1570      * and will result in an unsatisfactory ordering for certain locales.
1571      * The {@link java.text.Collator} class provides locale-sensitive comparison.
1572      *
1573      * @param   str   the {@code String} to be compared.
1574      * @return  a negative integer, zero, or a positive integer as the
1575      *          specified String is greater than, equal to, or less
1576      *          than this String, ignoring case considerations.
1577      * @see     java.text.Collator
1578      * @since   1.2
1579      */
compareToIgnoreCase(String str)1580     public int compareToIgnoreCase(String str) {
1581         return CASE_INSENSITIVE_ORDER.compare(this, str);
1582     }
1583 
1584     /**
1585      * Tests if two string regions are equal.
1586      * <p>
1587      * A substring of this {@code String} object is compared to a substring
1588      * of the argument other. The result is true if these substrings
1589      * represent identical character sequences. The substring of this
1590      * {@code String} object to be compared begins at index {@code toffset}
1591      * and has length {@code len}. The substring of other to be compared
1592      * begins at index {@code ooffset} and has length {@code len}. The
1593      * result is {@code false} if and only if at least one of the following
1594      * is true:
1595      * <ul><li>{@code toffset} is negative.
1596      * <li>{@code ooffset} is negative.
1597      * <li>{@code toffset+len} is greater than the length of this
1598      * {@code String} object.
1599      * <li>{@code ooffset+len} is greater than the length of the other
1600      * argument.
1601      * <li>There is some nonnegative integer <i>k</i> less than {@code len}
1602      * such that:
1603      * {@code this.charAt(toffset + }<i>k</i>{@code ) != other.charAt(ooffset + }
1604      * <i>k</i>{@code )}
1605      * </ul>
1606      *
1607      * <p>Note that this method does <em>not</em> take locale into account.  The
1608      * {@link java.text.Collator} class provides locale-sensitive comparison.
1609      *
1610      * @param   toffset   the starting offset of the subregion in this string.
1611      * @param   other     the string argument.
1612      * @param   ooffset   the starting offset of the subregion in the string
1613      *                    argument.
1614      * @param   len       the number of characters to compare.
1615      * @return  {@code true} if the specified subregion of this string
1616      *          exactly matches the specified subregion of the string argument;
1617      *          {@code false} otherwise.
1618      */
regionMatches(int toffset, String other, int ooffset, int len)1619     public boolean regionMatches(int toffset, String other, int ooffset, int len) {
1620         // BEGIN Android-removed: Implement in terms of charAt().
1621         /*
1622         byte tv[] = value;
1623         byte ov[] = other.value;
1624          */
1625         // Note: toffset, ooffset, or len might be near -1>>>1.
1626         if ((ooffset < 0) || (toffset < 0) ||
1627              (toffset > (long)length() - len) ||
1628              (ooffset > (long)other.length() - len)) {
1629             return false;
1630         }
1631         // BEGIN Android-removed: Implement in terms of charAt().
1632         /*
1633         if (coder() == other.coder()) {
1634             if (!isLatin1() && (len > 0)) {
1635                 toffset = toffset << 1;
1636                 ooffset = ooffset << 1;
1637                 len = len << 1;
1638             }
1639             while (len-- > 0) {
1640                 if (tv[toffset++] != ov[ooffset++]) {
1641                     return false;
1642                 }
1643             }
1644         } else {
1645             if (coder() == LATIN1) {
1646                 while (len-- > 0) {
1647                     if (StringLatin1.getChar(tv, toffset++) !=
1648                         StringUTF16.getChar(ov, ooffset++)) {
1649                         return false;
1650                     }
1651                 }
1652             } else {
1653                 while (len-- > 0) {
1654                     if (StringUTF16.getChar(tv, toffset++) !=
1655                         StringLatin1.getChar(ov, ooffset++)) {
1656                         return false;
1657                     }
1658                 }
1659          */
1660         while (len-- > 0) {
1661             if (charAt(toffset++) != other.charAt(ooffset++)) {
1662                 return false;
1663         // END Android-removed: Implement in terms of charAt().
1664             }
1665         }
1666         return true;
1667     }
1668 
1669     /**
1670      * Tests if two string regions are equal.
1671      * <p>
1672      * A substring of this {@code String} object is compared to a substring
1673      * of the argument {@code other}. The result is {@code true} if these
1674      * substrings represent character sequences that are the same, ignoring
1675      * case if and only if {@code ignoreCase} is true. The substring of
1676      * this {@code String} object to be compared begins at index
1677      * {@code toffset} and has length {@code len}. The substring of
1678      * {@code other} to be compared begins at index {@code ooffset} and
1679      * has length {@code len}. The result is {@code false} if and only if
1680      * at least one of the following is true:
1681      * <ul><li>{@code toffset} is negative.
1682      * <li>{@code ooffset} is negative.
1683      * <li>{@code toffset+len} is greater than the length of this
1684      * {@code String} object.
1685      * <li>{@code ooffset+len} is greater than the length of the other
1686      * argument.
1687      * <li>{@code ignoreCase} is {@code false} and there is some nonnegative
1688      * integer <i>k</i> less than {@code len} such that:
1689      * <blockquote><pre>
1690      * this.charAt(toffset+k) != other.charAt(ooffset+k)
1691      * </pre></blockquote>
1692      * <li>{@code ignoreCase} is {@code true} and there is some nonnegative
1693      * integer <i>k</i> less than {@code len} such that:
1694      * <blockquote><pre>
1695      * Character.toLowerCase(Character.toUpperCase(this.charAt(toffset+k))) !=
1696      Character.toLowerCase(Character.toUpperCase(other.charAt(ooffset+k)))
1697      * </pre></blockquote>
1698      * </ul>
1699      *
1700      * <p>Note that this method does <em>not</em> take locale into account,
1701      * and will result in unsatisfactory results for certain locales when
1702      * {@code ignoreCase} is {@code true}.  The {@link java.text.Collator} class
1703      * provides locale-sensitive comparison.
1704      *
1705      * @param   ignoreCase   if {@code true}, ignore case when comparing
1706      *                       characters.
1707      * @param   toffset      the starting offset of the subregion in this
1708      *                       string.
1709      * @param   other        the string argument.
1710      * @param   ooffset      the starting offset of the subregion in the string
1711      *                       argument.
1712      * @param   len          the number of characters to compare.
1713      * @return  {@code true} if the specified subregion of this string
1714      *          matches the specified subregion of the string argument;
1715      *          {@code false} otherwise. Whether the matching is exact
1716      *          or case insensitive depends on the {@code ignoreCase}
1717      *          argument.
1718      */
regionMatches(boolean ignoreCase, int toffset, String other, int ooffset, int len)1719     public boolean regionMatches(boolean ignoreCase, int toffset,
1720             String other, int ooffset, int len) {
1721         if (!ignoreCase) {
1722             return regionMatches(toffset, other, ooffset, len);
1723         }
1724         // Note: toffset, ooffset, or len might be near -1>>>1.
1725         if ((ooffset < 0) || (toffset < 0)
1726                 || (toffset > (long)length() - len)
1727                 || (ooffset > (long)other.length() - len)) {
1728             return false;
1729         }
1730         // BEGIN Android-changed: Implement in terms of charAt().
1731         /*
1732         byte tv[] = value;
1733         byte ov[] = other.value;
1734         if (coder() == other.coder()) {
1735             return isLatin1()
1736               ? StringLatin1.regionMatchesCI(tv, toffset, ov, ooffset, len)
1737               : StringUTF16.regionMatchesCI(tv, toffset, ov, ooffset, len);
1738         }
1739         return isLatin1()
1740               ? StringLatin1.regionMatchesCI_UTF16(tv, toffset, ov, ooffset, len)
1741               : StringUTF16.regionMatchesCI_Latin1(tv, toffset, ov, ooffset, len);
1742          */
1743         while (len-- > 0) {
1744             char c1 = charAt(toffset++);
1745             char c2 = other.charAt(ooffset++);
1746             if (c1 == c2) {
1747                 continue;
1748             }
1749             if (ignoreCase) {
1750                 // If characters don't match but case may be ignored,
1751                 // try converting both characters to uppercase.
1752                 // If the results match, then the comparison scan should
1753                 // continue.
1754                 char u1 = Character.toUpperCase(c1);
1755                 char u2 = Character.toUpperCase(c2);
1756                 if (u1 == u2) {
1757                     continue;
1758                 }
1759                 // Unfortunately, conversion to uppercase does not work properly
1760                 // for the Georgian alphabet, which has strange rules about case
1761                 // conversion.  So we need to make one last check before
1762                 // exiting.
1763                 if (Character.toLowerCase(u1) == Character.toLowerCase(u2)) {
1764                     continue;
1765                 }
1766             }
1767             return false;
1768         }
1769         return true;
1770         // END Android-changed: Implement in terms of charAt().
1771     }
1772 
1773     /**
1774      * Tests if the substring of this string beginning at the
1775      * specified index starts with the specified prefix.
1776      *
1777      * @param   prefix    the prefix.
1778      * @param   toffset   where to begin looking in this string.
1779      * @return  {@code true} if the character sequence represented by the
1780      *          argument is a prefix of the substring of this object starting
1781      *          at index {@code toffset}; {@code false} otherwise.
1782      *          The result is {@code false} if {@code toffset} is
1783      *          negative or greater than the length of this
1784      *          {@code String} object; otherwise the result is the same
1785      *          as the result of the expression
1786      *          <pre>
1787      *          this.substring(toffset).startsWith(prefix)
1788      *          </pre>
1789      */
startsWith(String prefix, int toffset)1790     public boolean startsWith(String prefix, int toffset) {
1791         // Android-added: Cache length() result so it's called once.
1792         int pc = prefix.length();
1793         // Note: toffset might be near -1>>>1.
1794         if (toffset < 0 || toffset > length() - pc) {
1795             return false;
1796         }
1797         // BEGIN Android-changed: Implement in terms of charAt().
1798         /*
1799         byte ta[] = value;
1800         byte pa[] = prefix.value;
1801         int po = 0;
1802         int pc = pa.length;
1803         if (coder() == prefix.coder()) {
1804             int to = isLatin1() ? toffset : toffset << 1;
1805             while (po < pc) {
1806                 if (ta[to++] != pa[po++]) {
1807                     return false;
1808                 }
1809             }
1810         } else {
1811             if (isLatin1()) {  // && pcoder == UTF16
1812                 return false;
1813             }
1814             // coder == UTF16 && pcoder == LATIN1)
1815             while (po < pc) {
1816                 if (StringUTF16.getChar(ta, toffset++) != (pa[po++] & 0xff)) {
1817                     return false;
1818                }
1819             }
1820          */
1821         int po = 0;
1822         while (--pc >= 0) {
1823             if (charAt(toffset++) != prefix.charAt(po++)) {
1824                 return false;
1825             }
1826         // END Android-changed: Implement in terms of charAt().
1827         }
1828         return true;
1829     }
1830 
1831     /**
1832      * Tests if this string starts with the specified prefix.
1833      *
1834      * @param   prefix   the prefix.
1835      * @return  {@code true} if the character sequence represented by the
1836      *          argument is a prefix of the character sequence represented by
1837      *          this string; {@code false} otherwise.
1838      *          Note also that {@code true} will be returned if the
1839      *          argument is an empty string or is equal to this
1840      *          {@code String} object as determined by the
1841      *          {@link #equals(Object)} method.
1842      * @since   1.0
1843      */
startsWith(String prefix)1844     public boolean startsWith(String prefix) {
1845         return startsWith(prefix, 0);
1846     }
1847 
1848     /**
1849      * Tests if this string ends with the specified suffix.
1850      *
1851      * @param   suffix   the suffix.
1852      * @return  {@code true} if the character sequence represented by the
1853      *          argument is a suffix of the character sequence represented by
1854      *          this object; {@code false} otherwise. Note that the
1855      *          result will be {@code true} if the argument is the
1856      *          empty string or is equal to this {@code String} object
1857      *          as determined by the {@link #equals(Object)} method.
1858      */
endsWith(String suffix)1859     public boolean endsWith(String suffix) {
1860         return startsWith(suffix, length() - suffix.length());
1861     }
1862 
1863     /**
1864      * Returns a hash code for this string. The hash code for a
1865      * {@code String} object is computed as
1866      * <blockquote><pre>
1867      * s[0]*31^(n-1) + s[1]*31^(n-2) + ... + s[n-1]
1868      * </pre></blockquote>
1869      * using {@code int} arithmetic, where {@code s[i]} is the
1870      * <i>i</i>th character of the string, {@code n} is the length of
1871      * the string, and {@code ^} indicates exponentiation.
1872      * (The hash value of the empty string is zero.)
1873      *
1874      * @return  a hash code value for this object.
1875      */
hashCode()1876     public int hashCode() {
1877         int h = hash;
1878         // BEGIN Android-changed: Implement in terms of charAt().
1879         /*
1880         if (h == 0 && value.length > 0) {
1881             hash = h = isLatin1() ? StringLatin1.hashCode(value)
1882                                   : StringUTF16.hashCode(value);
1883          */
1884         final int len = length();
1885         if (h == 0 && len > 0) {
1886             for (int i = 0; i < len; i++) {
1887                 h = 31 * h + charAt(i);
1888             }
1889             hash = h;
1890         // END Android-changed: Implement in terms of charAt().
1891         }
1892         return h;
1893     }
1894 
1895     /**
1896      * Returns the index within this string of the first occurrence of
1897      * the specified character. If a character with value
1898      * {@code ch} occurs in the character sequence represented by
1899      * this {@code String} object, then the index (in Unicode
1900      * code units) of the first such occurrence is returned. For
1901      * values of {@code ch} in the range from 0 to 0xFFFF
1902      * (inclusive), this is the smallest value <i>k</i> such that:
1903      * <blockquote><pre>
1904      * this.charAt(<i>k</i>) == ch
1905      * </pre></blockquote>
1906      * is true. For other values of {@code ch}, it is the
1907      * smallest value <i>k</i> such that:
1908      * <blockquote><pre>
1909      * this.codePointAt(<i>k</i>) == ch
1910      * </pre></blockquote>
1911      * is true. In either case, if no such character occurs in this
1912      * string, then {@code -1} is returned.
1913      *
1914      * @param   ch   a character (Unicode code point).
1915      * @return  the index of the first occurrence of the character in the
1916      *          character sequence represented by this object, or
1917      *          {@code -1} if the character does not occur.
1918      */
indexOf(int ch)1919     public int indexOf(int ch) {
1920         return indexOf(ch, 0);
1921     }
1922 
1923     /**
1924      * Returns the index within this string of the first occurrence of the
1925      * specified character, starting the search at the specified index.
