/packages/modules/NeuralNetworks/runtime/test/specs/V1_2/ |
D | bidirectional_sequence_rnn.mod.py | 84 input_size = 8 variable 210 num_batches, max_time, input_size)), 212 fw_num_units, input_size)), 220 bw_num_units, input_size)), 260 max_time, num_batches, input_size)), 262 fw_num_units, input_size)), 270 bw_num_units, input_size)), 292 [num_batches, max_time, input_size]), 313 max_time, num_batches, input_size)), 315 fw_num_units, input_size)), [all …]
|
D | unidirectional_sequence_rnn.mod.py | 39 def convert_to_time_major(tensor, num_batches, max_time, input_size): argument 41 input_size]).transpose([1, 0, 2]).flatten().tolist() 46 input_size = 8 variable 142 num_batches, max_time, input_size)), 144 num_units, input_size)), 164 max_time, num_batches, input_size)), 166 num_units, input_size)), 177 input_size),
|
D | rnn_float16.mod.py | 19 input_size = 8 variable 23 input = Input("input", "TENSOR_FLOAT16", "{%d, %d}" % (batches, input_size)) 24 weights = Input("weights", "TENSOR_FLOAT16", "{%d, %d}" % (units, input_size)) 184 input_sequence_size = int(len(test_inputs) / input_size / batches) 189 input_begin = i * input_size 190 input_end = input_begin + input_size
|
D | svdf_bias_present_float16.mod.py | 21 input_size = 3 variable 26 input = Input("input", "TENSOR_FLOAT16", "{%d, %d}" % (batches, input_size)) 27 weights_feature = Input("weights_feature", "TENSOR_FLOAT16", "{%d, %d}" % (features, input_size)) 132 batch_start = i * input_size * batches 133 batch_end = batch_start + input_size * batches
|
D | svdf_float16.mod.py | 21 input_size = 3 variable 26 input = Input("input", "TENSOR_FLOAT16", "{%d, %d}" % (batches, input_size)) 27 weights_feature = Input("weights_feature", "TENSOR_FLOAT16", "{%d, %d}" % (features, input_size)) 132 batch_start = i * input_size * batches 133 batch_end = batch_start + input_size * batches
|
D | svdf_state_float16.mod.py | 19 input_size = 3 variable 24 input = Input("input", "TENSOR_FLOAT16", "{%d, %d}" % (batches, input_size)) 25 weights_feature = Input("weights_feature", "TENSOR_FLOAT16", "{%d, %d}" % (units, input_size))
|
/packages/modules/NeuralNetworks/runtime/test/specs/V1_3/ |
D | bidirectional_sequence_rnn_state_output.mod.py | 92 input_size = 8 variable 221 "{{ {}, {}, {} }}".format(num_batches, max_time, input_size)), 223 "{{ {}, {} }}".format(fw_num_units, input_size)), 231 "{{ {}, {} }}".format(bw_num_units, input_size)), 277 "{{ {}, {}, {} }}".format(max_time, num_batches, input_size)), 279 "{{ {}, {} }}".format(fw_num_units, input_size)), 287 "{{ {}, {} }}".format(bw_num_units, input_size)), 313 [num_batches, max_time, input_size]), 336 "{{ {}, {}, {} }}".format(max_time, num_batches, input_size)), 338 "{{ {}, {} }}".format(fw_num_units, input_size)), [all …]
|
D | bidirectional_sequence_rnn_1_3.mod.py | 90 input_size = 8 variable 216 "{{ {}, {}, {} }}".format(num_batches, max_time, input_size)), 218 "{{ {}, {} }}".format(fw_num_units, input_size)), 226 "{{ {}, {} }}".format(bw_num_units, input_size)), 235 "{{ {}, {}, {} }}".format(num_batches, max_time, input_size)), 248 fw_weights_data=[0] * fw_num_units * input_size, 266 "{{ {}, {}, {} }}".format(max_time, num_batches, input_size)), 268 "{{ {}, {} }}".format(fw_num_units, input_size)), 276 "{{ {}, {} }}".format(bw_num_units, input_size)), 285 "{{ {}, {}, {} }}".format(max_time, num_batches, input_size)), [all …]
