1#
2# Copyright (C) 2017 The Android Open Source Project
3#
4# Licensed under the Apache License, Version 2.0 (the "License");
5# you may not use this file except in compliance with the License.
6# You may obtain a copy of the License at
7#
8#      http://www.apache.org/licenses/LICENSE-2.0
9#
10# Unless required by applicable law or agreed to in writing, software
11# distributed under the License is distributed on an "AS IS" BASIS,
12# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13# See the License for the specific language governing permissions and
14# limitations under the License.
15#
16
17batches = 2
18units = 16
19input_size = 8
20
21model = Model()
22
23input = Input("input", "TENSOR_FLOAT32", "{%d, %d}" % (batches, input_size))
24weights = Input("weights", "TENSOR_FLOAT32", "{%d, %d}" % (units, input_size))
25recurrent_weights = Input("recurrent_weights", "TENSOR_FLOAT32", "{%d, %d}" % (units, units))
26bias = Input("bias", "TENSOR_FLOAT32", "{%d}" % (units))
27hidden_state_in = Input("hidden_state_in", "TENSOR_FLOAT32", "{%d, %d}" % (batches, units))
28
29activation_param = Int32Scalar("activation_param", 1)  # Relu
30
31hidden_state_out = IgnoredOutput("hidden_state_out", "TENSOR_FLOAT32", "{%d, %d}" % (batches, units))
32output = Output("output", "TENSOR_FLOAT32", "{%d, %d}" % (batches, units))
33
34model = model.Operation("RNN", input, weights, recurrent_weights, bias, hidden_state_in,
35                        activation_param).To([hidden_state_out, output])
36
37input0 = {
38    weights: [
39        0.461459,    0.153381,   0.529743,    -0.00371218, 0.676267,   -0.211346,
40       0.317493,    0.969689,   -0.343251,   0.186423,    0.398151,   0.152399,
41       0.448504,    0.317662,   0.523556,    -0.323514,   0.480877,   0.333113,
42       -0.757714,   -0.674487,  -0.643585,   0.217766,    -0.0251462, 0.79512,
43       -0.595574,   -0.422444,  0.371572,    -0.452178,   -0.556069,  -0.482188,
44       -0.685456,   -0.727851,  0.841829,    0.551535,    -0.232336,  0.729158,
45       -0.00294906, -0.69754,   0.766073,    -0.178424,   0.369513,   -0.423241,
46       0.548547,    -0.0152023, -0.757482,   -0.85491,    0.251331,   -0.989183,
47       0.306261,    -0.340716,  0.886103,    -0.0726757,  -0.723523,  -0.784303,
48       0.0354295,   0.566564,   -0.485469,   -0.620498,   0.832546,   0.697884,
49       -0.279115,   0.294415,   -0.584313,   0.548772,    0.0648819,  0.968726,
50       0.723834,    -0.0080452, -0.350386,   -0.272803,   0.115121,   -0.412644,
51       -0.824713,   -0.992843,  -0.592904,   -0.417893,   0.863791,   -0.423461,
52       -0.147601,   -0.770664,  -0.479006,   0.654782,    0.587314,   -0.639158,
53       0.816969,    -0.337228,  0.659878,    0.73107,     0.754768,   -0.337042,
54       0.0960841,   0.368357,   0.244191,    -0.817703,   -0.211223,  0.442012,
55       0.37225,     -0.623598,  -0.405423,   0.455101,    0.673656,   -0.145345,
56       -0.511346,   -0.901675,  -0.81252,    -0.127006,   0.809865,   -0.721884,
57       0.636255,    0.868989,   -0.347973,   -0.10179,    -0.777449,  0.917274,
58       0.819286,    0.206218,   -0.00785118, 0.167141,    0.45872,    0.972934,
59       -0.276798,   0.837861,   0.747958,    -0.0151566,  -0.330057,  -0.469077,
60       0.277308,    0.415818
61    ],
62    recurrent_weights: [
63        0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
64        0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
65        0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
66        0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
67        0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
68        0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
69        0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
70        0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
71        0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
72        0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
73        0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
74        0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
75        0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
76        0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
77        0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
78        0.1
79    ],
80    bias: [
81        0.065691948, -0.69055247, 0.1107955, -0.97084129, -0.23957068,
82        -0.23566568, -0.389184, 0.47481549, -0.4791103, 0.29931796,
83        0.10463274, 0.83918178, 0.37197268, 0.61957061, 0.3956964,
84        -0.37609905
85    ],
86}
87
88
89test_inputs = [
90    0.23689353,   0.285385,     0.037029743, -0.19858193,  -0.27569133,
91    0.43773448,   0.60379338,   0.35562468,  -0.69424844,  -0.93421471,
92    -0.87287879,  0.37144363,   -0.62476718, 0.23791671,   0.40060222,
93    0.1356622,    -0.99774903,  -0.98858172, -0.38952237,  -0.47685933,
94    0.31073618,   0.71511042,   -0.63767755, -0.31729108,  0.33468103,
95    0.75801885,   0.30660987,   -0.37354088, 0.77002847,   -0.62747043,
96    -0.68572164,  0.0069220066, 0.65791464,  0.35130811,   0.80834007,
97    -0.61777675,  -0.21095741,  0.41213346,  0.73784804,   0.094794154,