1926      * <p>
1927      * If a character with value {@code ch} occurs in the
1928      * character sequence represented by this {@code String}
1929      * object at an index no smaller than {@code fromIndex}, then
1930      * the index of the first such occurrence is returned. For values
1931      * of {@code ch} in the range from 0 to 0xFFFF (inclusive),
1932      * this is the smallest value <i>k</i> such that:
1933      * <blockquote><pre>
1934      * (this.charAt(<i>k</i>) == ch) {@code &&} (<i>k</i> &gt;= fromIndex)
1935      * </pre></blockquote>
1936      * is true. For other values of {@code ch}, it is the
1937      * smallest value <i>k</i> such that:
1938      * <blockquote><pre>
1939      * (this.codePointAt(<i>k</i>) == ch) {@code &&} (<i>k</i> &gt;= fromIndex)
1940      * </pre></blockquote>
1941      * is true. In either case, if no such character occurs in this
1942      * string at or after position {@code fromIndex}, then
1943      * {@code -1} is returned.
1944      *
1945      * <p>
1946      * There is no restriction on the value of {@code fromIndex}. If it
1947      * is negative, it has the same effect as if it were zero: this entire
1948      * string may be searched. If it is greater than the length of this
1949      * string, it has the same effect as if it were equal to the length of
1950      * this string: {@code -1} is returned.
1951      *
1952      * <p>All indices are specified in {@code char} values
1953      * (Unicode code units).
1954      *
1955      * @param   ch          a character (Unicode code point).
1956      * @param   fromIndex   the index to start the search from.
1957      * @return  the index of the first occurrence of the character in the
1958      *          character sequence represented by this object that is greater
1959      *          than or equal to {@code fromIndex}, or {@code -1}
1960      *          if the character does not occur.
1961      */
indexOf(int ch, int fromIndex)1962     public int indexOf(int ch, int fromIndex) {
1963     // BEGIN Android-changed: Implement in terms of charAt().
1964         /*
1965         return isLatin1() ? StringLatin1.indexOf(value, ch, fromIndex)
1966                           : StringUTF16.indexOf(value, ch, fromIndex);
1967          */
1968         final int max = length();
1969         if (fromIndex < 0) {
1970             fromIndex = 0;
1971         } else if (fromIndex >= max) {
1972             // Note: fromIndex might be near -1>>>1.
1973             return -1;
1974         }
1975 
1976         if (ch < Character.MIN_SUPPLEMENTARY_CODE_POINT) {
1977             // handle most cases here (ch is a BMP code point or a
1978             // negative value (invalid code point))
1979             for (int i = fromIndex; i < max; i++) {
1980                 if (charAt(i) == ch) {
1981                     return i;
1982                 }
1983             }
1984             return -1;
1985         } else {
1986             return indexOfSupplementary(ch, fromIndex);
1987         }
1988     }
1989 
1990     /**
1991      * Handles (rare) calls of indexOf with a supplementary character.
1992      */
indexOfSupplementary(int ch, int fromIndex)1993     private int indexOfSupplementary(int ch, int fromIndex) {
1994         if (Character.isValidCodePoint(ch)) {
1995             final char hi = Character.highSurrogate(ch);
1996             final char lo = Character.lowSurrogate(ch);
1997             final int max = length() - 1;
1998             for (int i = fromIndex; i < max; i++) {
1999                 if (charAt(i) == hi && charAt(i + 1) == lo) {
2000                     return i;
2001                 }
2002             }
2003         }
2004         return -1;
2005     // END Android-changed: Implement in terms of charAt().
2006     }
2007 
2008     /**
2009      * Returns the index within this string of the last occurrence of
2010      * the specified character. For values of {@code ch} in the
2011      * range from 0 to 0xFFFF (inclusive), the index (in Unicode code
2012      * units) returned is the largest value <i>k</i> such that:
2013      * <blockquote><pre>
2014      * this.charAt(<i>k</i>) == ch
2015      * </pre></blockquote>
2016      * is true. For other values of {@code ch}, it is the
2017      * largest value <i>k</i> such that:
2018      * <blockquote><pre>
2019      * this.codePointAt(<i>k</i>) == ch
2020      * </pre></blockquote>
2021      * is true.  In either case, if no such character occurs in this
2022      * string, then {@code -1} is returned.  The
2023      * {@code String} is searched backwards starting at the last
2024      * character.
2025      *
2026      * @param   ch   a character (Unicode code point).
2027      * @return  the index of the last occurrence of the character in the
2028      *          character sequence represented by this object, or
2029      *          {@code -1} if the character does not occur.
2030      */
lastIndexOf(int ch)2031     public int lastIndexOf(int ch) {
2032         return lastIndexOf(ch, length() - 1);
2033     }
2034 
2035     /**
2036      * Returns the index within this string of the last occurrence of
2037      * the specified character, searching backward starting at the
2038      * specified index. For values of {@code ch} in the range
2039      * from 0 to 0xFFFF (inclusive), the index returned is the largest
2040      * value <i>k</i> such that:
2041      * <blockquote><pre>
2042      * (this.charAt(<i>k</i>) == ch) {@code &&} (<i>k</i> &lt;= fromIndex)
2043      * </pre></blockquote>
2044      * is true. For other values of {@code ch}, it is the
2045      * largest value <i>k</i> such that:
2046      * <blockquote><pre>
2047      * (this.codePointAt(<i>k</i>) == ch) {@code &&} (<i>k</i> &lt;= fromIndex)
2048      * </pre></blockquote>
2049      * is true. In either case, if no such character occurs in this
2050      * string at or before position {@code fromIndex}, then
2051      * {@code -1} is returned.
2052      *
2053      * <p>All indices are specified in {@code char} values
2054      * (Unicode code units).
2055      *
2056      * @param   ch          a character (Unicode code point).
2057      * @param   fromIndex   the index to start the search from. There is no
2058      *          restriction on the value of {@code fromIndex}. If it is
2059      *          greater than or equal to the length of this string, it has
2060      *          the same effect as if it were equal to one less than the
2061      *          length of this string: this entire string may be searched.
2062      *          If it is negative, it has the same effect as if it were -1:
2063      *          -1 is returned.
2064      * @return  the index of the last occurrence of the character in the
2065      *          character sequence represented by this object that is less
2066      *          than or equal to {@code fromIndex}, or {@code -1}
2067      *          if the character does not occur before that point.
2068      */
lastIndexOf(int ch, int fromIndex)2069     public int lastIndexOf(int ch, int fromIndex) {
2070     // BEGIN Android-changed: Implement in terms of charAt().
2071         /*
2072         return isLatin1() ? StringLatin1.lastIndexOf(value, ch, fromIndex)
2073                           : StringUTF16.lastIndexOf(value, ch, fromIndex);
2074          */
2075         if (ch < Character.MIN_SUPPLEMENTARY_CODE_POINT) {
2076             // handle most cases here (ch is a BMP code point or a
2077             // negative value (invalid code point))
2078             int i = Math.min(fromIndex, length() - 1);
2079             for (; i >= 0; i--) {
2080                 if (charAt(i) == ch) {
2081                     return i;
2082                 }
2083             }
2084             return -1;
2085         } else {
2086             return lastIndexOfSupplementary(ch, fromIndex);
2087         }
2088     }
2089 
2090     /**
2091      * Handles (rare) calls of lastIndexOf with a supplementary character.
2092      */
lastIndexOfSupplementary(int ch, int fromIndex)2093     private int lastIndexOfSupplementary(int ch, int fromIndex) {
2094         if (Character.isValidCodePoint(ch)) {
2095             char hi = Character.highSurrogate(ch);
2096             char lo = Character.lowSurrogate(ch);
2097             int i = Math.min(fromIndex, length() - 2);
2098             for (; i >= 0; i--) {
2099                 if (charAt(i) == hi && charAt(i + 1) == lo) {
2100                     return i;
2101                 }
2102             }
2103         }
2104         return -1;
2105     // END Android-changed: Implement in terms of charAt().
2106     }
2107 
2108     /**
2109      * Returns the index within this string of the first occurrence of the
2110      * specified substring.
2111      *
2112      * <p>The returned index is the smallest value {@code k} for which:
2113      * <pre>{@code
2114      * this.startsWith(str, k)
2115      * }</pre>
2116      * If no such value of {@code k} exists, then {@code -1} is returned.
2117      *
2118      * @param   str   the substring to search for.
2119      * @return  the index of the first occurrence of the specified substring,
2120      *          or {@code -1} if there is no such occurrence.
2121      */
2122     @NeverInline
indexOf(String str)2123     public int indexOf(String str) {
2124         // BEGIN Android-changed: Implement with indexOf() method that takes String parameters.
2125         /*
2126         if (coder() == str.coder()) {
2127             return isLatin1() ? StringLatin1.indexOf(value, str.value)
2128                               : StringUTF16.indexOf(value, str.value);
2129         }
2130         if (coder() == LATIN1) {  // str.coder == UTF16
2131             return -1;
2132         }
2133         return StringUTF16.indexOfLatin1(value, str.value);
2134          */
2135         return indexOf(str, 0);
2136         // END Android-changed: Implement with indexOf() method that takes String parameters.
2137     }
2138 
2139     /**
2140      * Returns the index within this string of the first occurrence of the
2141      * specified substring, starting at the specified index.
2142      *
2143      * <p>The returned index is the smallest value {@code k} for which:
2144      * <pre>{@code
2145      *     k >= Math.min(fromIndex, this.length()) &&
2146      *                   this.startsWith(str, k)
2147      * }</pre>
2148      * If no such value of {@code k} exists, then {@code -1} is returned.
2149      *
2150      * @param   str         the substring to search for.
2151      * @param   fromIndex   the index from which to start the search.
2152      * @return  the index of the first occurrence of the specified substring,
2153      *          starting at the specified index,
2154      *          or {@code -1} if there is no such occurrence.
2155      */
2156     @NeverInline
indexOf(String str, int fromIndex)2157     public int indexOf(String str, int fromIndex) {
2158         // BEGIN Android-changed: Implement with indexOf() method that takes String parameters.
2159         /*
2160         return indexOf(value, coder(), length(), str, fromIndex);
2161          */
2162         return indexOf(this, str, fromIndex);
2163         // END Android-changed: Implement with indexOf() method that takes String parameters.
2164     }
2165 
2166     // BEGIN Android-added: Private static indexOf method that takes String parameters.
2167     // The use of length(), charAt(), etc. makes it more efficient for compressed strings.
2168     /**
2169      * The source is the string being searched, and the target is the string being searched for.
2170      *
2171      * @param   source       the characters being searched.
2172      * @param   target       the characters being searched for.
2173      * @param   fromIndex    the index to begin searching from.
2174      */
indexOf(String source, String target, int fromIndex)2175     private static int indexOf(String source, String target, int fromIndex) {
2176         final int sourceLength = source.length();
2177         final int targetLength = target.length();
2178         if (fromIndex >= sourceLength) {
2179             return (targetLength == 0 ? sourceLength : -1);
2180         }
2181         if (fromIndex < 0) {
2182             fromIndex = 0;
2183         }
2184         if (targetLength == 0) {
2185             return fromIndex;
2186         }
2187 
2188         char first = target.charAt(0);
2189         int max = (sourceLength - targetLength);
2190 
2191         for (int i = fromIndex; i <= max; i++) {
2192             /* Look for first character. */
2193             if (source.charAt(i)!= first) {
2194                 while (++i <= max && source.charAt(i) != first);
2195             }
2196 
2197             /* Found first character, now look at the rest of v2 */
2198             if (i <= max) {
2199                 int j = i + 1;
2200                 int end = j + targetLength - 1;
2201                 for (int k = 1; j < end && source.charAt(j)
2202                          == target.charAt(k); j++, k++);
2203 
2204                 if (j == end) {
2205                     /* Found whole string. */
2206                     return i;
2207                 }
2208             }
2209         }
2210         return -1;
2211     }
2212     // END Android-added: Private static indexOf method that takes String parameters.
2213 
2214     /**
2215      * Code shared by String and AbstractStringBuilder to do searches. The
2216      * source is the character array being searched, and the target
2217      * is the string being searched for.
2218      *
2219      * @param   src       the characters being searched.
2220      * @param   srcCoder  the coder of the source string.
2221      * @param   srcCount  length of the source string.
2222      * @param   tgtStr    the characters being searched for.
2223      * @param   fromIndex the index to begin searching from.
2224      */
indexOf(byte[] src, byte srcCoder, int srcCount, String tgtStr, int fromIndex)2225     static int indexOf(byte[] src, byte srcCoder, int srcCount,
2226         String tgtStr, int fromIndex) {
2227         // byte[] tgt    = tgtStr.value;
2228         byte tgtCoder = tgtStr.coder();
2229         int tgtCount  = tgtStr.length();
2230 
2231         if (fromIndex >= srcCount) {
2232             return (tgtCount == 0 ? srcCount : -1);
2233         }
2234         if (fromIndex < 0) {
2235             fromIndex = 0;
2236         }
2237         if (tgtCount == 0) {
2238             return fromIndex;
2239         }
2240         if (tgtCount > srcCount) {
2241             return -1;
2242         }
2243         if (srcCoder == tgtCoder) {
2244             return srcCoder == LATIN1
2245                 // Android-changed: libcore doesn't store String as Latin1 or UTF16 byte[] field.
2246                 // ? StringLatin1.indexOf(src, srcCount, tgt, tgtCount, fromIndex)
2247                 // : StringUTF16.indexOf(src, srcCount, tgt, tgtCount, fromIndex);
2248                 ? StringLatin1.indexOf(src, srcCount, tgtStr, tgtCount, fromIndex)
2249                 : StringUTF16.indexOf(src, srcCount, tgtStr, tgtCount, fromIndex);
2250         }
2251         if (srcCoder == LATIN1) {    //  && tgtCoder == UTF16
2252             return -1;
2253         }
2254         // srcCoder == UTF16 && tgtCoder == LATIN1) {
2255         // return StringUTF16.indexOfLatin1(src, srcCount, tgt, tgtCount, fromIndex);
2256         return StringUTF16.indexOfLatin1(src, srcCount, tgtStr, tgtCount, fromIndex);
2257     }
2258 
2259     /**
2260      * Returns the index within this string of the last occurrence of the
2261      * specified substring.  The last occurrence of the empty string ""
2262      * is considered to occur at the index value {@code this.length()}.
2263      *
2264      * <p>The returned index is the largest value {@code k} for which:
2265      * <pre>{@code
2266      * this.startsWith(str, k)
2267      * }</pre>
2268      * If no such value of {@code k} exists, then {@code -1} is returned.
2269      *
2270      * @param   str   the substring to search for.
2271      * @return  the index of the last occurrence of the specified substring,
2272      *          or {@code -1} if there is no such occurrence.
2273      */
lastIndexOf(String str)2274     public int lastIndexOf(String str) {
2275         return lastIndexOf(str, length());
2276     }
2277 
2278     /**
2279      * Returns the index within this string of the last occurrence of the
2280      * specified substring, searching backward starting at the specified index.
2281      *
2282      * <p>The returned index is the largest value {@code k} for which:
2283      * <pre>{@code
2284      *     k <= Math.min(fromIndex, this.length()) &&
2285      *                   this.startsWith(str, k)
2286      * }</pre>
2287      * If no such value of {@code k} exists, then {@code -1} is returned.