|
D | unidirectional_sequence_rnn.mod.py | 42 def convert_to_time_major(tensor, num_batches, max_time, input_size): argument 43 return np.array(tensor).reshape([num_batches, max_time, input_size 49 input_size = 8 variable 180 "{{{}, {}, {}}}".format(num_batches, max_time, input_size)), 182 "{{{}, {}}}".format(num_units, input_size)), 206 "{{{}, {}, {}}}".format(max_time, num_batches, input_size)), 208 "{{{}, {}}}".format(num_units, input_size)), 221 input_size),
|
/packages/modules/Virtualization/libs/apkverify/src/ |
D | hashtree.rs | 33 input_size: usize, in from() 39 let tree = generate_hash_tree(input, input_size, &salt, block_size, algorithm)?; in from() 67 input_size: usize, in generate_hash_tree() 73 let levels = calc_hash_levels(input_size, block_size, digest_size); in generate_hash_tree() 82 let pad_size = round_to_multiple(input_size, block_size) - input_size; in generate_hash_tree() 87 let mut num_blocks = (input_size + block_size - 1) / block_size; in generate_hash_tree() 131 fn calc_hash_levels(input_size: usize, block_size: usize, digest_size: usize) -> Vec<Range> { in calc_hash_levels() 137 let input_size = *level_sizes.last().unwrap_or(&input_size); in calc_hash_levels() localVariable 138 if input_size <= block_size { in calc_hash_levels() 141 let num_blocks = (input_size + block_size - 1) / block_size; in calc_hash_levels()
|
/packages/modules/NeuralNetworks/runtime/test/specs/V1_1/ |
D | rnn_relaxed.mod.py | 19 input_size = 8 variable 23 input = Input("input", "TENSOR_FLOAT32", "{%d, %d}" % (batches, input_size)) 24 weights = Input("weights", "TENSOR_FLOAT32", "{%d, %d}" % (units, input_size)) 185 input_sequence_size = int(len(test_inputs) / input_size / batches) 190 input_begin = i * input_size 191 input_end = input_begin + input_size
|
D | svdf2_relaxed.mod.py | 21 input_size = 3 variable 26 input = Input("input", "TENSOR_FLOAT32", "{%d, %d}" % (batches, input_size)) 27 weights_feature = Input("weights_feature", "TENSOR_FLOAT32", "{%d, %d}" % (features, input_size)) 148 batch_start = i * input_size * batches 149 batch_end = batch_start + input_size * batches
|
D | svdf_relaxed.mod.py | 21 input_size = 3 variable 26 input = Input("input", "TENSOR_FLOAT32", "{%d, %d}" % (batches, input_size)) 27 weights_feature = Input("weights_feature", "TENSOR_FLOAT32", "{%d, %d}" % (features, input_size)) 133 batch_start = i * input_size * batches 134 batch_end = batch_start + input_size * batches
|
D | svdf_bias_present_relaxed.mod.py | 21 input_size = 3 variable 26 input = Input("input", "TENSOR_FLOAT32", "{%d, %d}" % (batches, input_size)) 27 weights_feature = Input("weights_feature", "TENSOR_FLOAT32", "{%d, %d}" % (features, input_size)) 133 batch_start = i * input_size * batches 134 batch_end = batch_start + input_size * batches
|
D | rnn_state_relaxed.mod.py | 19 input_size = 8 variable 23 input = Input("input", "TENSOR_FLOAT32", "{%d, %d}" % (batches, input_size)) 24 weights = Input("weights", "TENSOR_FLOAT32", "{%d, %d}" % (units, input_size))
|
D | svdf_state_relaxed.mod.py | 19 input_size = 3 variable 24 input = Input("input", "TENSOR_FLOAT32", "{%d, %d}" % (batches, input_size)) 25 weights_feature = Input("weights_feature", "TENSOR_FLOAT32", "{%d, %d}" % (units, input_size))
