Home
last modified time | relevance | path

Searched refs:input0_data (Results 1 – 25 of 28) sorted by relevance

12

/packages/modules/NeuralNetworks/runtime/test/specs/V1_3/
Dresize_nearest_neighbor_v1_3.mod.py17 half_pixel_centers, output0, input0_data, output_data): argument
30 input0: input0_data,
46 input0_data=[1, 2, 3, 4, 5, 1, 2, 3, 4, 5],
59 input0_data=[1, 2, 3, 4],
72 input0_data=[1, 2, 3, 4],
85 input0_data=[1, 2, 3, 4],
98 input0_data=[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16],
111 input0_data=[1, 2, 3, 4],
124 input0_data=[1, 2, 3, 4],
137 input0_data=[1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8],
[all …]
Dresize_bilinear_v1_3.mod.py24 input0_data, argument
43 input0: input0_data,
59 input0_data=[1, 2, 3, 4, 1, 2, 3, 4],
74 input0_data=[
283 input0_data=[
491 input0_data=[1, 2, 3, 4],
504 input0_data=[1, 2, 3, 4],
517 input0_data=[1, 2, 3, 4, 5, 6, 7, 8, 9],
530 input0_data=[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16],
Dgreater_equal_quant8_signed.mod.py16 def test(name, input0, input1, output0, input0_data, input1_data, output_data): argument
19 input0: input0_data,
29 input0_data=[1, 2, 3], # effectively 1, 2, 3
39 input0_data=[1, 2, 3], # effectively 1, 2, 3
49 input0_data=[-128],
59 input0_data=[72],
Dgreater_quant8_signed.mod.py16 def test(name, input0, input1, output0, input0_data, input1_data, output_data): argument
19 input0: input0_data,
29 input0_data=[1, 2, 3], # effectively 1, 2, 3
39 input0_data=[1, 2, 3], # effectively 1, 2, 3
49 input0_data=[-128],
59 input0_data=[72],
Dnot_equal_quant8_signed.mod.py16 def test(name, input0, input1, output0, input0_data, input1_data, output_data): argument
19 input0: input0_data,
29 input0_data=[1, 2, 3], # effectively 1, 2, 3
39 input0_data=[1, 2, 3], # effectively 1, 2, 3
49 input0_data=[-128],
59 input0_data=[72],
Dequal_quant8_signed.mod.py16 def test(name, input0, input1, output0, input0_data, input1_data, output_data): argument
19 input0: input0_data,
29 input0_data=[1, 2, 3], # effectively 1, 2, 3
39 input0_data=[1, 2, 3], # effectively 1, 2, 3
49 input0_data=[-128],
59 input0_data=[72],
Dless_quant8_signed.mod.py16 def test(name, input0, input1, output0, input0_data, input1_data, output_data): argument
19 input0: input0_data,
29 input0_data=[1, 2, 3], # effectively 1, 2, 3
39 input0_data=[1, 2, 3], # effectively 1, 2, 3
49 input0_data=[-128],
59 input0_data=[72],
Dless_equal_quant8_signed.mod.py16 def test(name, input0, input1, output0, input0_data, input1_data, output_data): argument
19 input0: input0_data,
29 input0_data=[1, 2, 3], # effectively 1, 2, 3
39 input0_data=[1, 2, 3], # effectively 1, 2, 3
49 input0_data=[-128],
59 input0_data=[72],
Delu.mod.py17 def test(name, input0, alpha, output0, input0_data, output0_data): argument
20 input0: input0_data,
29 input0_data=[0, -6, 2, -4, 3, -2, 10, -0.1],
38 input0_data=[-0.2, -0.1, 0.0, 0.1],
47 input0_data=[-10, -5, 0, 5],
Dselect_quant8_signed.mod.py16 def test(name, input0, input1, input2, output0, input0_data, input1_data, input2_data, output_data): argument
24 input0: input0_data,
36 input0_data=[True, False, True],
48 input0_data=[False, True, False, True],
60 input0_data=[True, False, True, False, True, False, True, False],
Dhard_swish.mod.py18 def test(name, input0, output0, input0_data, output0_data): argument
37 input0: input0_data,
50 input0_data=[
71 input0_data=[
Dmaximum_quant8_signed.mod.py17 def test(name, input0, input1, output0, input0_data, input1_data, output_data): argument
27 input0: input0_data,
38 input0_data=[1.0, 0.0, -1.0, 11.0, -2.0, -1.44],
48 input0_data=[1.0, 0.0, -1.0, -2.0, -1.44, 11.0],
/packages/modules/NeuralNetworks/runtime/test/specs/V1_2/
Dless.mod.py16 def test(name, input0, input1, output0, input0_data, input1_data, output_data, do_variations=True): argument
19 input0: input0_data,
31 input0_data=[5, 7, 10],
41 input0_data=[5, 10],
51 input0_data=[129, 130, 131], # effectively 1, 2, 3
62 input0_data=[129, 130, 131], # effectively 1, 2, 3
73 input0_data=[0],