2288      *
2289      * @param   str         the substring to search for.
2290      * @param   fromIndex   the index to start the search from.
2291      * @return  the index of the last occurrence of the specified substring,
2292      *          searching backward from the specified index,
2293      *          or {@code -1} if there is no such occurrence.
2294      */
lastIndexOf(String str, int fromIndex)2295     public int lastIndexOf(String str, int fromIndex) {
2296         // BEGIN Android-changed: Implement with static lastIndexOf() that takes String parameters.
2297         /*
2298         return lastIndexOf(value, coder(), length(), str, fromIndex);
2299          */
2300         return lastIndexOf(this, str, fromIndex);
2301         // END Android-changed: Implement with static lastIndexOf() that takes String parameters.
2302     }
2303 
2304     // BEGIN Android-added: Private static lastIndexOf method that takes String parameters.
2305     // The use of length(), charAt(), etc. makes it more efficient for compressed strings.
2306     /**
2307      * The source is the string being searched, and the target is the string being searched for.
2308      *
2309      * @param   source       the characters being searched.
2310      * @param   target       the characters being searched for.
2311      * @param   fromIndex    the index to begin searching from.
2312      */
lastIndexOf(String source, String target, int fromIndex)2313     private static int lastIndexOf(String source, String target, int fromIndex) {
2314         /*
2315          * Check arguments; return immediately where possible. For
2316          * consistency, don't check for null str.
2317          */
2318         final int sourceLength = source.length();
2319         final int targetLength = target.length();
2320         int rightIndex = sourceLength - targetLength;
2321         if (fromIndex < 0) {
2322             return -1;
2323         }
2324         if (fromIndex > rightIndex) {
2325             fromIndex = rightIndex;
2326         }
2327         /* Empty string always matches. */
2328         if (targetLength == 0) {
2329             return fromIndex;
2330         }
2331 
2332         int strLastIndex = targetLength - 1;
2333         char strLastChar = target.charAt(strLastIndex);
2334         int min = targetLength - 1;
2335         int i = min + fromIndex;
2336 
2337         startSearchForLastChar:
2338         while (true) {
2339             while (i >= min && source.charAt(i) != strLastChar) {
2340                 i--;
2341             }
2342             if (i < min) {
2343                 return -1;
2344             }
2345             int j = i - 1;
2346             int start = j - (targetLength - 1);
2347             int k = strLastIndex - 1;
2348 
2349             while (j > start) {
2350                 if (source.charAt(j--) != target.charAt(k--)) {
2351                     i--;
2352                     continue startSearchForLastChar;
2353                 }
2354             }
2355             return start + 1;
2356         }
2357     }
2358     // END Android-added: Private static lastIndexOf method that takes String parameters.
2359 
2360     /**
2361      * Code shared by String and AbstractStringBuilder to do searches. The
2362      * source is the character array being searched, and the target
2363      * is the string being searched for.
2364      *
2365      * @param   src         the characters being searched.
2366      * @param   srcCoder    coder handles the mapping between bytes/chars
2367      * @param   srcCount    count of the source string.
2368      * @param   tgtStr      the characters being searched for.
2369      * @param   fromIndex   the index to begin searching from.
2370      */
lastIndexOf(byte[] src, byte srcCoder, int srcCount, String tgtStr, int fromIndex)2371     static int lastIndexOf(byte[] src, byte srcCoder, int srcCount,
2372         String tgtStr, int fromIndex) {
2373         // byte[] tgt = tgtStr.value;
2374         byte tgtCoder = tgtStr.coder();
2375         int tgtCount = tgtStr.length();
2376         /*
2377          * Check arguments; return immediately where possible. For
2378          * consistency, don't check for null str.
2379          */
2380         int rightIndex = srcCount - tgtCount;
2381         if (fromIndex > rightIndex) {
2382             fromIndex = rightIndex;
2383         }
2384         if (fromIndex < 0) {
2385             return -1;
2386         }
2387         /* Empty string always matches. */
2388         if (tgtCount == 0) {
2389             return fromIndex;
2390         }
2391         if (srcCoder == tgtCoder) {
2392             return srcCoder == LATIN1
2393                 // Android-changed: libcore doesn't store String as Latin1 or UTF16 byte[] field.
2394                 // ? StringLatin1.lastIndexOf(src, srcCount, tgt, tgtCount, fromIndex)
2395                 // : StringUTF16.lastIndexOf(src, srcCount, tgt, tgtCount, fromIndex);
2396                 ? StringLatin1.lastIndexOf(src, srcCount, tgtStr, tgtCount, fromIndex)
2397                 : StringUTF16.lastIndexOf(src, srcCount, tgtStr, tgtCount, fromIndex);
2398         }
2399         if (srcCoder == LATIN1) {    // && tgtCoder == UTF16
2400             return -1;
2401         }
2402         // srcCoder == UTF16 && tgtCoder == LATIN1
2403         // return StringUTF16.lastIndexOfLatin1(src, srcCount, tgt, tgtCount, fromIndex);
2404         return StringUTF16.lastIndexOfLatin1(src, srcCount, tgtStr, tgtCount, fromIndex);
2405     }
2406 
2407     /**
2408      * Code shared by String and StringBuffer to do searches. The
2409      * source is the character array being searched, and the target
2410      * is the string being searched for.
2411      *
2412      * @param   source       the characters being searched.
2413      * @param   sourceOffset offset of the source string.
2414      * @param   sourceCount  count of the source string.
2415      * @param   target       the characters being searched for.
2416      * @param   targetOffset offset of the target string.
2417      * @param   targetCount  count of the target string.
2418      * @param   fromIndex    the index to begin searching from.
2419      */
lastIndexOf(char[] source, int sourceOffset, int sourceCount, char[] target, int targetOffset, int targetCount, int fromIndex)2420     static int lastIndexOf(char[] source, int sourceOffset, int sourceCount,
2421             char[] target, int targetOffset, int targetCount,
2422             int fromIndex) {
2423         /*
2424          * Check arguments; return immediately where possible. For
2425          * consistency, don't check for null str.
2426          */
2427         int rightIndex = sourceCount - targetCount;
2428         if (fromIndex < 0) {
2429             return -1;
2430         }
2431         if (fromIndex > rightIndex) {
2432             fromIndex = rightIndex;
2433         }
2434         /* Empty string always matches. */
2435         if (targetCount == 0) {
2436             return fromIndex;
2437         }
2438 
2439         int strLastIndex = targetOffset + targetCount - 1;
2440         char strLastChar = target[strLastIndex];
2441         int min = sourceOffset + targetCount - 1;
2442         int i = min + fromIndex;
2443 
2444     startSearchForLastChar:
2445         while (true) {
2446             while (i >= min && source[i] != strLastChar) {
2447                 i--;
2448             }
2449             if (i < min) {
2450                 return -1;
2451             }
2452             int j = i - 1;
2453             int start = j - (targetCount - 1);
2454             int k = strLastIndex - 1;
2455 
2456             while (j > start) {
2457                 if (source[j--] != target[k--]) {
2458                     i--;
2459                     continue startSearchForLastChar;
2460                 }
2461             }
2462             return start - sourceOffset + 1;
2463         }
2464     }
2465 
2466     /**
2467      * Returns a string that is a substring of this string. The
2468      * substring begins with the character at the specified index and
2469      * extends to the end of this string. <p>
2470      * Examples:
2471      * <blockquote><pre>
2472      * "unhappy".substring(2) returns "happy"
2473      * "Harbison".substring(3) returns "bison"
2474      * "emptiness".substring(9) returns "" (an empty string)
2475      * </pre></blockquote>
2476      *
2477      * @param      beginIndex   the beginning index, inclusive.
2478      * @return     the specified substring.
2479      * @exception  IndexOutOfBoundsException  if
2480      *             {@code beginIndex} is negative or larger than the
2481      *             length of this {@code String} object.
2482      */
substring(int beginIndex)2483     public String substring(int beginIndex) {
2484         if (beginIndex < 0) {
2485             throw new StringIndexOutOfBoundsException(this, beginIndex);
2486         }
2487         int subLen = length() - beginIndex;
2488         if (subLen < 0) {
2489             throw new StringIndexOutOfBoundsException(this, beginIndex);
2490         }
2491         if (beginIndex == 0) {
2492             return this;
2493         }
2494         // BEGIN Android-changed: Use native fastSubstring instead of String constructor.
2495         /*
2496         return isLatin1() ? StringLatin1.newString(value, beginIndex, subLen)
2497                           : StringUTF16.newString(value, beginIndex, subLen);
2498          */
2499         return fastSubstring(beginIndex, subLen);
2500         // END Android-changed: Use native fastSubstring instead of String constructor.
2501     }
2502 
2503     /**
2504      * Returns a string that is a substring of this string. The
2505      * substring begins at the specified {@code beginIndex} and
2506      * extends to the character at index {@code endIndex - 1}.
2507      * Thus the length of the substring is {@code endIndex-beginIndex}.
2508      * <p>
2509      * Examples:
2510      * <blockquote><pre>
2511      * "hamburger".substring(4, 8) returns "urge"
2512      * "smiles".substring(1, 5) returns "mile"
2513      * </pre></blockquote>
2514      *
2515      * @param      beginIndex   the beginning index, inclusive.
2516      * @param      endIndex     the ending index, exclusive.
2517      * @return     the specified substring.
2518      * @exception  IndexOutOfBoundsException  if the
2519      *             {@code beginIndex} is negative, or
2520      *             {@code endIndex} is larger than the length of
2521      *             this {@code String} object, or
2522      *             {@code beginIndex} is larger than
2523      *             {@code endIndex}.
2524      */
substring(int beginIndex, int endIndex)2525     public String substring(int beginIndex, int endIndex) {
2526         int length = length();
2527         checkBoundsBeginEnd(beginIndex, endIndex, length);
2528         int subLen = endIndex - beginIndex;
2529         if (beginIndex == 0 && endIndex == length) {
2530             return this;
2531         }
2532 
2533         // BEGIN Android-changed: Use native fastSubstring instead of String constructor.
2534         /*
2535         return isLatin1() ? StringLatin1.newString(value, beginIndex, subLen)
2536                           : StringUTF16.newString(value, beginIndex, subLen);
2537          */
2538         return fastSubstring(beginIndex, subLen);
2539         // END Android-changed: Use native fastSubstring instead of String constructor.
2540     }
2541 
2542     // BEGIN Android-added: Native method to access char storage managed by runtime.
2543     @FastNative
fastSubstring(int start, int length)2544     private native String fastSubstring(int start, int length);
2545     // END Android-added: Native method to access char storage managed by runtime.
2546 
2547     /**
2548      * Returns a character sequence that is a subsequence of this sequence.
2549      *
2550      * <p> An invocation of this method of the form
2551      *
2552      * <blockquote><pre>
2553      * str.subSequence(begin,&nbsp;end)</pre></blockquote>
2554      *
2555      * behaves in exactly the same way as the invocation
2556      *
2557      * <blockquote><pre>
2558      * str.substring(begin,&nbsp;end)</pre></blockquote>
2559      *
2560      * @apiNote
2561      * This method is defined so that the {@code String} class can implement
2562      * the {@link CharSequence} interface.
2563      *
2564      * @param   beginIndex   the begin index, inclusive.
2565      * @param   endIndex     the end index, exclusive.
2566      * @return  the specified subsequence.
2567      *
2568      * @throws  IndexOutOfBoundsException
2569      *          if {@code beginIndex} or {@code endIndex} is negative,
2570      *          if {@code endIndex} is greater than {@code length()},
2571      *          or if {@code beginIndex} is greater than {@code endIndex}
2572      *
2573      * @since 1.4
2574      * @spec JSR-51
2575      */
subSequence(int beginIndex, int endIndex)2576     public CharSequence subSequence(int beginIndex, int endIndex) {
2577         return this.substring(beginIndex, endIndex);
2578     }
2579 
2580     /**
2581      * Concatenates the specified string to the end of this string.
2582      * <p>
2583      * If the length of the argument string is {@code 0}, then this
2584      * {@code String} object is returned. Otherwise, a
2585      * {@code String} object is returned that represents a character
2586      * sequence that is the concatenation of the character sequence
2587      * represented by this {@code String} object and the character
2588      * sequence represented by the argument string.<p>
2589      * Examples:
2590      * <blockquote><pre>
2591      * "cares".concat("s") returns "caress"
2592      * "to".concat("get").concat("her") returns "together"
2593      * </pre></blockquote>
2594      *
2595      * @param   str   the {@code String} that is concatenated to the end
2596      *                of this {@code String}.
2597      * @return  a string that represents the concatenation of this object's
2598      *          characters followed by the string argument's characters.
2599      */
2600     // BEGIN Android-changed: Replace with implementation in runtime to access chars (see above).
2601     /*
2602     public String concat(String str) {
2603         if (str.isEmpty()) {
2604             return this;
2605         }
2606         if (coder() == str.coder()) {
2607             byte[] val = this.value;
2608             byte[] oval = str.value;
2609             int len = val.length + oval.length;
2610             byte[] buf = Arrays.copyOf(val, len);
2611             System.arraycopy(oval, 0, buf, val.length, oval.length);
2612             return new String(buf, coder);
2613         }
2614         int len = length();
2615         int olen = str.length();
2616         byte[] buf = StringUTF16.newBytesFor(len + olen);
2617         getBytes(buf, 0, UTF16);
2618         str.getBytes(buf, len, UTF16);
2619         return new String(buf, UTF16);
2620     }
2621     */
2622     @FastNative
concat(String str)2623     public native String concat(String str);
2624     // END Android-changed: Replace with implementation in runtime to access chars (see above).
2625 
2626     /**
2627      * Returns a string resulting from replacing all occurrences of
2628      * {@code oldChar} in this string with {@code newChar}.
2629      * <p>
2630      * If the character {@code oldChar} does not occur in the
2631      * character sequence represented by this {@code String} object,
2632      * then a reference to this {@code String} object is returned.
2633      * Otherwise, a {@code String} object is returned that
2634      * represents a character sequence identical to the character sequence
2635      * represented by this {@code String} object, except that every
2636      * occurrence of {@code oldChar} is replaced by an occurrence
2637      * of {@code newChar}.
2638      * <p>
2639      * Examples:
2640      * <blockquote><pre>
2641      * "mesquite in your cellar".replace('e', 'o')
2642      *         returns "mosquito in your collar"
2643      * "the war of baronets".replace('r', 'y')
2644      *         returns "the way of bayonets"
2645      * "sparring with a purple porpoise".replace('p', 't')
2646      *         returns "starring with a turtle tortoise"
2647      * "JonL".replace('q', 'x') returns "JonL" (no change)
2648      * </pre></blockquote>
2649      *
2650      * @param   oldChar   the old character.
2651      * @param   newChar   the new character.
