Home
last modified time | relevance | path

Searched refs:batches (Results 1 – 25 of 35) sorted by relevance

12

/packages/modules/NeuralNetworks/runtime/test/specs/V1_0/
Dsvdf.mod.py17 batches = 2 variable
26 input = Input("input", "TENSOR_FLOAT32", "{%d, %d}" % (batches, input_size))
30 state_in = Input("state_in", "TENSOR_FLOAT32", "{%d, %d}" % (batches, memory_size*features))
33 state_out = IgnoredOutput("state_out", "TENSOR_FLOAT32", "{%d, %d}" % (batches, memory_size*feature…
34 output = Output("output", "TENSOR_FLOAT32", "{%d, %d}" % (batches, units))
60 state_in: [0 for _ in range(batches * memory_size * features)],
127 output0 = {state_out: [0 for _ in range(batches * memory_size * features)],
132 batch_start = i * input_size * batches
133 batch_end = batch_start + input_size * batches
135 golden_start = i * units * batches
[all …]
Dsvdf_bias_present.mod.py17 batches = 2 variable
26 input = Input("input", "TENSOR_FLOAT32", "{%d, %d}" % (batches, input_size))
30 state_in = Input("state_in", "TENSOR_FLOAT32", "{%d, %d}" % (batches, memory_size*features))
33 state_out = IgnoredOutput("state_out", "TENSOR_FLOAT32", "{%d, %d}" % (batches, memory_size*feature…
34 output = Output("output", "TENSOR_FLOAT32", "{%d, %d}" % (batches, units))
60 state_in: [0 for _ in range(batches * memory_size * features)],
127 output0 = {state_out: [0 for _ in range(batches * memory_size * features)],
132 batch_start = i * input_size * batches
133 batch_end = batch_start + input_size * batches
135 golden_start = i * units * batches
[all …]
Dsvdf2.mod.py17 batches = 2 variable
26 input = Input("input", "TENSOR_FLOAT32", "{%d, %d}" % (batches, input_size))
30 state_in = Input("state_in", "TENSOR_FLOAT32", "{%d, %d}" % (batches, memory_size*features))
33 state_out = IgnoredOutput("state_out", "TENSOR_FLOAT32", "{%d, %d}" % (batches, memory_size*feature…
34 output = Output("output", "TENSOR_FLOAT32", "{%d, %d}" % (batches, units))
75 state_in: [0 for _ in range(batches * memory_size * features)],
142 output0 = {state_out: [0 for _ in range(batches * memory_size * features)],
147 batch_start = i * input_size * batches
148 batch_end = batch_start + input_size * batches
150 golden_start = i * units * batches
[all …]
Drnn.mod.py17 batches = 2 variable
23 input = Input("input", "TENSOR_FLOAT32", "{%d, %d}" % (batches, input_size))
27 hidden_state_in = Input("hidden_state_in", "TENSOR_FLOAT32", "{%d, %d}" % (batches, units))
31 hidden_state_out = IgnoredOutput("hidden_state_out", "TENSOR_FLOAT32", "{%d, %d}" % (batches, units…
32 output = Output("output", "TENSOR_FLOAT32", "{%d, %d}" % (batches, units))
184 input_sequence_size = int(len(test_inputs) / input_size / batches)
193 input0[hidden_state_in] = [0 for x in range(batches * units)]
195 hidden_state_out: [0 for x in range(batches * units)],
Drnn_state.mod.py17 batches = 2 variable
23 input = Input("input", "TENSOR_FLOAT32", "{%d, %d}" % (batches, input_size))
27 hidden_state_in = Input("hidden_state_in", "TENSOR_FLOAT32", "{%d, %d}" % (batches, units))
31 hidden_state_out = IgnoredOutput("hidden_state_out", "TENSOR_FLOAT32", "{%d, %d}" % (batches, units…
32 output = Output("output", "TENSOR_FLOAT32", "{%d, %d}" % (batches, units))
Dsvdf_state.mod.py17 batches = 2 variable
24 input = Input("input", "TENSOR_FLOAT32", "{%d, %d}" % (batches, input_size))
28 state_in = Input("state_in", "TENSOR_FLOAT32", "{%d, %d}" % (batches, memory_size*units))
