/packages/modules/NeuralNetworks/common/cpu_operations/ |
D | SVDF.cpp | 87 const uint32_t memory_size = SizeOfDimension(weights_time, 1); in Prepare() local 99 stateShape->dimensions = {batch_size, memory_size * num_filters}; in Prepare() 174 const int memory_size = SizeOfDimension(weights_time_, 1); in EvalFloat32() local 176 memcpy(outputStateData, inputStateData, sizeof(float) * batch_size * memory_size * num_filters); in EvalFloat32() 179 float* state_ptr_batch = outputStateData + b * memory_size * num_filters; in EvalFloat32() 181 float* state_ptr = state_ptr_batch + c * memory_size; in EvalFloat32() 182 state_ptr[memory_size - 1] = 0.0; in EvalFloat32() 195 outputStateData[i * memory_size + memory_size - 1] = scratch[i]; in EvalFloat32() 201 float* state_out_ptr_batch = outputStateData + b * memory_size * num_filters; in EvalFloat32() 204 weightsTimeData, state_out_ptr_batch, memory_size, num_filters, scratch_ptr_batch); in EvalFloat32() [all …]
|
D | SVDFTest.cpp | 168 SVDFOpModel(uint32_t batches, uint32_t units, uint32_t input_size, uint32_t memory_size, in SVDFOpModel() argument 173 memory_size_(memory_size), in SVDFOpModel() 180 {batches_, memory_size * units_ * rank_}, // state in tensor in SVDFOpModel()
|
/packages/modules/NeuralNetworks/runtime/test/specs/V1_0/ |
D | svdf.mod.py | 22 memory_size = 10 variable 28 weights_time = Input("weights_time", "TENSOR_FLOAT32", "{%d, %d}" % (features, memory_size)) 30 state_in = Input("state_in", "TENSOR_FLOAT32", "{%d, %d}" % (batches, memory_size*features)) 33 state_out = IgnoredOutput("state_out", "TENSOR_FLOAT32", "{%d, %d}" % (batches, memory_size*feature… 60 state_in: [0 for _ in range(batches * memory_size * features)], 127 output0 = {state_out: [0 for _ in range(batches * memory_size * features)],
|
D | svdf_bias_present.mod.py | 22 memory_size = 10 variable 28 weights_time = Input("weights_time", "TENSOR_FLOAT32", "{%d, %d}" % (features, memory_size)) 30 state_in = Input("state_in", "TENSOR_FLOAT32", "{%d, %d}" % (batches, memory_size*features)) 33 state_out = IgnoredOutput("state_out", "TENSOR_FLOAT32", "{%d, %d}" % (batches, memory_size*feature… 60 state_in: [0 for _ in range(batches * memory_size * features)], 127 output0 = {state_out: [0 for _ in range(batches * memory_size * features)],
|
D | svdf2.mod.py | 22 memory_size = 10 variable 28 weights_time = Input("weights_time", "TENSOR_FLOAT32", "{%d, %d}" % (features, memory_size)) 30 state_in = Input("state_in", "TENSOR_FLOAT32", "{%d, %d}" % (batches, memory_size*features)) 33 state_out = IgnoredOutput("state_out", "TENSOR_FLOAT32", "{%d, %d}" % (batches, memory_size*feature… 75 state_in: [0 for _ in range(batches * memory_size * features)], 142 output0 = {state_out: [0 for _ in range(batches * memory_size * features)],
|
D | svdf_state.mod.py | 20 memory_size = 10 variable 26 weights_time = Input("weights_time", "TENSOR_FLOAT32", "{%d, %d}" % (units, memory_size)) 28 state_in = Input("state_in", "TENSOR_FLOAT32", "{%d, %d}" % (batches, memory_size*units)) 31 state_out = Output("state_out", "TENSOR_FLOAT32", "{%d, %d}" % (batches, memory_size*units))
|
/packages/modules/NeuralNetworks/runtime/test/specs/V1_2/ |
D | svdf_bias_present_float16.mod.py | 22 memory_size = 10 variable 28 weights_time = Input("weights_time", "TENSOR_FLOAT16", "{%d, %d}" % (features, memory_size)) 30 state_in = Input("state_in", "TENSOR_FLOAT16", "{%d, %d}" % (batches, memory_size*features)) 33 state_out = IgnoredOutput("state_out", "TENSOR_FLOAT16", "{%d, %d}" % (batches, memory_size*feature… 60 state_in: [0 for _ in range(batches * memory_size * features)], 127 output0 = {state_out: [0 for _ in range(batches * memory_size * features)],