2652      * @return  a string derived from this string by replacing every
2653      *          occurrence of {@code oldChar} with {@code newChar}.
2654      */
replace(char oldChar, char newChar)2655     public String replace(char oldChar, char newChar) {
2656         // BEGIN Android-changed: Replace with implementation using native doReplace method.
2657         if (oldChar != newChar) {
2658             /*
2659             String ret = isLatin1() ? StringLatin1.replace(value, oldChar, newChar)
2660                                     : StringUTF16.replace(value, oldChar, newChar);
2661             if (ret != null) {
2662                 return ret;
2663             }
2664             */
2665             final int len = length();
2666             for (int i = 0; i < len; ++i) {
2667                 if (charAt(i) == oldChar) {
2668                     return doReplace(oldChar, newChar);
2669                 }
2670             }
2671         }
2672         // END Android-changed: Replace with implementation using native doReplace method.
2673         return this;
2674     }
2675 
2676     // BEGIN Android-added: Native method to access char storage managed by runtime.
2677     // Implementation of replace(char oldChar, char newChar) called when we found a match.
2678     @FastNative
doReplace(char oldChar, char newChar)2679     private native String doReplace(char oldChar, char newChar);
2680     // END Android-added: Native method to access char storage managed by runtime.
2681 
2682     /**
2683      * Tells whether or not this string matches the given <a
2684      * href="../util/regex/Pattern.html#sum">regular expression</a>.
2685      *
2686      * <p> An invocation of this method of the form
2687      * <i>str</i>{@code .matches(}<i>regex</i>{@code )} yields exactly the
2688      * same result as the expression
2689      *
2690      * <blockquote>
2691      * {@link java.util.regex.Pattern}.{@link java.util.regex.Pattern#matches(String,CharSequence)
2692      * matches(<i>regex</i>, <i>str</i>)}
2693      * </blockquote>
2694      *
2695      * @param   regex
2696      *          the regular expression to which this string is to be matched
2697      *
2698      * @return  {@code true} if, and only if, this string matches the
2699      *          given regular expression
2700      *
2701      * @throws  PatternSyntaxException
2702      *          if the regular expression's syntax is invalid
2703      *
2704      * @see java.util.regex.Pattern
2705      *
2706      * @since 1.4
2707      * @spec JSR-51
2708      */
matches(String regex)2709     public boolean matches(String regex) {
2710         return Pattern.matches(regex, this);
2711     }
2712 
2713     /**
2714      * Returns true if and only if this string contains the specified
2715      * sequence of char values.
2716      *
2717      * @param s the sequence to search for
2718      * @return true if this string contains {@code s}, false otherwise
2719      * @since 1.5
2720      */
contains(CharSequence s)2721     public boolean contains(CharSequence s) {
2722         return indexOf(s.toString()) >= 0;
2723     }
2724 
2725     /**
2726      * Replaces the first substring of this string that matches the given <a
2727      * href="../util/regex/Pattern.html#sum">regular expression</a> with the
2728      * given replacement.
2729      *
2730      * <p> An invocation of this method of the form
2731      * <i>str</i>{@code .replaceFirst(}<i>regex</i>{@code ,} <i>repl</i>{@code )}
2732      * yields exactly the same result as the expression
2733      *
2734      * <blockquote>
2735      * <code>
2736      * {@link java.util.regex.Pattern}.{@link
2737      * java.util.regex.Pattern#compile compile}(<i>regex</i>).{@link
2738      * java.util.regex.Pattern#matcher(java.lang.CharSequence) matcher}(<i>str</i>).{@link
2739      * java.util.regex.Matcher#replaceFirst replaceFirst}(<i>repl</i>)
2740      * </code>
2741      * </blockquote>
2742      *
2743      *<p>
2744      * Note that backslashes ({@code \}) and dollar signs ({@code $}) in the
2745      * replacement string may cause the results to be different than if it were
2746      * being treated as a literal replacement string; see
2747      * {@link java.util.regex.Matcher#replaceFirst}.
2748      * Use {@link java.util.regex.Matcher#quoteReplacement} to suppress the special
2749      * meaning of these characters, if desired.
2750      *
2751      * @param   regex
2752      *          the regular expression to which this string is to be matched
2753      * @param   replacement
2754      *          the string to be substituted for the first match
2755      *
2756      * @return  The resulting {@code String}
2757      *
2758      * @throws  PatternSyntaxException
2759      *          if the regular expression's syntax is invalid
2760      *
2761      * @see java.util.regex.Pattern
2762      *
2763      * @since 1.4
2764      * @spec JSR-51
2765      */
replaceFirst(String regex, String replacement)2766     public String replaceFirst(String regex, String replacement) {
2767         return Pattern.compile(regex).matcher(this).replaceFirst(replacement);
2768     }
2769 
2770     /**
2771      * Replaces each substring of this string that matches the given <a
2772      * href="../util/regex/Pattern.html#sum">regular expression</a> with the
2773      * given replacement.
2774      *
2775      * <p> An invocation of this method of the form
2776      * <i>str</i>{@code .replaceAll(}<i>regex</i>{@code ,} <i>repl</i>{@code )}
2777      * yields exactly the same result as the expression
2778      *
2779      * <blockquote>
2780      * <code>
2781      * {@link java.util.regex.Pattern}.{@link
2782      * java.util.regex.Pattern#compile compile}(<i>regex</i>).{@link
2783      * java.util.regex.Pattern#matcher(java.lang.CharSequence) matcher}(<i>str</i>).{@link
2784      * java.util.regex.Matcher#replaceAll replaceAll}(<i>repl</i>)
2785      * </code>
2786      * </blockquote>
2787      *
2788      *<p>
2789      * Note that backslashes ({@code \}) and dollar signs ({@code $}) in the
2790      * replacement string may cause the results to be different than if it were
2791      * being treated as a literal replacement string; see
2792      * {@link java.util.regex.Matcher#replaceAll Matcher.replaceAll}.
2793      * Use {@link java.util.regex.Matcher#quoteReplacement} to suppress the special
2794      * meaning of these characters, if desired.
2795      *
2796      * @param   regex
2797      *          the regular expression to which this string is to be matched
2798      * @param   replacement
2799      *          the string to be substituted for each match
2800      *
2801      * @return  The resulting {@code String}
2802      *
2803      * @throws  PatternSyntaxException
2804      *          if the regular expression's syntax is invalid
2805      *
2806      * @see java.util.regex.Pattern
2807      *
2808      * @since 1.4
2809      * @spec JSR-51
2810      */
replaceAll(String regex, String replacement)2811     public String replaceAll(String regex, String replacement) {
2812         return Pattern.compile(regex).matcher(this).replaceAll(replacement);
2813     }
2814 
2815     /**
2816      * Replaces each substring of this string that matches the literal target
2817      * sequence with the specified literal replacement sequence. The
2818      * replacement proceeds from the beginning of the string to the end, for
2819      * example, replacing "aa" with "b" in the string "aaa" will result in
2820      * "ba" rather than "ab".
2821      *
2822      * @param  target The sequence of char values to be replaced
2823      * @param  replacement The replacement sequence of char values
2824      * @return  The resulting string
2825      * @since 1.5
2826      */
replace(CharSequence target, CharSequence replacement)2827     public String replace(CharSequence target, CharSequence replacement) {
2828         // BEGIN Android-added: Additional null check for parameters.
2829         Objects.requireNonNull(target);
2830         Objects.requireNonNull(replacement);
2831         // END Android-added: Additional null check for parameters.
2832 
2833         String tgtStr = target.toString();
2834         String replStr = replacement.toString();
2835         int j = indexOf(tgtStr);
2836         if (j < 0) {
2837             return this;
2838         }
2839         int tgtLen = tgtStr.length();
2840         int tgtLen1 = Math.max(tgtLen, 1);
2841         int thisLen = length();
2842 
2843         int newLenHint = thisLen - tgtLen + replStr.length();
2844         if (newLenHint < 0) {
2845             throw new OutOfMemoryError();
2846         }
2847         StringBuilder sb = new StringBuilder(newLenHint);
2848         int i = 0;
2849         do {
2850             sb.append(this, i, j).append(replStr);
2851             i = j + tgtLen;
2852         } while (j < thisLen && (j = indexOf(tgtStr, j + tgtLen1)) > 0);
2853         return sb.append(this, i, thisLen).toString();
2854     }
2855 
2856     /**
2857      * Splits this string around matches of the given
2858      * <a href="../util/regex/Pattern.html#sum">regular expression</a>.
2859      *
2860      * <p> The array returned by this method contains each substring of this
2861      * string that is terminated by another substring that matches the given
2862      * expression or is terminated by the end of the string.  The substrings in
2863      * the array are in the order in which they occur in this string.  If the
2864      * expression does not match any part of the input then the resulting array
2865      * has just one element, namely this string.
2866      *
2867      * <p> When there is a positive-width match at the beginning of this
2868      * string then an empty leading substring is included at the beginning
2869      * of the resulting array. A zero-width match at the beginning however
2870      * never produces such empty leading substring.
2871      *
2872      * <p> The {@code limit} parameter controls the number of times the
2873      * pattern is applied and therefore affects the length of the resulting
2874      * array.
2875      * <ul>
2876      *    <li><p>
2877      *    If the <i>limit</i> is positive then the pattern will be applied
2878      *    at most <i>limit</i>&nbsp;-&nbsp;1 times, the array's length will be
2879      *    no greater than <i>limit</i>, and the array's last entry will contain
2880      *    all input beyond the last matched delimiter.</p></li>
2881      *
2882      *    <li><p>
2883      *    If the <i>limit</i> is zero then the pattern will be applied as
2884      *    many times as possible, the array can have any length, and trailing
2885      *    empty strings will be discarded.</p></li>
2886      *
2887      *    <li><p>
2888      *    If the <i>limit</i> is negative then the pattern will be applied
2889      *    as many times as possible and the array can have any length.</p></li>
2890      * </ul>
2891      *
2892      * <p> The string {@code "boo:and:foo"}, for example, yields the
2893      * following results with these parameters:
2894      *
2895      * <blockquote><table class="plain">
2896      * <caption style="display:none">Split example showing regex, limit, and result</caption>
2897      * <thead>
2898      * <tr>
2899      *     <th scope="col">Regex</th>
2900      *     <th scope="col">Limit</th>
2901      *     <th scope="col">Result</th>
2902      * </tr>
2903      * </thead>
2904      * <tbody>
2905      * <tr><th scope="row" rowspan="3" style="font-weight:normal">:</th>
2906      *     <th scope="row" style="font-weight:normal; text-align:right; padding-right:1em">2</th>
2907      *     <td>{@code { "boo", "and:foo" }}</td></tr>
2908      * <tr><!-- : -->
2909      *     <th scope="row" style="font-weight:normal; text-align:right; padding-right:1em">5</th>
2910      *     <td>{@code { "boo", "and", "foo" }}</td></tr>
2911      * <tr><!-- : -->
2912      *     <th scope="row" style="font-weight:normal; text-align:right; padding-right:1em">-2</th>
2913      *     <td>{@code { "boo", "and", "foo" }}</td></tr>
2914      * <tr><th scope="row" rowspan="3" style="font-weight:normal">o</th>
2915      *     <th scope="row" style="font-weight:normal; text-align:right; padding-right:1em">5</th>
2916      *     <td>{@code { "b", "", ":and:f", "", "" }}</td></tr>
2917      * <tr><!-- o -->
2918      *     <th scope="row" style="font-weight:normal; text-align:right; padding-right:1em">-2</th>
2919      *     <td>{@code { "b", "", ":and:f", "", "" }}</td></tr>
2920      * <tr><!-- o -->
2921      *     <th scope="row" style="font-weight:normal; text-align:right; padding-right:1em">0</th>
2922      *     <td>{@code { "b", "", ":and:f" }}</td></tr>
2923      * </tbody>
2924      * </table></blockquote>
2925      *
2926      * <p> An invocation of this method of the form
2927      * <i>str.</i>{@code split(}<i>regex</i>{@code ,}&nbsp;<i>n</i>{@code )}
2928      * yields the same result as the expression
2929      *
2930      * <blockquote>
2931      * <code>
2932      * {@link java.util.regex.Pattern}.{@link
2933      * java.util.regex.Pattern#compile compile}(<i>regex</i>).{@link
2934      * java.util.regex.Pattern#split(java.lang.CharSequence,int) split}(<i>str</i>,&nbsp;<i>n</i>)
2935      * </code>
2936      * </blockquote>
2937      *
2938      *
2939      * @param  regex
2940      *         the delimiting regular expression
2941      *
2942      * @param  limit
2943      *         the result threshold, as described above
2944      *
2945      * @return  the array of strings computed by splitting this string
2946      *          around matches of the given regular expression
2947      *
2948      * @throws  PatternSyntaxException
2949      *          if the regular expression's syntax is invalid
2950      *
2951      * @see java.util.regex.Pattern
2952      *
2953      * @since 1.4
2954      * @spec JSR-51
2955      */
split(String regex, int limit)2956     public String[] split(String regex, int limit) {
2957         // BEGIN Android-changed: Replace custom fast-path with use of new Pattern.fastSplit method.
2958         // Try fast splitting without allocating Pattern object
2959         /*
2960         /* fastpath if the regex is a
2961          (1)one-char String and this character is not one of the
2962             RegEx's meta characters ".$|()[{^?*+\\", or
2963          (2)two-char String and the first char is the backslash and
2964             the second is not the ascii digit or ascii letter.
2965          *
2966         char ch = 0;
2967         if (((regex.length() == 1 &&
2968              ".$|()[{^?*+\\".indexOf(ch = regex.charAt(0)) == -1) ||
2969              (regex.length() == 2 &&
2970               regex.charAt(0) == '\\' &&
2971               (((ch = regex.charAt(1))-'0')|('9'-ch)) < 0 &&
2972               ((ch-'a')|('z'-ch)) < 0 &&
2973               ((ch-'A')|('Z'-ch)) < 0)) &&
2974             (ch < Character.MIN_HIGH_SURROGATE ||
2975              ch > Character.MAX_LOW_SURROGATE))
2976         {
2977             int off = 0;
2978             int next = 0;
2979             boolean limited = limit > 0;
2980             ArrayList<String> list = new ArrayList<>();
2981             while ((next = indexOf(ch, off)) != -1) {
2982                 if (!limited || list.size() < limit - 1) {
2983                     list.add(substring(off, next));
2984                     off = next + 1;
2985                 } else {    // last one
2986                     //assert (list.size() == limit - 1);
2987                     int last = length();
2988                     list.add(substring(off, last));
2989                     off = last;
2990                     break;
2991                 }
2992             }
2993             // If no match was found, return this
2994             if (off == 0)
2995                 return new String[]{this};
2996 
2997             // Add remaining segment
2998             if (!limited || list.size() < limit)
2999                 list.add(substring(off, length()));
3000 
3001             // Construct result
3002             int resultSize = list.size();
3003             if (limit == 0) {
3004                 while (resultSize > 0 && list.get(resultSize - 1).isEmpty()) {
3005                     resultSize--;
3006                 }
3007             }
3008             String[] result = new String[resultSize];
3009             return list.subList(0, resultSize).toArray(result);
3010         }
3011         */
3012         String[] fast = Pattern.fastSplit(regex, this, limit);
3013         if (fast != null) {
3014             return fast;
3015         }
3016         // END Android-changed: Replace custom fast-path with use of new Pattern.fastSplit method.