31 state_out = Output("state_out", "TENSOR_FLOAT32", "{%d, %d}" % (batches, memory_size*units))
32 output = Output("output", "TENSOR_FLOAT32", "{%d, %d}" % (batches, units))
/packages/modules/NeuralNetworks/runtime/test/specs/V1_2/
Dsvdf_bias_present_float16.mod.py17 batches = 2 variable
26 input = Input("input", "TENSOR_FLOAT16", "{%d, %d}" % (batches, input_size))
30 state_in = Input("state_in", "TENSOR_FLOAT16", "{%d, %d}" % (batches, memory_size*features))
33 state_out = IgnoredOutput("state_out", "TENSOR_FLOAT16", "{%d, %d}" % (batches, memory_size*feature…
34 output = Output("output", "TENSOR_FLOAT16", "{%d, %d}" % (batches, units))
60 state_in: [0 for _ in range(batches * memory_size * features)],
127 output0 = {state_out: [0 for _ in range(batches * memory_size * features)],
132 batch_start = i * input_size * batches
133 batch_end = batch_start + input_size * batches
135 golden_start = i * units * batches
[all …]
Dsvdf_float16.mod.py17 batches = 2 variable
26 input = Input("input", "TENSOR_FLOAT16", "{%d, %d}" % (batches, input_size))
30 state_in = Input("state_in", "TENSOR_FLOAT16", "{%d, %d}" % (batches, memory_size*features))
33 state_out = IgnoredOutput("state_out", "TENSOR_FLOAT16", "{%d, %d}" % (batches, memory_size*feature…
34 output = Output("output", "TENSOR_FLOAT16", "{%d, %d}" % (batches, units))
60 state_in: [0 for _ in range(batches * memory_size * features)],
127 output0 = {state_out: [0 for _ in range(batches * memory_size * features)],
132 batch_start = i * input_size * batches
133 batch_end = batch_start + input_size * batches
135 golden_start = i * units * batches
[all …]
Drnn_float16.mod.py17 batches = 2 variable
23 input = Input("input", "TENSOR_FLOAT16", "{%d, %d}" % (batches, input_size))
27 hidden_state_in = Input("hidden_state_in", "TENSOR_FLOAT16", "{%d, %d}" % (batches, units))
31 hidden_state_out = IgnoredOutput("hidden_state_out", "TENSOR_FLOAT16", "{%d, %d}" % (batches, units…
32 output = Output("output", "TENSOR_FLOAT16", "{%d, %d}" % (batches, units))
184 input_sequence_size = int(len(test_inputs) / input_size / batches)
193 input0[hidden_state_in] = [0 for x in range(batches * units)]
195 hidden_state_out: [0 for x in range(batches * units)],
Dsvdf_state_float16.mod.py17 batches = 2 variable
24 input = Input("input", "TENSOR_FLOAT16", "{%d, %d}" % (batches, input_size))
28 state_in = Input("state_in", "TENSOR_FLOAT16", "{%d, %d}" % (batches, memory_size*units))
31 state_out = Output("state_out", "TENSOR_FLOAT16", "{%d, %d}" % (batches, memory_size*units))
32 output = Output("output", "TENSOR_FLOAT16", "{%d, %d}" % (batches, units))
/packages/modules/NeuralNetworks/runtime/test/specs/V1_1/
Dsvdf2_relaxed.mod.py17 batches = 2 variable
26 input = Input("input", "TENSOR_FLOAT32", "{%d, %d}" % (batches, input_size))
30 state_in = Input("state_in", "TENSOR_FLOAT32", "{%d, %d}" % (batches, memory_size*features))
33 state_out = IgnoredOutput("state_out", "TENSOR_FLOAT32", "{%d, %d}" % (batches, memory_size*feature…
34 output = Output("output", "TENSOR_FLOAT32", "{%d, %d}" % (batches, units))
76 state_in: [0 for _ in range(batches * memory_size * features)],
143 output0 = {state_out: [0 for _ in range(batches * memory_size * features)],
148 batch_start = i * input_size * batches
149 batch_end = batch_start + input_size * batches
151 golden_start = i * units * batches