|
D | svdf_float16.mod.py | 22 memory_size = 10 variable 28 weights_time = Input("weights_time", "TENSOR_FLOAT16", "{%d, %d}" % (features, memory_size)) 30 state_in = Input("state_in", "TENSOR_FLOAT16", "{%d, %d}" % (batches, memory_size*features)) 33 state_out = IgnoredOutput("state_out", "TENSOR_FLOAT16", "{%d, %d}" % (batches, memory_size*feature… 60 state_in: [0 for _ in range(batches * memory_size * features)], 127 output0 = {state_out: [0 for _ in range(batches * memory_size * features)],
|
D | svdf_state_float16.mod.py | 20 memory_size = 10 variable 26 weights_time = Input("weights_time", "TENSOR_FLOAT16", "{%d, %d}" % (units, memory_size)) 28 state_in = Input("state_in", "TENSOR_FLOAT16", "{%d, %d}" % (batches, memory_size*units)) 31 state_out = Output("state_out", "TENSOR_FLOAT16", "{%d, %d}" % (batches, memory_size*units))
|
/packages/modules/NeuralNetworks/runtime/test/specs/V1_1/ |
D | svdf2_relaxed.mod.py | 22 memory_size = 10 variable 28 weights_time = Input("weights_time", "TENSOR_FLOAT32", "{%d, %d}" % (features, memory_size)) 30 state_in = Input("state_in", "TENSOR_FLOAT32", "{%d, %d}" % (batches, memory_size*features)) 33 state_out = IgnoredOutput("state_out", "TENSOR_FLOAT32", "{%d, %d}" % (batches, memory_size*feature… 76 state_in: [0 for _ in range(batches * memory_size * features)], 143 output0 = {state_out: [0 for _ in range(batches * memory_size * features)],
|
D | svdf_relaxed.mod.py | 22 memory_size = 10 variable 28 weights_time = Input("weights_time", "TENSOR_FLOAT32", "{%d, %d}" % (features, memory_size)) 30 state_in = Input("state_in", "TENSOR_FLOAT32", "{%d, %d}" % (batches, memory_size*features)) 33 state_out = IgnoredOutput("state_out", "TENSOR_FLOAT32", "{%d, %d}" % (batches, memory_size*feature… 61 state_in: [0 for _ in range(batches * memory_size * features)], 128 output0 = {state_out: [0 for _ in range(batches * memory_size * features)],
|
D | svdf_bias_present_relaxed.mod.py | 22 memory_size = 10 variable 28 weights_time = Input("weights_time", "TENSOR_FLOAT32", "{%d, %d}" % (features, memory_size)) 30 state_in = Input("state_in", "TENSOR_FLOAT32", "{%d, %d}" % (batches, memory_size*features)) 33 state_out = IgnoredOutput("state_out", "TENSOR_FLOAT32", "{%d, %d}" % (batches, memory_size*feature… 61 state_in: [0 for _ in range(batches * memory_size * features)], 128 output0 = {state_out: [0 for _ in range(batches * memory_size * features)],
|
D | svdf_state_relaxed.mod.py | 20 memory_size = 10 variable 26 weights_time = Input("weights_time", "TENSOR_FLOAT32", "{%d, %d}" % (units, memory_size)) 28 state_in = Input("state_in", "TENSOR_FLOAT32", "{%d, %d}" % (batches, memory_size*units)) 31 state_out = Output("state_out", "TENSOR_FLOAT32", "{%d, %d}" % (batches, memory_size*units))
|
/packages/modules/Virtualization/libs/fdtpci/src/ |
D | lib.rs | 161 let mut memory_size = 0; in parse_ranges() localVariable 184 && size > memory_size.into() in parse_ranges() 191 memory_size = u32::try_from(size).unwrap(); in parse_ranges() 195 if memory_size == 0 { in parse_ranges() 199 Ok(memory_address..memory_address + memory_size) in parse_ranges()
|
/packages/modules/NetworkStack/src/com/android/networkstack/metrics/ |
D | stats.proto | 250 optional int32 memory_size = 2; field
|
/packages/modules/NeuralNetworks/tools/api/ |
D | types.spec | 2418 * get pushed into a memory of fixed-size memory_size. 2419 * * stage 2 performs filtering on the "time" dimension of the memory_size 2460 * A 2-D tensor of shape [num_units, memory_size], where “memory_size” 2465 * A 2-D tensor of shape [batch_size, (memory_size - 1) * num_units * rank]. 2476 * [batch_size, (memory_size - 1) * num_units * rank].
|