3017         return Pattern.compile(regex).split(this, limit);
3018     }
3019 
3020     /**
3021      * Splits this string around matches of the given <a
3022      * href="../util/regex/Pattern.html#sum">regular expression</a>.
3023      *
3024      * <p> This method works as if by invoking the two-argument {@link
3025      * #split(String, int) split} method with the given expression and a limit
3026      * argument of zero.  Trailing empty strings are therefore not included in
3027      * the resulting array.
3028      *
3029      * <p> The string {@code "boo:and:foo"}, for example, yields the following
3030      * results with these expressions:
3031      *
3032      * <blockquote><table class="plain">
3033      * <caption style="display:none">Split examples showing regex and result</caption>
3034      * <thead>
3035      * <tr>
3036      *  <th scope="col">Regex</th>
3037      *  <th scope="col">Result</th>
3038      * </tr>
3039      * </thead>
3040      * <tbody>
3041      * <tr><th scope="row" style="text-weight:normal">:</th>
3042      *     <td>{@code { "boo", "and", "foo" }}</td></tr>
3043      * <tr><th scope="row" style="text-weight:normal">o</th>
3044      *     <td>{@code { "b", "", ":and:f" }}</td></tr>
3045      * </tbody>
3046      * </table></blockquote>
3047      *
3048      *
3049      * @param  regex
3050      *         the delimiting regular expression
3051      *
3052      * @return  the array of strings computed by splitting this string
3053      *          around matches of the given regular expression
3054      *
3055      * @throws  PatternSyntaxException
3056      *          if the regular expression's syntax is invalid
3057      *
3058      * @see java.util.regex.Pattern
3059      *
3060      * @since 1.4
3061      * @spec JSR-51
3062      */
split(String regex)3063     public String[] split(String regex) {
3064         return split(regex, 0);
3065     }
3066 
3067     /**
3068      * Returns a new String composed of copies of the
3069      * {@code CharSequence elements} joined together with a copy of
3070      * the specified {@code delimiter}.
3071      *
3072      * <blockquote>For example,
3073      * <pre>{@code
3074      *     String message = String.join("-", "Java", "is", "cool");
3075      *     // message returned is: "Java-is-cool"
3076      * }</pre></blockquote>
3077      *
3078      * Note that if an element is null, then {@code "null"} is added.
3079      *
3080      * @param  delimiter the delimiter that separates each element
3081      * @param  elements the elements to join together.
3082      *
3083      * @return a new {@code String} that is composed of the {@code elements}
3084      *         separated by the {@code delimiter}
3085      *
3086      * @throws NullPointerException If {@code delimiter} or {@code elements}
3087      *         is {@code null}
3088      *
3089      * @see java.util.StringJoiner
3090      * @since 1.8
3091      */
join(CharSequence delimiter, CharSequence... elements)3092     public static String join(CharSequence delimiter, CharSequence... elements) {
3093         Objects.requireNonNull(delimiter);
3094         Objects.requireNonNull(elements);
3095         // Number of elements not likely worth Arrays.stream overhead.
3096         StringJoiner joiner = new StringJoiner(delimiter);
3097         for (CharSequence cs: elements) {
3098             joiner.add(cs);
3099         }
3100         return joiner.toString();
3101     }
3102 
3103     /**
3104      * Returns a new {@code String} composed of copies of the
3105      * {@code CharSequence elements} joined together with a copy of the
3106      * specified {@code delimiter}.
3107      *
3108      * <blockquote>For example,
3109      * <pre>{@code
3110      *     List<String> strings = List.of("Java", "is", "cool");
3111      *     String message = String.join(" ", strings);
3112      *     //message returned is: "Java is cool"
3113      *
3114      *     Set<String> strings =
3115      *         new LinkedHashSet<>(List.of("Java", "is", "very", "cool"));
3116      *     String message = String.join("-", strings);
3117      *     //message returned is: "Java-is-very-cool"
3118      * }</pre></blockquote>
3119      *
3120      * Note that if an individual element is {@code null}, then {@code "null"} is added.
3121      *
3122      * @param  delimiter a sequence of characters that is used to separate each
3123      *         of the {@code elements} in the resulting {@code String}
3124      * @param  elements an {@code Iterable} that will have its {@code elements}
3125      *         joined together.
3126      *
3127      * @return a new {@code String} that is composed from the {@code elements}
3128      *         argument
3129      *
3130      * @throws NullPointerException If {@code delimiter} or {@code elements}
3131      *         is {@code null}
3132      *
3133      * @see    #join(CharSequence,CharSequence...)
3134      * @see    java.util.StringJoiner
3135      * @since 1.8
3136      */
join(CharSequence delimiter, Iterable<? extends CharSequence> elements)3137     public static String join(CharSequence delimiter,
3138             Iterable<? extends CharSequence> elements) {
3139         Objects.requireNonNull(delimiter);
3140         Objects.requireNonNull(elements);
3141         StringJoiner joiner = new StringJoiner(delimiter);
3142         for (CharSequence cs: elements) {
3143             joiner.add(cs);
3144         }
3145         return joiner.toString();
3146     }
3147 
3148     /**
3149      * Converts all of the characters in this {@code String} to lower
3150      * case using the rules of the given {@code Locale}.  Case mapping is based
3151      * on the Unicode Standard version specified by the {@link java.lang.Character Character}
3152      * class. Since case mappings are not always 1:1 char mappings, the resulting
3153      * {@code String} may be a different length than the original {@code String}.
3154      * <p>
3155      * Examples of lowercase  mappings are in the following table:
3156      * <table class="plain">
3157      * <caption style="display:none">Lowercase mapping examples showing language code of locale, upper case, lower case, and description</caption>
3158      * <thead>
3159      * <tr>
3160      *   <th scope="col">Language Code of Locale</th>
3161      *   <th scope="col">Upper Case</th>
3162      *   <th scope="col">Lower Case</th>
3163      *   <th scope="col">Description</th>
3164      * </tr>
3165      * </thead>
3166      * <tbody>
3167      * <tr>
3168      *   <td>tr (Turkish)</td>
3169      *   <th scope="row" style="font-weight:normal; text-align:left">&#92;u0130</th>
3170      *   <td>&#92;u0069</td>
3171      *   <td>capital letter I with dot above -&gt; small letter i</td>
3172      * </tr>
3173      * <tr>
3174      *   <td>tr (Turkish)</td>
3175      *   <th scope="row" style="font-weight:normal; text-align:left">&#92;u0049</th>
3176      *   <td>&#92;u0131</td>
3177      *   <td>capital letter I -&gt; small letter dotless i </td>
3178      * </tr>
3179      * <tr>
3180      *   <td>(all)</td>
3181      *   <th scope="row" style="font-weight:normal; text-align:left">French Fries</th>
3182      *   <td>french fries</td>
3183      *   <td>lowercased all chars in String</td>
3184      * </tr>
3185      * <tr>
3186      *   <td>(all)</td>
3187      *   <th scope="row" style="font-weight:normal; text-align:left">
3188      *       &Iota;&Chi;&Theta;&Upsilon;&Sigma;</th>
3189      *   <td>&iota;&chi;&theta;&upsilon;&sigma;</td>
3190      *   <td>lowercased all chars in String</td>
3191      * </tr>
3192      * </tbody>
3193      * </table>
3194      *
3195      * @param locale use the case transformation rules for this locale
3196      * @return the {@code String}, converted to lowercase.
3197      * @see     java.lang.String#toLowerCase()
3198      * @see     java.lang.String#toUpperCase()
3199      * @see     java.lang.String#toUpperCase(Locale)
3200      * @since   1.1
3201      */
toLowerCase(Locale locale)3202     public String toLowerCase(Locale locale) {
3203         // BEGIN Android-changed: Replace custom code with call to new CaseMapper class.
3204         /*
3205         return isLatin1() ? StringLatin1.toLowerCase(this, value, locale)
3206                           : StringUTF16.toLowerCase(this, value, locale);
3207         */
3208         return CaseMapper.toLowerCase(locale, this);
3209         // END Android-changed: Replace custom code with call to new CaseMapper class.
3210     }
3211 
3212     /**
3213      * Converts all of the characters in this {@code String} to lower
3214      * case using the rules of the default locale. This is equivalent to calling
3215      * {@code toLowerCase(Locale.getDefault())}.
3216      * <p>
3217      * <b>Note:</b> This method is locale sensitive, and may produce unexpected
3218      * results if used for strings that are intended to be interpreted locale
3219      * independently.
3220      * Examples are programming language identifiers, protocol keys, and HTML
3221      * tags.
3222      * For instance, {@code "TITLE".toLowerCase()} in a Turkish locale
3223      * returns {@code "t\u005Cu0131tle"}, where '\u005Cu0131' is the
3224      * LATIN SMALL LETTER DOTLESS I character.
3225      * To obtain correct results for locale insensitive strings, use
3226      * {@code toLowerCase(Locale.ROOT)}.
3227      *
3228      * @return  the {@code String}, converted to lowercase.
3229      * @see     java.lang.String#toLowerCase(Locale)
3230      */
toLowerCase()3231     public String toLowerCase() {
3232         return toLowerCase(Locale.getDefault());
3233     }
3234 
3235     /**
3236      * Converts all of the characters in this {@code String} to upper
3237      * case using the rules of the given {@code Locale}. Case mapping is based
3238      * on the Unicode Standard version specified by the {@link java.lang.Character Character}
3239      * class. Since case mappings are not always 1:1 char mappings, the resulting
3240      * {@code String} may be a different length than the original {@code String}.
3241      * <p>
3242      * Examples of locale-sensitive and 1:M case mappings are in the following table.
3243      *
3244      * <table class="plain">
3245      * <caption style="display:none">Examples of locale-sensitive and 1:M case mappings. Shows Language code of locale, lower case, upper case, and description.</caption>
3246      * <thead>
3247      * <tr>
3248      *   <th scope="col">Language Code of Locale</th>
3249      *   <th scope="col">Lower Case</th>
3250      *   <th scope="col">Upper Case</th>
3251      *   <th scope="col">Description</th>
3252      * </tr>
3253      * </thead>
3254      * <tbody>
3255      * <tr>
3256      *   <td>tr (Turkish)</td>
3257      *   <th scope="row" style="font-weight:normal; text-align:left">&#92;u0069</th>
3258      *   <td>&#92;u0130</td>
3259      *   <td>small letter i -&gt; capital letter I with dot above</td>
3260      * </tr>
3261      * <tr>
3262      *   <td>tr (Turkish)</td>
3263      *   <th scope="row" style="font-weight:normal; text-align:left">&#92;u0131</th>
3264      *   <td>&#92;u0049</td>
3265      *   <td>small letter dotless i -&gt; capital letter I</td>
3266      * </tr>
3267      * <tr>
3268      *   <td>(all)</td>
3269      *   <th scope="row" style="font-weight:normal; text-align:left">&#92;u00df</th>
3270      *   <td>&#92;u0053 &#92;u0053</td>
3271      *   <td>small letter sharp s -&gt; two letters: SS</td>
3272      * </tr>
3273      * <tr>
3274      *   <td>(all)</td>
3275      *   <th scope="row" style="font-weight:normal; text-align:left">Fahrvergn&uuml;gen</th>
3276      *   <td>FAHRVERGN&Uuml;GEN</td>
3277      *   <td></td>
3278      * </tr>
3279      * </tbody>
3280      * </table>
3281      * @param locale use the case transformation rules for this locale
3282      * @return the {@code String}, converted to uppercase.
3283      * @see     java.lang.String#toUpperCase()
3284      * @see     java.lang.String#toLowerCase()
3285      * @see     java.lang.String#toLowerCase(Locale)
3286      * @since   1.1
3287      */
toUpperCase(Locale locale)3288     public String toUpperCase(Locale locale) {
3289         // BEGIN Android-changed: Replace custom code with call to new CaseMapper class.
3290         /*
3291         return isLatin1() ? StringLatin1.toUpperCase(this, value, locale)
3292                           : StringUTF16.toUpperCase(this, value, locale);
3293         */
3294         return CaseMapper.toUpperCase(locale, this, length());
3295         // END Android-changed: Replace custom code with call to new CaseMapper class.
3296     }
3297 
3298     /**
3299      * Converts all of the characters in this {@code String} to upper
3300      * case using the rules of the default locale. This method is equivalent to
3301      * {@code toUpperCase(Locale.getDefault())}.
3302      * <p>
3303      * <b>Note:</b> This method is locale sensitive, and may produce unexpected
3304      * results if used for strings that are intended to be interpreted locale
3305      * independently.
3306      * Examples are programming language identifiers, protocol keys, and HTML
3307      * tags.
3308      * For instance, {@code "title".toUpperCase()} in a Turkish locale
3309      * returns {@code "T\u005Cu0130TLE"}, where '\u005Cu0130' is the
3310      * LATIN CAPITAL LETTER I WITH DOT ABOVE character.
3311      * To obtain correct results for locale insensitive strings, use
3312      * {@code toUpperCase(Locale.ROOT)}.
3313      *
3314      * @return  the {@code String}, converted to uppercase.
3315      * @see     java.lang.String#toUpperCase(Locale)
3316      */
toUpperCase()3317     public String toUpperCase() {
3318         return toUpperCase(Locale.getDefault());
3319     }
3320 
3321     /**
3322      * Returns a string whose value is this string, with all leading
3323      * and trailing space removed, where space is defined
3324      * as any character whose codepoint is less than or equal to
3325      * {@code 'U+0020'} (the space character).
3326      * <p>
3327      * If this {@code String} object represents an empty character
3328      * sequence, or the first and last characters of character sequence
3329      * represented by this {@code String} object both have codes
3330      * that are not space (as defined above), then a
3331      * reference to this {@code String} object is returned.
3332      * <p>
3333      * Otherwise, if all characters in this string are space (as
3334      * defined above), then a  {@code String} object representing an
3335      * empty string is returned.
3336      * <p>
3337      * Otherwise, let <i>k</i> be the index of the first character in the
3338      * string whose code is not a space (as defined above) and let
3339      * <i>m</i> be the index of the last character in the string whose code
3340      * is not a space (as defined above). A {@code String}
3341      * object is returned, representing the substring of this string that
3342      * begins with the character at index <i>k</i> and ends with the
3343      * character at index <i>m</i>-that is, the result of
3344      * {@code this.substring(k, m + 1)}.
3345      * <p>
3346      * This method may be used to trim space (as defined above) from
3347      * the beginning and end of a string.