98    0.47791874,   0.86496925,   -0.53376222, 0.85315156,   0.10288584,
99    0.86684,      -0.011186242, 0.10513687,  0.87825835,   0.59929144,
100    0.62827742,   0.18899453,   0.31440187,  0.99059987,   0.87170351,
101    -0.35091716,  0.74861872,   0.17831337,  0.2755419,    0.51864719,
102    0.55084288,   0.58982027,   -0.47443086, 0.20875752,   -0.058871567,
103    -0.66609079,  0.59098077,   0.73017097,  0.74604273,   0.32882881,
104    -0.17503482,  0.22396147,   0.19379807,  0.29120302,   0.077113032,
105    -0.70331609,  0.15804303,   -0.93407321, 0.40182066,   0.036301374,
106    0.66521823,   0.0300982,    -0.7747041,  -0.02038002,  0.020698071,
107    -0.90300065,  0.62870288,   -0.23068321, 0.27531278,   -0.095755219,
108    -0.712036,    -0.17384434,  -0.50593495, -0.18646687,  -0.96508682,
109    0.43519354,   0.14744234,   0.62589407,  0.1653645,    -0.10651493,
110    -0.045277178, 0.99032974,   -0.88255352, -0.85147917,  0.28153265,
111    0.19455957,   -0.55479527,  -0.56042433, 0.26048636,   0.84702539,
112    0.47587705,   -0.074295521, -0.12287641, 0.70117295,   0.90532446,
113    0.89782166,   0.79817224,   0.53402734,  -0.33286154,  0.073485017,
114    -0.56172788,  -0.044897556, 0.89964068,  -0.067662835, 0.76863563,
115    0.93455386,   -0.6324693,   -0.083922029
116]
117
118golden_outputs = [
119    0.496726,   0,          0.965996,  0,         0.0584254, 0,
120    0,          0.12315,    0,         0,         0.612266,  0.456601,
121    0,          0.52286,    1.16099,   0.0291232,
122
123    0,          0,          0.524901,  0,         0,         0,
124    0,          1.02116,    0,         1.35762,   0,         0.356909,
125    0.436415,   0.0355727,  0,         0,
126
127    0,          0,          0,         0.262335,  0,         0,
128    0,          1.33992,    0,         2.9739,    0,         0,
129    1.31914,    2.66147,    0,         0,
130
131    0.942568,   0,          0,         0,         0.025507,  0,
132    0,          0,          0.321429,  0.569141,  1.25274,   1.57719,
133    0.8158,     1.21805,    0.586239,  0.25427,
134
135    1.04436,    0,          0.630725,  0,         0.133801,  0.210693,
136    0.363026,   0,          0.533426,  0,         1.25926,   0.722707,
137    0,          1.22031,    1.30117,   0.495867,
138
139    0.222187,   0,          0.72725,   0,         0.767003,  0,
140    0,          0.147835,   0,         0,         0,         0.608758,
141    0.469394,   0.00720298, 0.927537,  0,
142
143    0.856974,   0.424257,   0,         0,         0.937329,  0,
144    0,          0,          0.476425,  0,         0.566017,  0.418462,
145    0.141911,   0.996214,   1.13063,   0,
146
147    0.967899,   0,          0,         0,         0.0831304, 0,
148    0,          1.00378,    0,         0,         0,         1.44818,
149    1.01768,    0.943891,   0.502745,  0,
150
151    0.940135,   0,          0,         0,         0,         0,
152    0,          2.13243,    0,         0.71208,   0.123918,  1.53907,
153    1.30225,    1.59644,    0.70222,   0,
154
155    0.804329,   0,          0.430576,  0,         0.505872,  0.509603,
156    0.343448,   0,          0.107756,  0.614544,  1.44549,   1.52311,
157    0.0454298,  0.300267,   0.562784,  0.395095,
158
159    0.228154,   0,          0.675323,  0,         1.70536,   0.766217,
160    0,          0,          0,         0.735363,  0.0759267, 1.91017,
161    0.941888,   0,          0,         0,
162
163    0,          0,          1.5909,    0,         0,         0,
164    0,          0.5755,     0,         0.184687,  0,         1.56296,
165    0.625285,   0,          0,         0,
166
167    0,          0,          0.0857888, 0,         0,         0,
168    0,          0.488383,   0.252786,  0,         0,         0,
169    1.02817,    1.85665,    0,         0,
170
171    0.00981836, 0,          1.06371,   0,         0,         0,
172    0,          0,          0,         0.290445,  0.316406,  0,
173    0.304161,   1.25079,    0.0707152, 0,
174
175    0.986264,   0.309201,   0,         0,         0,         0,
176    0,          1.64896,    0.346248,  0,         0.918175,  0.78884,
177    0.524981,   1.92076,    2.07013,   0.333244,
178
179    0.415153,   0.210318,   0,         0,         0,         0,
180    0,          2.02616,    0,         0.728256,  0.84183,   0.0907453,
181    0.628881,   3.58099,    1.49974,   0
182]
183
184input_sequence_size = int(len(test_inputs) / input_size / batches)
185
186# TODO: enable the other data points after fixing reference issues
187#for i in range(input_sequence_size):
188for i in range(1):
189  input_begin = i * input_size
190  input_end = input_begin + input_size
191  input0[input] = test_inputs[input_begin:input_end]
192  input0[input].extend(input0[input])
193  input0[hidden_state_in] = [0 for x in range(batches * units)]
194  output0 = {
195    hidden_state_out: [0 for x in range(batches * units)],
196  }
197  golden_start = i * units
198  golden_end = golden_start + units
199  output0[output] = golden_outputs[golden_start:golden_end]
200  output0[output].extend(output0[output])
201  Example((input0, output0))
202