[all …]
Dsvdf_relaxed.mod.py17 batches = 2 variable
26 input = Input("input", "TENSOR_FLOAT32", "{%d, %d}" % (batches, input_size))
30 state_in = Input("state_in", "TENSOR_FLOAT32", "{%d, %d}" % (batches, memory_size*features))
33 state_out = IgnoredOutput("state_out", "TENSOR_FLOAT32", "{%d, %d}" % (batches, memory_size*feature…
34 output = Output("output", "TENSOR_FLOAT32", "{%d, %d}" % (batches, units))
61 state_in: [0 for _ in range(batches * memory_size * features)],
128 output0 = {state_out: [0 for _ in range(batches * memory_size * features)],
133 batch_start = i * input_size * batches
134 batch_end = batch_start + input_size * batches
136 golden_start = i * units * batches
[all …]
Dsvdf_bias_present_relaxed.mod.py17 batches = 2 variable
26 input = Input("input", "TENSOR_FLOAT32", "{%d, %d}" % (batches, input_size))
30 state_in = Input("state_in", "TENSOR_FLOAT32", "{%d, %d}" % (batches, memory_size*features))
33 state_out = IgnoredOutput("state_out", "TENSOR_FLOAT32", "{%d, %d}" % (batches, memory_size*feature…
34 output = Output("output", "TENSOR_FLOAT32", "{%d, %d}" % (batches, units))
61 state_in: [0 for _ in range(batches * memory_size * features)],
128 output0 = {state_out: [0 for _ in range(batches * memory_size * features)],
133 batch_start = i * input_size * batches
134 batch_end = batch_start + input_size * batches
136 golden_start = i * units * batches
[all …]
Drnn_relaxed.mod.py17 batches = 2 variable
23 input = Input("input", "TENSOR_FLOAT32", "{%d, %d}" % (batches, input_size))
27 hidden_state_in = Input("hidden_state_in", "TENSOR_FLOAT32", "{%d, %d}" % (batches, units))
31 hidden_state_out = IgnoredOutput("hidden_state_out", "TENSOR_FLOAT32", "{%d, %d}" % (batches, units…
32 output = Output("output", "TENSOR_FLOAT32", "{%d, %d}" % (batches, units))
185 input_sequence_size = int(len(test_inputs) / input_size / batches)
194 input0[hidden_state_in] = [0 for x in range(batches * units)]
196 hidden_state_out: [0 for x in range(batches * units)],
Drnn_state_relaxed.mod.py17 batches = 2 variable
23 input = Input("input", "TENSOR_FLOAT32", "{%d, %d}" % (batches, input_size))
27 hidden_state_in = Input("hidden_state_in", "TENSOR_FLOAT32", "{%d, %d}" % (batches, units))
31 hidden_state_out = IgnoredOutput("hidden_state_out", "TENSOR_FLOAT32", "{%d, %d}" % (batches, units…
32 output = Output("output", "TENSOR_FLOAT32", "{%d, %d}" % (batches, units))
Dsvdf_state_relaxed.mod.py17 batches = 2 variable
24 input = Input("input", "TENSOR_FLOAT32", "{%d, %d}" % (batches, input_size))
28 state_in = Input("state_in", "TENSOR_FLOAT32", "{%d, %d}" % (batches, memory_size*units))
31 state_out = Output("state_out", "TENSOR_FLOAT32", "{%d, %d}" % (batches, memory_size*units))
32 output = Output("output", "TENSOR_FLOAT32", "{%d, %d}" % (batches, units))
/packages/modules/NeuralNetworks/common/
DOperationsExecutionUtils.cpp333 uint32_t batches = getSizeOfDimension(input, 0); in depthToSpacePrepare() local
340 output->dimensions = {batches, height * blockSize, width * blockSize, in depthToSpacePrepare()
352 uint32_t batches = getSizeOfDimension(input, 0); in spaceToDepthPrepare() local
361 output->dimensions = {batches, height / blockSize, width / blockSize, in spaceToDepthPrepare()
447 uint32_t batches = getSizeOfDimension(input, 0); in batchToSpacePrepare() local
452 NN_OPS_CHECK(batches % (blockSizeData[0] * blockSizeData[1]) == 0); in batchToSpacePrepare()