3348      *
3349      * @return  a string whose value is this string, with all leading
3350      *          and trailing space removed, or this string if it
3351      *          has no leading or trailing space.
3352      */
trim()3353     public String trim() {
3354         // BEGIN Android-changed: Implement in terms of charAt().
3355         /*
3356         String ret = isLatin1() ? StringLatin1.trim(value)
3357                                 : StringUTF16.trim(value);
3358         return ret == null ? this : ret;
3359          */
3360         int len = length();
3361         int st = 0;
3362 
3363         while ((st < len) && (charAt(st) <= ' ')) {
3364             st++;
3365         }
3366         while ((st < len) && (charAt(len - 1) <= ' ')) {
3367             len--;
3368         }
3369         return ((st > 0) || (len < length())) ? substring(st, len) : this;
3370         // END Android-changed: Implement in terms of charAt().
3371     }
3372 
3373     /**
3374      * Returns a string whose value is this string, with all leading
3375      * and trailing {@link Character#isWhitespace(int) white space}
3376      * removed.
3377      * <p>
3378      * If this {@code String} object represents an empty string,
3379      * or if all code points in this string are
3380      * {@link Character#isWhitespace(int) white space}, then an empty string
3381      * is returned.
3382      * <p>
3383      * Otherwise, returns a substring of this string beginning with the first
3384      * code point that is not a {@link Character#isWhitespace(int) white space}
3385      * up to and including the last code point that is not a
3386      * {@link Character#isWhitespace(int) white space}.
3387      * <p>
3388      * This method may be used to strip
3389      * {@link Character#isWhitespace(int) white space} from
3390      * the beginning and end of a string.
3391      *
3392      * @return  a string whose value is this string, with all leading
3393      *          and trailing white space removed
3394      *
3395      * @see Character#isWhitespace(int)
3396      *
3397      * @since 11
3398      */
strip()3399     public String strip() {
3400         // BEGIN Android-changed: Delegate to StringUTF16.
3401         /*
3402         String ret = isLatin1() ? StringLatin1.strip(value)
3403                                 : StringUTF16.strip(value);
3404          */
3405         String ret = StringUTF16.strip(this);
3406         // END Android-changed: Delegate to StringUTF16.
3407         return ret == null ? this : ret;
3408     }
3409 
3410     /**
3411      * Returns a string whose value is this string, with all leading
3412      * {@link Character#isWhitespace(int) white space} removed.
3413      * <p>
3414      * If this {@code String} object represents an empty string,
3415      * or if all code points in this string are
3416      * {@link Character#isWhitespace(int) white space}, then an empty string
3417      * is returned.
3418      * <p>
3419      * Otherwise, returns a substring of this string beginning with the first
3420      * code point that is not a {@link Character#isWhitespace(int) white space}
3421      * up to to and including the last code point of this string.
3422      * <p>
3423      * This method may be used to trim
3424      * {@link Character#isWhitespace(int) white space} from
3425      * the beginning of a string.
3426      *
3427      * @return  a string whose value is this string, with all leading white
3428      *          space removed
3429      *
3430      * @see Character#isWhitespace(int)
3431      *
3432      * @since 11
3433      */
stripLeading()3434     public String stripLeading() {
3435         // BEGIN Android-changed: Delegate to StringUTF16.
3436         /*
3437         String ret = isLatin1() ? StringLatin1.stripLeading(value)
3438                                 : StringUTF16.stripLeading(value);
3439          */
3440         String ret = StringUTF16.stripLeading(this);
3441         // END Android-changed: Delegate to StringUTF16.
3442         return ret == null ? this : ret;
3443     }
3444 
3445     /**
3446      * Returns a string whose value is this string, with all trailing
3447      * {@link Character#isWhitespace(int) white space} removed.
3448      * <p>
3449      * If this {@code String} object represents an empty string,
3450      * or if all characters in this string are
3451      * {@link Character#isWhitespace(int) white space}, then an empty string
3452      * is returned.
3453      * <p>
3454      * Otherwise, returns a substring of this string beginning with the first
3455      * code point of this string up to and including the last code point
3456      * that is not a {@link Character#isWhitespace(int) white space}.
3457      * <p>
3458      * This method may be used to trim
3459      * {@link Character#isWhitespace(int) white space} from
3460      * the end of a string.
3461      *
3462      * @return  a string whose value is this string, with all trailing white
3463      *          space removed
3464      *
3465      * @see Character#isWhitespace(int)
3466      *
3467      * @since 11
3468      */
stripTrailing()3469     public String stripTrailing() {
3470         // BEGIN Android-changed: Delegate to StringUTF16.
3471         /*
3472         String ret = isLatin1() ? StringLatin1.stripTrailing(value)
3473                                 : StringUTF16.stripTrailing(value);
3474          */
3475         String ret = StringUTF16.stripTrailing(this);
3476         // END Android-changed: Delegate to StringUTF16.
3477         return ret == null ? this : ret;
3478     }
3479 
3480     /**
3481      * Returns {@code true} if the string is empty or contains only
3482      * {@link Character#isWhitespace(int) white space} codepoints,
3483      * otherwise {@code false}.
3484      *
3485      * @return {@code true} if the string is empty or contains only
3486      *         {@link Character#isWhitespace(int) white space} codepoints,
3487      *         otherwise {@code false}
3488      *
3489      * @see Character#isWhitespace(int)
3490      *
3491      * @since 11
3492      */
isBlank()3493     public boolean isBlank() {
3494         return indexOfNonWhitespace() == length();
3495     }
3496 
3497     /**
3498      * Returns a stream of lines extracted from this string,
3499      * separated by line terminators.
3500      * <p>
3501      * A <i>line terminator</i> is one of the following:
3502      * a line feed character {@code "\n"} (U+000A),
3503      * a carriage return character {@code "\r"} (U+000D),
3504      * or a carriage return followed immediately by a line feed
3505      * {@code "\r\n"} (U+000D U+000A).
3506      * <p>
3507      * A <i>line</i> is either a sequence of zero or more characters
3508      * followed by a line terminator, or it is a sequence of one or
3509      * more characters followed by the end of the string. A
3510      * line does not include the line terminator.
3511      * <p>
3512      * The stream returned by this method contains the lines from
3513      * this string in the order in which they occur.
3514      *
3515      * @apiNote This definition of <i>line</i> implies that an empty
3516      *          string has zero lines and that there is no empty line
3517      *          following a line terminator at the end of a string.
3518      *
3519      * @implNote This method provides better performance than
3520      *           split("\R") by supplying elements lazily and
3521      *           by faster search of new line terminators.
3522      *
3523      * @return  the stream of lines extracted from this string
3524      *
3525      * @since 11
3526      */
lines()3527     public Stream<String> lines() {
3528         // BEGIN Android-removed: Delegate to StringUTF16.
3529         /*
3530         return isLatin1() ? StringLatin1.lines(value)
3531                           : StringUTF16.lines(value);
3532          */
3533         return StringUTF16.lines(this);
3534         // END Android-removed: Delegate to StringUTF16.
3535     }
3536 
3537     /**
3538      * Adjusts the indentation of each line of this string based on the value of
3539      * {@code n}, and normalizes line termination characters.
3540      * <p>
3541      * This string is conceptually separated into lines using
3542      * {@link String#lines()}. Each line is then adjusted as described below
3543      * and then suffixed with a line feed {@code "\n"} (U+000A). The resulting
3544      * lines are then concatenated and returned.
3545      * <p>
3546      * If {@code n > 0} then {@code n} spaces (U+0020) are inserted at the
3547      * beginning of each line.
3548      * <p>
3549      * If {@code n < 0} then up to {@code n}
3550      * {@linkplain Character#isWhitespace(int) white space characters} are removed
3551      * from the beginning of each line. If a given line does not contain
3552      * sufficient white space then all leading
3553      * {@linkplain Character#isWhitespace(int) white space characters} are removed.
3554      * Each white space character is treated as a single character. In
3555      * particular, the tab character {@code "\t"} (U+0009) is considered a
3556      * single character; it is not expanded.
3557      * <p>
3558      * If {@code n == 0} then the line remains unchanged. However, line
3559      * terminators are still normalized.
3560      *
3561      * @param n  number of leading
3562      *           {@linkplain Character#isWhitespace(int) white space characters}
3563      *           to add or remove
3564      *
3565      * @return string with indentation adjusted and line endings normalized
3566      *
3567      * @see String#lines()
3568      * @see String#isBlank()
3569      * @see Character#isWhitespace(int)
3570      *
3571      * @since 12
3572      */
indent(int n)3573     public String indent(int n) {
3574         if (isEmpty()) {
3575             return "";
3576         }
3577         Stream<String> stream = lines();
3578         if (n > 0) {
3579             final String spaces = " ".repeat(n);
3580             stream = stream.map(s -> spaces + s);
3581         } else if (n == Integer.MIN_VALUE) {
3582             stream = stream.map(s -> s.stripLeading());
3583         } else if (n < 0) {
3584             stream = stream.map(s -> s.substring(Math.min(-n, s.indexOfNonWhitespace())));
3585         }
3586         return stream.collect(Collectors.joining("\n", "", "\n"));
3587     }
3588 
indexOfNonWhitespace()3589     private int indexOfNonWhitespace() {
3590         // BEGIN Android-removed: Delegate to StringUTF16.
3591         /*
3592         return isLatin1() ? StringLatin1.indexOfNonWhitespace(value)
3593                           : StringUTF16.indexOfNonWhitespace(value);
3594          */
3595         return StringUTF16.indexOfNonWhitespace(this);
3596         // END Android-removed: Delegate to StringUTF16.
3597     }
3598 
lastIndexOfNonWhitespace()3599     private int lastIndexOfNonWhitespace() {
3600         // BEGIN Android-changed: Delegate to StringUTF16.
3601         /*
3602         return isLatin1() ? StringLatin1.lastIndexOfNonWhitespace(value)
3603                           : StringUTF16.lastIndexOfNonWhitespace(value);
3604         */
3605         return StringUTF16.lastIndexOfNonWhitespace(this);
3606         // END Android-changed: Delegate to StringUTF16.
3607     }
3608 
3609     /**
3610      * Returns a string whose value is this string, with incidental
3611      * {@linkplain Character#isWhitespace(int) white space} removed from
3612      * the beginning and end of every line.
3613      * <p>
3614      * Incidental {@linkplain Character#isWhitespace(int) white space}
3615      * is often present in a text block to align the content with the opening
3616      * delimiter. For example, in the following code, dots represent incidental
3617      * {@linkplain Character#isWhitespace(int) white space}:
3618      * <blockquote><pre>
3619      * String html = """
3620      * ..............&lt;html&gt;
3621      * ..............    &lt;body&gt;
3622      * ..............        &lt;p&gt;Hello, world&lt;/p&gt;
3623      * ..............    &lt;/body&gt;
3624      * ..............&lt;/html&gt;
3625      * ..............""";
3626      * </pre></blockquote>
3627      * This method treats the incidental
3628      * {@linkplain Character#isWhitespace(int) white space} as indentation to be
3629      * stripped, producing a string that preserves the relative indentation of
3630      * the content. Using | to visualize the start of each line of the string:
3631      * <blockquote><pre>
3632      * |&lt;html&gt;
3633      * |    &lt;body&gt;
3634      * |        &lt;p&gt;Hello, world&lt;/p&gt;
3635      * |    &lt;/body&gt;
3636      * |&lt;/html&gt;
3637      * </pre></blockquote>
3638      * First, the individual lines of this string are extracted. A <i>line</i>
3639      * is a sequence of zero or more characters followed by either a line
3640      * terminator or the end of the string.
3641      * If the string has at least one line terminator, the last line consists
3642      * of the characters between the last terminator and the end of the string.
3643      * Otherwise, if the string has no terminators, the last line is the start
3644      * of the string to the end of the string, in other words, the entire
3645      * string.
3646      * A line does not include the line terminator.
3647      * <p>
3648      * Then, the <i>minimum indentation</i> (min) is determined as follows:
3649      * <ul>
3650      *   <li><p>For each non-blank line (as defined by {@link String#isBlank()}),
3651      *   the leading {@linkplain Character#isWhitespace(int) white space}
3652      *   characters are counted.</p>
3653      *   </li>
3654      *   <li><p>The leading {@linkplain Character#isWhitespace(int) white space}
3655      *   characters on the last line are also counted even if
3656      *   {@linkplain String#isBlank() blank}.</p>
3657      *   </li>
3658      * </ul>
3659      * <p>The <i>min</i> value is the smallest of these counts.
3660      * <p>
3661      * For each {@linkplain String#isBlank() non-blank} line, <i>min</i> leading
3662      * {@linkplain Character#isWhitespace(int) white space} characters are
3663      * removed, and any trailing {@linkplain Character#isWhitespace(int) white
3664      * space} characters are removed. {@linkplain String#isBlank() Blank} lines
3665      * are replaced with the empty string.
3666      *
3667      * <p>
3668      * Finally, the lines are joined into a new string, using the LF character
3669      * {@code "\n"} (U+000A) to separate lines.
3670      *
3671      * @apiNote
3672      * This method's primary purpose is to shift a block of lines as far as
3673      * possible to the left, while preserving relative indentation. Lines
3674      * that were indented the least will thus have no leading
3675      * {@linkplain Character#isWhitespace(int) white space}.
3676      * The result will have the same number of line terminators as this string.
3677      * If this string ends with a line terminator then the result will end
3678      * with a line terminator.
3679      *
3680      * @implSpec
3681      * This method treats all {@linkplain Character#isWhitespace(int) white space}
3682      * characters as having equal width. As long as the indentation on every
3683      * line is consistently composed of the same character sequences, then the
3684      * result will be as described above.
3685      *
3686      * @return string with incidental indentation removed and line
3687      *         terminators normalized
3688      *
3689      * @see String#lines()
3690      * @see String#isBlank()
3691      * @see String#indent(int)
3692      * @see Character#isWhitespace(int)
3693      *
3694      * @since 15
3695      *
3696      */
stripIndent()3697     public String stripIndent() {
3698         int length = length();
3699         if (length == 0) {
3700             return "";
3701         }
3702         char lastChar = charAt(length - 1);
3703         boolean optOut = lastChar == '\n' || lastChar == '\r';
3704         List<String> lines = lines().toList();
3705         final int outdent = optOut ? 0 : outdent(lines);
3706         return lines.stream()
3707             .map(line -> {
3708                 int firstNonWhitespace = line.indexOfNonWhitespace();
3709                 int lastNonWhitespace = line.lastIndexOfNonWhitespace();
3710                 int incidentalWhitespace = Math.min(outdent, firstNonWhitespace);
3711                 return firstNonWhitespace > lastNonWhitespace
3712                     ? "" : line.substring(incidentalWhitespace, lastNonWhitespace);
3713             })
3714             .collect(Collectors.joining("\n", "", optOut ? "\n" : ""));
3715     }
3716 
outdent(List<String> lines)3717     private static int outdent(List<String> lines) {
3718         // Note: outdent is guaranteed to be zero or positive number.