|
/packages/modules/NeuralNetworks/runtime/test/specs/V1_0/ |
D | rnn.mod.py | 19 input_size = 8 variable 23 input = Input("input", "TENSOR_FLOAT32", "{%d, %d}" % (batches, input_size)) 24 weights = Input("weights", "TENSOR_FLOAT32", "{%d, %d}" % (units, input_size)) 184 input_sequence_size = int(len(test_inputs) / input_size / batches) 189 input_begin = i * input_size 190 input_end = input_begin + input_size
|
D | svdf.mod.py | 21 input_size = 3 variable 26 input = Input("input", "TENSOR_FLOAT32", "{%d, %d}" % (batches, input_size)) 27 weights_feature = Input("weights_feature", "TENSOR_FLOAT32", "{%d, %d}" % (features, input_size)) 132 batch_start = i * input_size * batches 133 batch_end = batch_start + input_size * batches
|
D | svdf_bias_present.mod.py | 21 input_size = 3 variable 26 input = Input("input", "TENSOR_FLOAT32", "{%d, %d}" % (batches, input_size)) 27 weights_feature = Input("weights_feature", "TENSOR_FLOAT32", "{%d, %d}" % (features, input_size)) 132 batch_start = i * input_size * batches 133 batch_end = batch_start + input_size * batches
|
D | svdf2.mod.py | 21 input_size = 3 variable 26 input = Input("input", "TENSOR_FLOAT32", "{%d, %d}" % (batches, input_size)) 27 weights_feature = Input("weights_feature", "TENSOR_FLOAT32", "{%d, %d}" % (features, input_size)) 147 batch_start = i * input_size * batches 148 batch_end = batch_start + input_size * batches
|
D | rnn_state.mod.py | 19 input_size = 8 variable 23 input = Input("input", "TENSOR_FLOAT32", "{%d, %d}" % (batches, input_size)) 24 weights = Input("weights", "TENSOR_FLOAT32", "{%d, %d}" % (units, input_size))
|
D | svdf_state.mod.py | 19 input_size = 3 variable 24 input = Input("input", "TENSOR_FLOAT32", "{%d, %d}" % (batches, input_size)) 25 weights_feature = Input("weights_feature", "TENSOR_FLOAT32", "{%d, %d}" % (units, input_size))
|
/packages/modules/NeuralNetworks/common/types/operations/src/ |
D | FullyConnected.cpp | 44 uint32_t input_size = getSizeOfDimension(weights, 1u); in validateShapes() local 47 if (input_size != 0) { in validateShapes() 48 NN_RET_CHECK_EQ(input_n_elements % input_size, 0u); in validateShapes() 49 batch_size = input_n_elements / input_size; in validateShapes() 57 NN_RET_CHECK_GT(input_size, 0u); in validateShapes()
|
/packages/modules/NeuralNetworks/common/cpu_operations/ |
D | RNNTest.cpp | 188 uint32_t input_size() const { return input_size_; } in input_size() function in android::nn::wrapper::BasicRNNOpModel 284 sizeof(rnn_input) / sizeof(float) / (rnn.input_size() * rnn.num_batches()); in TEST() 287 float* batch_start = rnn_input + i * rnn.input_size(); in TEST() 288 float* batch_end = batch_start + rnn.input_size(); in TEST() 290 rnn.SetInput(rnn.input_size(), batch_start, batch_end); in TEST()
|
D | SVDFTest.cpp | 168 SVDFOpModel(uint32_t batches, uint32_t units, uint32_t input_size, uint32_t memory_size, in SVDFOpModel() argument 172 input_size_(input_size), in SVDFOpModel() 295 int input_size() const { return input_size_; } in input_size() function in android::nn::wrapper::SVDFOpModel 339 const int svdf_input_size = svdf.input_size(); in TEST() 398 const int svdf_input_size = svdf.input_size(); in TEST()
|