84 input0_data=[200],
95 input0_data=[False, True, False, True],
Dgreater_equal.mod.py16 def test(name, input0, input1, output0, input0_data, input1_data, output_data, do_variations=True): argument
19 input0: input0_data,
31 input0_data=[5, 7, 10],
41 input0_data=[5, 10],
51 input0_data=[129, 130, 131], # effectively 1, 2, 3
62 input0_data=[129, 130, 131], # effectively 1, 2, 3
73 input0_data=[0],
84 input0_data=[200],
95 input0_data=[False, True, False, True],
Dequal.mod.py16 def test(name, input0, input1, output0, input0_data, input1_data, output_data, do_variations=True): argument
19 input0: input0_data,
31 input0_data=[5, 7, 10],
41 input0_data=[5, 10],
51 input0_data=[129, 130, 131], # effectively 1, 2, 3
62 input0_data=[129, 130, 131], # effectively 1, 2, 3
73 input0_data=[0],
84 input0_data=[200],
95 input0_data=[False, True, False, True],
Dless_equal.mod.py16 def test(name, input0, input1, output0, input0_data, input1_data, output_data, do_variations=True): argument
19 input0: input0_data,
31 input0_data=[5, 7, 10],
41 input0_data=[5, 10],
51 input0_data=[129, 130, 131], # effectively 1, 2, 3
62 input0_data=[129, 130, 131], # effectively 1, 2, 3
73 input0_data=[0],
84 input0_data=[200],
95 input0_data=[False, True, False, True],
Dgreater.mod.py16 def test(name, input0, input1, output0, input0_data, input1_data, output_data, do_variations=True): argument
19 input0: input0_data,
31 input0_data=[5, 7, 10],
41 input0_data=[5, 10],
51 input0_data=[129, 130, 131], # effectively 1, 2, 3
62 input0_data=[129, 130, 131], # effectively 1, 2, 3
73 input0_data=[0],
84 input0_data=[200],
95 input0_data=[False, True, False, True],
Dnot_equal.mod.py16 def test(name, input0, input1, output0, input0_data, input1_data, output_data, do_variations=True): argument
19 input0: input0_data,
31 input0_data=[5, 7, 10],
41 input0_data=[5, 10],
51 input0_data=[129, 130, 131], # effectively 1, 2, 3
62 input0_data=[129, 130, 131], # effectively 1, 2, 3
73 input0_data=[0],
84 input0_data=[200],
95 input0_data=[False, True, False, True],
Ddequantize_v1_2.mod.py18 def test(name, input0, output0, input0_data, output0_data): argument
21 input0: input0_data,
32 input0_data=[0, 1, 2, 3, 4, 251, 252, 253, 254, 255],
40 input0_data=[0, 1, 2, 3, 4, 251, 252, 253, 254, 255],
48 input0_data=[-128, -127, -126, -125, 124, 125, 126, 127],
56 input0_data=[-128, -127, -126, -125, 124, 125, 126, 127],
66 input0_data=[
83 input0_data=[
Dselect_v1_2.mod.py16 def test(name, input0, input1, input2, output0, input0_data, input1_data, input2_data, output_data): argument
24 input0: input0_data,
36 input0_data=[True, False, True],
48 input0_data=[False, True, False, True],
60 input0_data=[True, False, True, False, True, False, True, False],
Dlogical_and.mod.py17 def test(name, input0, input1, output0, input0_data, input1_data, output_data): argument
20 input0: input0_data,
30 input0_data=[True, False, False, True],
40 input0_data=[True, False, False, True],
Dlogical_or.mod.py17 def test(name, input0, input1, output0, input0_data, input1_data, output_data): argument
20 input0: input0_data,
30 input0_data=[True, False, False, True],
40 input0_data=[True, False, False, True],
Dmaximum.mod.py17 def test(name, input0, input1, output0, input0_data, input1_data, output_data): argument
27 input0: input0_data,
38 input0_data=[1.0, 0.0, -1.0, 11.0, -2.0, -1.44],
48 input0_data=[1.0, 0.0, -1.0, -2.0, -1.44, 11.0],
Dminimum.mod.py17 def test(name, input0, input1, output0, input0_data, input1_data, output_data): argument
27 input0: input0_data,
38 input0_data=[1.0, 0.0, -1.0, 11.0, -2.0, -1.44],
48 input0_data=[1.0, 0.0, -1.0, -2.0, -1.44, 11.0],
/packages/modules/NeuralNetworks/runtime/test/specs/AIDL_V2/
Dbatch_matmul.mod.py16 def test(name, input0, input1, adj0, adj1, output, input0_data, input1_data, argument
26 input0: input0_data,
40 input0_data=[1, 2, 3, 4, 5, 6],
52 input0_data=[1, 2, 3, 4, 5, 6],
64 input0_data=[1, 4, 2, 5, 3, 6],
76 input0_data=[1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6],

12