3719         // If there isn't a non-blank line then the last must be blank
3720         int outdent = Integer.MAX_VALUE;
3721         for (String line : lines) {
3722             int leadingWhitespace = line.indexOfNonWhitespace();
3723             if (leadingWhitespace != line.length()) {
3724                 outdent = Integer.min(outdent, leadingWhitespace);
3725             }
3726         }
3727         String lastLine = lines.get(lines.size() - 1);
3728         if (lastLine.isBlank()) {
3729             outdent = Integer.min(outdent, lastLine.length());
3730         }
3731         return outdent;
3732     }
3733 
3734     /**
3735      * Returns a string whose value is this string, with escape sequences
3736      * translated as if in a string literal.
3737      * <p>
3738      * Escape sequences are translated as follows;
3739      * <table class="striped">
3740      *   <caption style="display:none">Translation</caption>
3741      *   <thead>
3742      *   <tr>
3743      *     <th scope="col">Escape</th>
3744      *     <th scope="col">Name</th>
3745      *     <th scope="col">Translation</th>
3746      *   </tr>
3747      *   </thead>
3748      *   <tbody>
3749      *   <tr>
3750      *     <th scope="row">{@code \u005Cb}</th>
3751      *     <td>backspace</td>
3752      *     <td>{@code U+0008}</td>
3753      *   </tr>
3754      *   <tr>
3755      *     <th scope="row">{@code \u005Ct}</th>
3756      *     <td>horizontal tab</td>
3757      *     <td>{@code U+0009}</td>
3758      *   </tr>
3759      *   <tr>
3760      *     <th scope="row">{@code \u005Cn}</th>
3761      *     <td>line feed</td>
3762      *     <td>{@code U+000A}</td>
3763      *   </tr>
3764      *   <tr>
3765      *     <th scope="row">{@code \u005Cf}</th>
3766      *     <td>form feed</td>
3767      *     <td>{@code U+000C}</td>
3768      *   </tr>
3769      *   <tr>
3770      *     <th scope="row">{@code \u005Cr}</th>
3771      *     <td>carriage return</td>
3772      *     <td>{@code U+000D}</td>
3773      *   </tr>
3774      *   <tr>
3775      *     <th scope="row">{@code \u005Cs}</th>
3776      *     <td>space</td>
3777      *     <td>{@code U+0020}</td>
3778      *   </tr>
3779      *   <tr>
3780      *     <th scope="row">{@code \u005C"}</th>
3781      *     <td>double quote</td>
3782      *     <td>{@code U+0022}</td>
3783      *   </tr>
3784      *   <tr>
3785      *     <th scope="row">{@code \u005C'}</th>
3786      *     <td>single quote</td>
3787      *     <td>{@code U+0027}</td>
3788      *   </tr>
3789      *   <tr>
3790      *     <th scope="row">{@code \u005C\u005C}</th>
3791      *     <td>backslash</td>
3792      *     <td>{@code U+005C}</td>
3793      *   </tr>
3794      *   <tr>
3795      *     <th scope="row">{@code \u005C0 - \u005C377}</th>
3796      *     <td>octal escape</td>
3797      *     <td>code point equivalents</td>
3798      *   </tr>
3799      *   <tr>
3800      *     <th scope="row">{@code \u005C<line-terminator>}</th>
3801      *     <td>continuation</td>
3802      *     <td>discard</td>
3803      *   </tr>
3804      *   </tbody>
3805      * </table>
3806      *
3807      * @implNote
3808      * This method does <em>not</em> translate Unicode escapes such as "{@code \u005cu2022}".
3809      * Unicode escapes are translated by the Java compiler when reading input characters and
3810      * are not part of the string literal specification.
3811      *
3812      * @throws IllegalArgumentException when an escape sequence is malformed.
3813      *
3814      * @return String with escape sequences translated.
3815      *
3816      * @jls 3.10.7 Escape Sequences
3817      *
3818      * @since 15
3819      */
translateEscapes()3820     public String translateEscapes() {
3821         if (isEmpty()) {
3822             return "";
3823         }
3824         char[] chars = toCharArray();
3825         int length = chars.length;
3826         int from = 0;
3827         int to = 0;
3828         while (from < length) {
3829             char ch = chars[from++];
3830             if (ch == '\\') {
3831                 ch = from < length ? chars[from++] : '\0';
3832                 switch (ch) {
3833                 case 'b':
3834                     ch = '\b';
3835                     break;
3836                 case 'f':
3837                     ch = '\f';
3838                     break;
3839                 case 'n':
3840                     ch = '\n';
3841                     break;
3842                 case 'r':
3843                     ch = '\r';
3844                     break;
3845                 case 's':
3846                     ch = ' ';
3847                     break;
3848                 case 't':
3849                     ch = '\t';
3850                     break;
3851                 case '\'':
3852                 case '\"':
3853                 case '\\':
3854                     // as is
3855                     break;
3856                 case '0': case '1': case '2': case '3':
3857                 case '4': case '5': case '6': case '7':
3858                     int limit = Integer.min(from + (ch <= '3' ? 2 : 1), length);
3859                     int code = ch - '0';
3860                     while (from < limit) {
3861                         ch = chars[from];
3862                         if (ch < '0' || '7' < ch) {
3863                             break;
3864                         }
3865                         from++;
3866                         code = (code << 3) | (ch - '0');
3867                     }
3868                     ch = (char)code;
3869                     break;
3870                 case '\n':
3871                     continue;
3872                 case '\r':
3873                     if (from < length && chars[from] == '\n') {
3874                         from++;
3875                     }
3876                     continue;
3877                 default: {
3878                     String msg = String.format(
3879                         "Invalid escape sequence: \\%c \\\\u%04X",
3880                         ch, (int)ch);
3881                     throw new IllegalArgumentException(msg);
3882                 }
3883                 }
3884             }
3885 
3886             chars[to++] = ch;
3887         }
3888 
3889         return new String(chars, 0, to);
3890     }
3891 
3892     /**
3893      * This method allows the application of a function to {@code this}
3894      * string. The function should expect a single String argument
3895      * and produce an {@code R} result.
3896      * <p>
3897      * Any exception thrown by {@code f.apply()} will be propagated to the
3898      * caller.
3899      *
3900      * @param f    a function to apply
3901      *
3902      * @param <R>  the type of the result
3903      *
3904      * @return     the result of applying the function to this string
3905      *
3906      * @see java.util.function.Function
3907      *
3908      * @since 12
3909      */
3910     public <R> R transform(Function<? super String, ? extends R> f) {
3911         return f.apply(this);
3912     }
3913 
3914     /**
3915      * This object (which is already a string!) is itself returned.
3916      *
3917      * @return  the string itself.
3918      */
3919     public String toString() {
3920         return this;
3921     }
3922 
3923     /**
3924      * Returns a stream of {@code int} zero-extending the {@code char} values
3925      * from this sequence.  Any char which maps to a <a
3926      * href="{@docRoot}/java.base/java/lang/Character.html#unicode">surrogate code
3927      * point</a> is passed through uninterpreted.
3928      *
3929      * @return an IntStream of char values from this sequence
3930      * @since 9
3931      */
3932     @Override
3933     public IntStream chars() {
3934         return StreamSupport.intStream(
3935             // BEGIN Android-removed: Delegate to StringUTF16.
3936             /*
3937             isLatin1() ? new StringLatin1.CharsSpliterator(value, Spliterator.IMMUTABLE)
3938                        : new StringUTF16.CharsSpliterator(value, Spliterator.IMMUTABLE),
3939              */
3940             new StringUTF16.CharsSpliteratorForString(this, Spliterator.IMMUTABLE),
3941             // END Android-removed: Delegate to StringUTF16.
3942             false);
3943     }
3944 
3945 
3946     /**
3947      * Returns a stream of code point values from this sequence.  Any surrogate
3948      * pairs encountered in the sequence are combined as if by {@linkplain
3949      * Character#toCodePoint Character.toCodePoint} and the result is passed
3950      * to the stream. Any other code units, including ordinary BMP characters,
3951      * unpaired surrogates, and undefined code units, are zero-extended to
3952      * {@code int} values which are then passed to the stream.
3953      *
3954      * @return an IntStream of Unicode code points from this sequence
3955      * @since 9
3956      */
3957     @Override
3958     public IntStream codePoints() {
3959         return StreamSupport.intStream(
3960             // BEGIN Android-removed: Delegate to StringUTF16.
3961             /*
3962             isLatin1() ? new StringLatin1.CharsSpliterator(value, Spliterator.IMMUTABLE)
3963                        : new StringUTF16.CodePointsSpliterator(value, Spliterator.IMMUTABLE),
3964              */
3965             new StringUTF16.CodePointsSpliteratorForString(this, Spliterator.IMMUTABLE),
3966             // END Android-removed: Delegate to StringUTF16.
3967             false);
3968     }
3969 
3970     /**
3971      * Converts this string to a new character array.
3972      *
3973      * @return  a newly allocated character array whose length is the length
3974      *          of this string and whose contents are initialized to contain
3975      *          the character sequence represented by this string.
3976      */
3977     // BEGIN Android-changed: Replace with implementation in runtime to access chars (see above).
3978     /*
3979     public char[] toCharArray() {
3980         return isLatin1() ? StringLatin1.toChars(value)
3981                           : StringUTF16.toChars(value);
3982     }
3983     */
3984     @FastNative
3985     public native char[] toCharArray();
3986     // END Android-changed: Replace with implementation in runtime to access chars (see above).
3987 
3988 
3989     /**
3990      * Returns a formatted string using the specified format string and
3991      * arguments.
3992      *
3993      * <p> The locale always used is the one returned by {@link
3994      * java.util.Locale#getDefault(java.util.Locale.Category)
3995      * Locale.getDefault(Locale.Category)} with
3996      * {@link java.util.Locale.Category#FORMAT FORMAT} category specified.
3997      *
3998      * @param  format
3999      *         A <a href="../util/Formatter.html#syntax">format string</a>
4000      *
4001      * @param  args
4002      *         Arguments referenced by the format specifiers in the format
4003      *         string.  If there are more arguments than format specifiers, the
4004      *         extra arguments are ignored.  The number of arguments is
4005      *         variable and may be zero.  The maximum number of arguments is
4006      *         limited by the maximum dimension of a Java array as defined by
4007      *         <cite>The Java&trade; Virtual Machine Specification</cite>.
4008      *         The behaviour on a
4009      *         {@code null} argument depends on the <a
4010      *         href="../util/Formatter.html#syntax">conversion</a>.
4011      *
4012      * @throws  java.util.IllegalFormatException
4013      *          If a format string contains an illegal syntax, a format
4014      *          specifier that is incompatible with the given arguments,
4015      *          insufficient arguments given the format string, or other
4016      *          illegal conditions.  For specification of all possible
4017      *          formatting errors, see the <a
4018      *          href="../util/Formatter.html#detail">Details</a> section of the
4019      *          formatter class specification.
4020      *
4021      * @return  A formatted string
4022      *
4023      * @see  java.util.Formatter
4024      * @since  1.5
4025      */
4026     public static String format(String format, Object... args) {
4027         return new Formatter().format(format, args).toString();
4028     }
4029 
4030     /**
4031      * Returns a formatted string using the specified locale, format string,
4032      * and arguments.
4033      *
4034      * @param  l
4035      *         The {@linkplain java.util.Locale locale} to apply during
4036      *         formatting.  If {@code l} is {@code null} then no localization
4037      *         is applied.
4038      *
4039      * @param  format
4040      *         A <a href="../util/Formatter.html#syntax">format string</a>
4041      *
4042      * @param  args
4043      *         Arguments referenced by the format specifiers in the format
4044      *         string.  If there are more arguments than format specifiers, the
4045      *         extra arguments are ignored.  The number of arguments is
4046      *         variable and may be zero.  The maximum number of arguments is
4047      *         limited by the maximum dimension of a Java array as defined by
4048      *         <cite>The Java&trade; Virtual Machine Specification</cite>.
4049      *         The behaviour on a
4050      *         {@code null} argument depends on the
4051      *         <a href="../util/Formatter.html#syntax">conversion</a>.
4052      *
4053      * @throws  java.util.IllegalFormatException
4054      *          If a format string contains an illegal syntax, a format
4055      *          specifier that is incompatible with the given arguments,
4056      *          insufficient arguments given the format string, or other
4057      *          illegal conditions.  For specification of all possible
4058      *          formatting errors, see the <a
4059      *          href="../util/Formatter.html#detail">Details</a> section of the
4060      *          formatter class specification
4061      *
4062      * @return  A formatted string
4063      *
4064      * @see  java.util.Formatter
4065      * @since  1.5
4066      */
4067     public static String format(Locale l, String format, Object... args) {
4068         return new Formatter(l).format(format, args).toString();
4069     }
4070 
4071     /**
4072      * Formats using this string as the format string, and the supplied
4073      * arguments.
4074      *
4075      * @implSpec This method is equivalent to {@code String.format(this, args)}.
4076      *
4077      * @param  args
4078      *         Arguments referenced by the format specifiers in this string.
4079      *
4080      * @return  A formatted string
4081      *
4082      * @see  java.lang.String#format(String,Object...)
4083      * @see  java.util.Formatter
4084      *
4085      * @since 15
4086      *
4087      */
4088     public String formatted(Object... args) {
4089         return new Formatter().format(this, args).toString();
4090     }
4091 
4092     /**
4093      * Returns the string representation of the {@code Object} argument.
4094      *
4095      * @param   obj   an {@code Object}.
4096      * @return  if the argument is {@code null}, then a string equal to
4097      *          {@code "null"}; otherwise, the value of
4098      *          {@code obj.toString()} is returned.
4099      * @see     java.lang.Object#toString()
4100      */
4101     public static String valueOf(Object obj) {
4102         return (obj == null) ? "null" : obj.toString();
4103     }
4104 
4105     /**
4106      * Returns the string representation of the {@code char} array
4107      * argument. The contents of the character array are copied; subsequent
4108      * modification of the character array does not affect the returned
4109      * string.
4110      *
4111      * @param   data     the character array.
4112      * @return  a {@code String} that contains the characters of the
4113      *          character array.
4114      */
4115     public static String valueOf(char data[]) {
4116         return new String(data);
4117     }
4118 
4119     /**
4120      * Returns the string representation of a specific subarray of the
4121      * {@code char} array argument.
4122      * <p>
4123      * The {@code offset} argument is the index of the first
4124      * character of the subarray. The {@code count} argument
4125      * specifies the length of the subarray. The contents of the subarray
4126      * are copied; subsequent modification of the character array does not
4127      * affect the returned string.
4128      *
4129      * @param   data     the character array.
4130      * @param   offset   initial offset of the subarray.
4131      * @param   count    length of the subarray.
4132      * @return  a {@code String} that contains the characters of the
4133      *          specified subarray of the character array.