454 output->dimensions = {batches / (blockSizeData[0] * blockSizeData[1]), in batchToSpacePrepare()
480 uint32_t batches = getSizeOfDimension(input, 0); in spaceToBatchPrepare() local
492 output->dimensions = {batches * (blockSizeData[0] * blockSizeData[1]), in spaceToBatchPrepare()
646 uint32_t batches = getSizeOfDimension(input, 0); in groupedConvPrepare() local
[all …]
/packages/modules/Wifi/service/java/com/android/server/wifi/
DApplicationQosPolicyRequestHandler.java344 List<List<Integer>> batches = divideRequestIntoBatches(ownedPolicies); in queueRemoveAllRequest()
345 for (List<Integer> batch : batches) { in queueRemoveAllRequest()
375 List<List<QosPolicyParams>> batches = new ArrayList<>(); in queueAllPoliciesOnIface()
377 batches.addAll(divideRequestIntoBatches(policiesWithoutQosChars)); in queueAllPoliciesOnIface()
380 batches.addAll(divideRequestIntoBatches(policiesWithQosChars)); in queueAllPoliciesOnIface()
384 for (List<QosPolicyParams> batch : batches) { in queueAllPoliciesOnIface()
489 List<List<T>> batches = new ArrayList<>(); in divideRequestIntoBatches() local
493 batches.add(request.subList(startIndex, endIndex)); in divideRequestIntoBatches()
497 return batches; in divideRequestIntoBatches()
/packages/modules/AdServices/adservices/libraries/cobalt/java/com/android/cobalt/observations/
DNonPrivateObservationGenerator.java87 ImmutableList.Builder<UnencryptedObservationBatch> batches = ImmutableList.builder(); in generateObservations() local
117 batches.add(batch.build()); in generateObservations()
119 return batches.build(); in generateObservations()
DPrivateObservationGenerator.java111 ImmutableList.Builder<UnencryptedObservationBatch> batches = ImmutableList.builder(); in generateObservations() local
113 batches.add( in generateObservations()
117 return batches.build(); in generateObservations()
/packages/modules/AdServices/adservices/libraries/cobalt/java/com/android/cobalt/data/
DDataService.java475 ImmutableList<UnencryptedObservationBatch> batches = in generateObservationsSync() local
478 for (UnencryptedObservationBatch batch : batches) { in generateObservationsSync()
484 numObservations, batches.size(), dayIndex, reportKey); in generateObservationsSync()
485 generatedObservations.addAll(batches); in generateObservationsSync()
/packages/apps/Dialer/java/com/android/dialer/calllog/database/
DMutationApplier.java104 Iterable<List<Long>> batches = Iterables.partition(mutations.getDeletes(), 999); in applyToDatabaseInternal() local
105 for (List<Long> idsInBatch : batches) { in applyToDatabaseInternal()
/packages/modules/NeuralNetworks/common/cpu_operations/
DResizeImageOps.cpp180 uint32_t batches = getSizeOfDimension(input, 0); in prepare() local
213 output.dimensions = {batches, channels, (uint32_t)height, (uint32_t)width}; in prepare()
215 output.dimensions = {batches, (uint32_t)height, (uint32_t)width, channels}; in prepare()
DRNNTest.cpp134 BasicRNNOpModel(uint32_t batches, uint32_t units, uint32_t size) in BasicRNNOpModel() argument
135 : batches_(batches), units_(units), input_size_(size), activation_(kActivationRelu) { in BasicRNNOpModel()
DPooling.cpp305 uint32_t batches = getSizeOfDimension(input, 0); in prepare() local
320 output.dimensions = {batches, channels, outHeight, outWidth}; in prepare()
322 output.dimensions = {batches, outHeight, outWidth, channels}; in prepare()

12