1# 2# Copyright (C) 2021 The Android Open Source Project 3# 4# Licensed under the Apache License, Version 2.0 (the "License"); 5# you may not use this file except in compliance with the License. 6# You may obtain a copy of the License at 7# 8# http://www.apache.org/licenses/LICENSE-2.0 9# 10# Unless required by applicable law or agreed to in writing, software 11# distributed under the License is distributed on an "AS IS" BASIS, 12# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13# See the License for the specific language governing permissions and 14# limitations under the License. 15# 16def test(name, input0, input1, adj0, adj1, output, input0_data, input1_data, 17 output_data): 18 model = Model().Operation("BATCH_MATMUL", input0, input1, adj0, adj1).To( 19 output) 20 quant8_signed = DataTypeConverter().Identify({ 21 input0: ("TENSOR_QUANT8_ASYMM_SIGNED", 0.25, 0), 22 input1: ("TENSOR_QUANT8_ASYMM_SIGNED", 0.50, -64), 23 output: ("TENSOR_QUANT8_ASYMM_SIGNED", 1.00, -128), 24 }) 25 Example({ 26 input0: input0_data, 27 input1: input1_data, 28 output: output_data, 29 }, model=model, 30 name=name).AddVariations("float16", "int32", quant8_signed) 31 32 33test( 34 name="Simple", 35 input0=Input("op1", "TENSOR_FLOAT32", "{1, 2, 3}"), 36 input1=Input("op2", "TENSOR_FLOAT32", "{1, 3, 4}"), 37 adj0=BoolScalar("adj0", False), 38 adj1=BoolScalar("adj1", False), 39 output=Output("op3", "TENSOR_FLOAT32", "{1, 2, 4}"), 40 input0_data=[1, 2, 3, 4, 5, 6], 41 input1_data=[7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18], 42 output_data=[74., 80., 86., 92., 173., 188., 203., 218.], 43) 44 45test( 46 name="RHSAdjoint", 47 input0=Input("op1", "TENSOR_FLOAT32", "{1, 2, 3}"), 48 input1=Input("op2", "TENSOR_FLOAT32", "{1, 4, 3}"), 49 adj0=BoolScalar("adj0", False), 50 adj1=BoolScalar("adj1", True), 51 output=Output("op3", "TENSOR_FLOAT32", "{1, 2, 4}"), 52 input0_data=[1, 2, 3, 4, 5, 6], 53 input1_data=[7, 11, 15, 8, 12, 16, 9, 13, 17, 10, 14, 18], 54 output_data=[74., 80., 86., 92., 173., 188., 203., 218.], 55) 56 57test( 58 name="LHSAdjoint", 59 input0=Input("op1", "TENSOR_FLOAT32", "{1, 3, 2}"), 60 input1=Input("op2", "TENSOR_FLOAT32", "{1, 3, 4}"), 61 adj0=BoolScalar("adj0", True), 62 adj1=BoolScalar("adj1", False), 63 output=Output("op3", "TENSOR_FLOAT32", "{1, 2, 4}"), 64 input0_data=[1, 4, 2, 5, 3, 6], 65 input1_data=[7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18], 66 output_data=[74., 80., 86., 92., 173., 188., 203., 218.], 67) 68 69test( 70 name="TwoBatchSize", 71 input0=Input("op1", "TENSOR_FLOAT32", "{2, 2, 3}"), 72 input1=Input("op2", "TENSOR_FLOAT32", "{2, 3, 4}"), 73 adj0=BoolScalar("adj0", False), 74 adj1=BoolScalar("adj1", False), 75 output=Output("op3", "TENSOR_FLOAT32", "{2, 2, 4}"), 76 input0_data=[1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6], 77 input1_data=[7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 78 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18], 79 output_data=[74., 80., 86., 92., 173., 188., 203., 218., 80 74., 80., 86., 92., 173., 188., 203., 218.], 81) 82