4134      * @exception IndexOutOfBoundsException if {@code offset} is
4135      *          negative, or {@code count} is negative, or
4136      *          {@code offset+count} is larger than
4137      *          {@code data.length}.
4138      */
4139     public static String valueOf(char data[], int offset, int count) {
4140         return new String(data, offset, count);
4141     }
4142 
4143     /**
4144      * Equivalent to {@link #valueOf(char[], int, int)}.
4145      *
4146      * @param   data     the character array.
4147      * @param   offset   initial offset of the subarray.
4148      * @param   count    length of the subarray.
4149      * @return  a {@code String} that contains the characters of the
4150      *          specified subarray of the character array.
4151      * @exception IndexOutOfBoundsException if {@code offset} is
4152      *          negative, or {@code count} is negative, or
4153      *          {@code offset+count} is larger than
4154      *          {@code data.length}.
4155      */
4156     public static String copyValueOf(char data[], int offset, int count) {
4157         return new String(data, offset, count);
4158     }
4159 
4160     /**
4161      * Equivalent to {@link #valueOf(char[])}.
4162      *
4163      * @param   data   the character array.
4164      * @return  a {@code String} that contains the characters of the
4165      *          character array.
4166      */
4167     public static String copyValueOf(char data[]) {
4168         return new String(data);
4169     }
4170 
4171     /**
4172      * Returns the string representation of the {@code boolean} argument.
4173      *
4174      * @param   b   a {@code boolean}.
4175      * @return  if the argument is {@code true}, a string equal to
4176      *          {@code "true"} is returned; otherwise, a string equal to
4177      *          {@code "false"} is returned.
4178      */
4179     public static String valueOf(boolean b) {
4180         return b ? "true" : "false";
4181     }
4182 
4183     /**
4184      * Returns the string representation of the {@code char}
4185      * argument.
4186      *
4187      * @param   c   a {@code char}.
4188      * @return  a string of length {@code 1} containing
4189      *          as its single character the argument {@code c}.
4190      */
4191     public static String valueOf(char c) {
4192         // BEGIN Android-changed: Replace constructor call with call to StringFactory class.
4193         // There is currently no String(char[], boolean) on Android to call. http://b/79902155
4194         /*
4195         if (COMPACT_STRINGS && StringLatin1.canEncode(c)) {
4196             return new String(StringLatin1.toBytes(c), LATIN1);
4197         }
4198         return new String(StringUTF16.toBytes(c), UTF16);
4199          */
4200         return StringFactory.newStringFromChars(0, 1, new char[] { c });
4201         // END Android-changed: Replace constructor call with call to StringFactory class.
4202     }
4203 
4204     /**
4205      * Returns the string representation of the {@code int} argument.
4206      * <p>
4207      * The representation is exactly the one returned by the
4208      * {@code Integer.toString} method of one argument.
4209      *
4210      * @param   i   an {@code int}.
4211      * @return  a string representation of the {@code int} argument.
4212      * @see     java.lang.Integer#toString(int, int)
4213      */
4214     public static String valueOf(int i) {
4215         return Integer.toString(i);
4216     }
4217 
4218     /**
4219      * Returns the string representation of the {@code long} argument.
4220      * <p>
4221      * The representation is exactly the one returned by the
4222      * {@code Long.toString} method of one argument.
4223      *
4224      * @param   l   a {@code long}.
4225      * @return  a string representation of the {@code long} argument.
4226      * @see     java.lang.Long#toString(long)
4227      */
4228     public static String valueOf(long l) {
4229         return Long.toString(l);
4230     }
4231 
4232     /**
4233      * Returns the string representation of the {@code float} argument.
4234      * <p>
4235      * The representation is exactly the one returned by the
4236      * {@code Float.toString} method of one argument.
4237      *
4238      * @param   f   a {@code float}.
4239      * @return  a string representation of the {@code float} argument.
4240      * @see     java.lang.Float#toString(float)
4241      */
4242     public static String valueOf(float f) {
4243         return Float.toString(f);
4244     }
4245 
4246     /**
4247      * Returns the string representation of the {@code double} argument.
4248      * <p>
4249      * The representation is exactly the one returned by the
4250      * {@code Double.toString} method of one argument.
4251      *
4252      * @param   d   a {@code double}.
4253      * @return  a  string representation of the {@code double} argument.
4254      * @see     java.lang.Double#toString(double)
4255      */
4256     public static String valueOf(double d) {
4257         return Double.toString(d);
4258     }
4259 
4260     /**
4261      * Returns a canonical representation for the string object.
4262      * <p>
4263      * A pool of strings, initially empty, is maintained privately by the
4264      * class {@code String}.
4265      * <p>
4266      * When the intern method is invoked, if the pool already contains a
4267      * string equal to this {@code String} object as determined by
4268      * the {@link #equals(Object)} method, then the string from the pool is
4269      * returned. Otherwise, this {@code String} object is added to the
4270      * pool and a reference to this {@code String} object is returned.
4271      * <p>
4272      * It follows that for any two strings {@code s} and {@code t},
4273      * {@code s.intern() == t.intern()} is {@code true}
4274      * if and only if {@code s.equals(t)} is {@code true}.
4275      * <p>
4276      * All literal strings and string-valued constant expressions are
4277      * interned. String literals are defined in section 3.10.5 of the
4278      * <cite>The Java&trade; Language Specification</cite>.
4279      *
4280      * @return  a string that has the same contents as this string, but is
4281      *          guaranteed to be from a pool of unique strings.
4282      * @jls 3.10.5 String Literals
4283      */
4284     // Android-added: Annotate native method as @FastNative.
4285     @FastNative
4286     public native String intern();
4287 
4288     /**
4289      * Returns a string whose value is the concatenation of this
4290      * string repeated {@code count} times.
4291      * <p>
4292      * If this string is empty or count is zero then the empty
4293      * string is returned.
4294      *
4295      * @param   count number of times to repeat
4296      *
4297      * @return  A string composed of this string repeated
4298      *          {@code count} times or the empty string if this
4299      *          string is empty or count is zero
4300      *
4301      * @throws  IllegalArgumentException if the {@code count} is
4302      *          negative.
4303      *
4304      * @since 11
4305      */
4306     public String repeat(int count) {
4307         if (count < 0) {
4308             throw new IllegalArgumentException("count is negative: " + count);
4309         }
4310         if (count == 1) {
4311             return this;
4312         }
4313         // Android-changed: Replace with implementation in runtime.
4314         // final int len = value.length;
4315         final int len = length();
4316         if (len == 0 || count == 0) {
4317             return "";
4318         }
4319         // BEGIN Android-changed: Replace with implementation in runtime.
4320         /*
4321         if (len == 1) {
4322             final byte[] single = new byte[count];
4323             Arrays.fill(single, value[0]);
4324             return new String(single, coder);
4325         }
4326         */
4327         // END Android-changed: Replace with implementation in runtime.
4328         if (Integer.MAX_VALUE / count < len) {
4329             throw new OutOfMemoryError("Repeating " + len + " bytes String " + count +
4330                     " times will produce a String exceeding maximum size.");
4331         }
4332         // BEGIN Android-changed: Replace with implementation in runtime.
4333         /*
4334         final int limit = len * count;
4335         final byte[] multiple = new byte[limit];
4336         System.arraycopy(value, 0, multiple, 0, len);
4337         int copied = len;
4338         for (; copied < limit - copied; copied <<= 1) {
4339             System.arraycopy(multiple, 0, multiple, copied, copied);
4340         }
4341         System.arraycopy(multiple, 0, multiple, copied, limit - copied);
4342         return new String(multiple, coder);
4343          */
4344         // END Android-changed: Replace with implementation in runtime.
4345         return doRepeat(count);
4346     }
4347 
4348     @FastNative
4349     private native String doRepeat(int count);
4350 
4351     ////////////////////////////////////////////////////////////////
4352 
4353     /**
4354      * Copy character bytes from this string into dst starting at dstBegin.
4355      * This method doesn't perform any range checking.
4356      *
4357      * Invoker guarantees: dst is in UTF16 (inflate itself for asb), if two
4358      * coders are different, and dst is big enough (range check)
4359      *
4360      * @param dstBegin  the char index, not offset of byte[]
4361      * @param coder     the coder of dst[]
4362      */
4363     void getBytes(byte dst[], int dstBegin, byte coder) {
4364         // Android-changed: libcore doesn't store String as Latin1 or UTF16 byte[] field.
4365         /*
4366         if (coder() == coder) {
4367             System.arraycopy(value, 0, dst, dstBegin << coder, value.length);
4368         } else {    // this.coder == LATIN && coder == UTF16
4369             StringLatin1.inflate(value, 0, dst, dstBegin, value.length);
4370         }
4371         */
4372         // We do bound check here before the native calls, because the upstream implementation does
4373         // the bound check in System.arraycopy and StringLatin1.inflate or throws an exception.
4374         if (coder == UTF16) {
4375             int fromIndex = dstBegin << 1;
4376             checkBoundsOffCount(fromIndex, length() << 1, dst.length);
4377             fillBytesUTF16(dst, fromIndex);
4378         } else {
4379             if (coder() != LATIN1) {
4380                 // Do not concat String in the error message.
4381                 throw new StringIndexOutOfBoundsException("Expect Latin-1 coder.");
4382             }
4383             checkBoundsOffCount(dstBegin, length(), dst.length);
4384             fillBytesLatin1(dst, dstBegin);
4385         }
4386     }
4387 
4388     // BEGIN Android-added: Implement fillBytes*() method natively.
4389 
4390     /**
4391      * Fill the underlying characters into the byte buffer. No range check.
4392      * The caller should guarantee that dst is big enough for this operation.
4393      */
4394     @FastNative
4395     private native void fillBytesLatin1(byte[] dst, int byteIndex);
4396 
4397     /**
4398      * Fill the underlying characters into the byte buffer. No range check.
4399      * The caller should guarantee that dst is big enough for this operation.
4400      */
4401     @FastNative
4402     private native void fillBytesUTF16(byte[] dst, int byteIndex);
4403     // END Android-added: Implement fillBytes*() method natively.
4404 
4405     /*
4406      * Package private constructor which shares value array for speed.
4407      */
4408     String(byte[] value, byte coder) {
4409         // BEGIN Android-changed: Implemented as compiler and runtime intrinsics.
4410         // this.value = value;
4411         // this.coder = coder;
4412         throw new UnsupportedOperationException("Use StringFactory instead.");
4413         // END Android-changed: Implemented as compiler and runtime intrinsics.
4414     }
4415 
4416     /**
4417      * Android note: It returns UTF16 if the string has any 0x00 char.
4418      * See the difference between {@link StringLatin1#canEncode(int)} and
4419      * art::mirror::String::IsASCII(uint16_t) in string.h.
4420      */
4421     byte coder() {
4422         // Android-changed: ART stores the flag in the count field.
4423         // return COMPACT_STRINGS ? coder : UTF16;
4424         // We assume that STRING_COMPRESSION_ENABLED is enabled here.
4425         // The flag has been true for 6+ years.
4426         return COMPACT_STRINGS ? ((byte) (count & 1)) : UTF16;
4427     }
4428 
4429     /*
4430      * StringIndexOutOfBoundsException  if {@code index} is
4431      * negative or greater than or equal to {@code length}.
4432      */
4433     static void checkIndex(int index, int length) {
4434         if (index < 0 || index >= length) {
4435             throw new StringIndexOutOfBoundsException("index " + index +
4436                                                       ",length " + length);
4437         }
4438     }
4439 
4440     /*
4441      * StringIndexOutOfBoundsException  if {@code offset}
4442      * is negative or greater than {@code length}.
4443      */
4444     static void checkOffset(int offset, int length) {
4445         if (offset < 0 || offset > length) {
4446             throw new StringIndexOutOfBoundsException("offset " + offset +
4447                 ",length " + length);
4448         }
4449     }
4450 
4451     /*
4452      * Check {@code offset}, {@code count} against {@code 0} and {@code length}
4453      * bounds.
4454      *
4455      * @throws  StringIndexOutOfBoundsException
4456      *          If {@code offset} is negative, {@code count} is negative,
4457      *          or {@code offset} is greater than {@code length - count}
4458      */
4459     static void checkBoundsOffCount(int offset, int count, int length) {
4460         if (offset < 0 || count < 0 || offset > length - count) {
4461             throw new StringIndexOutOfBoundsException(
4462                 "offset " + offset + ", count " + count + ", length " + length);
4463         }
4464     }
4465 
4466     /**
4467      * Returns the string representation of the {@code codePoint}
4468      * argument.
4469      *
4470      * @param   codePoint a {@code codePoint}.
4471      * @return  a string of length {@code 1} or {@code 2} containing
4472      *          as its single character the argument {@code codePoint}.
4473      * @throws IllegalArgumentException if the specified
4474      *          {@code codePoint} is not a {@linkplain Character#isValidCodePoint
4475      *          valid Unicode code point}.
4476      */
4477     static String valueOfCodePoint(int codePoint) {
4478         if (COMPACT_STRINGS && StringLatin1.canEncode(codePoint)) {
4479             return new String(StringLatin1.toBytes((char)codePoint), LATIN1);
4480         } else if (Character.isBmpCodePoint(codePoint)) {
4481             return new String(StringUTF16.toBytes((char)codePoint), UTF16);
4482         } else if (Character.isSupplementaryCodePoint(codePoint)) {
4483             return new String(StringUTF16.toBytesSupplementary(codePoint), UTF16);
4484         }
4485 
4486         throw new IllegalArgumentException(
4487                 format("Not a valid Unicode code point: 0x%X", codePoint));
4488     }
4489 
4490     /*
4491      * Check {@code begin}, {@code end} against {@code 0} and {@code length}
4492      * bounds.
4493      *
4494      * @throws  StringIndexOutOfBoundsException
4495      *          If {@code begin} is negative, {@code begin} is greater than
4496      *          {@code end}, or {@code end} is greater than {@code length}.
4497      */
4498     static void checkBoundsBeginEnd(int begin, int end, int length) {
4499         if (begin < 0 || begin > end || end > length) {
4500             throw new StringIndexOutOfBoundsException(
4501                 "begin " + begin + ", end " + end + ", length " + length);
4502         }
4503     }
4504 
4505     /**
4506      * Returns an {@link Optional} containing the nominal descriptor for this
4507      * instance, which is the instance itself.
4508      *
4509      * @return an {@link Optional} describing the {@linkplain String} instance
4510      * @since 12
4511      * @hide
4512      */
4513     @Override
4514     public Optional<String> describeConstable() {
4515         return Optional.of(this);
4516     }
4517 
4518     /**
4519      * Resolves this instance as a {@link ConstantDesc}, the result of which is
4520      * the instance itself.
4521      *
4522      * @param lookup ignored
4523      * @return the {@linkplain String} instance
4524      * @since 12
4525      * @hide
4526      */
4527     @Override
4528     public String resolveConstantDesc(MethodHandles.Lookup lookup) {
4529         return this;
4530     }
4531 }
4532