1 // Copyright 2022, The Android Open Source Project
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 //     http://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 
15 //! Library for working with (VirtIO) PCI devices discovered from a device tree.
16 
17 #![no_std]
18 
19 use core::{
20     ffi::CStr,
21     fmt::{self, Display, Formatter},
22     ops::Range,
23 };
24 use libfdt::{AddressRange, Fdt, FdtError, FdtNode};
25 use log::debug;
26 use virtio_drivers::transport::pci::bus::{Cam, PciRoot};
27 
28 /// PCI MMIO configuration region size.
29 const PCI_CFG_SIZE: usize = 0x100_0000;
30 
31 /// An error parsing a PCI node from an FDT.
32 #[derive(Clone, Debug, Eq, PartialEq)]
33 pub enum PciError {
34     /// Error getting PCI node from FDT.
35     FdtErrorPci(FdtError),
36     /// Failed to find PCI bus in FDT.
37     FdtNoPci,
38     /// Error getting `reg` property from PCI node.
39     FdtErrorReg(FdtError),
40     /// PCI node missing `reg` property.
41     FdtMissingReg,
42     /// Empty `reg property on PCI node.
43     FdtRegEmpty,
44     /// PCI `reg` property missing size.
45     FdtRegMissingSize,
46     /// PCI CAM size reported by FDT is not what we expected.
47     CamWrongSize(usize),
48     /// Error getting `ranges` property from PCI node.
49     FdtErrorRanges(FdtError),
50     /// PCI node missing `ranges` property.
51     FdtMissingRanges,
52     /// Bus address is not equal to CPU physical address in `ranges` property.
53     RangeAddressMismatch {
54         /// A bus address from the `ranges` property.
55         bus_address: u64,
56         /// The corresponding CPU physical address from the `ranges` property.
57         cpu_physical: u64,
58     },
59     /// No suitable PCI memory range found.
60     NoSuitableRange,
61 }
62 
63 impl Display for PciError {
fmt(&self, f: &mut Formatter) -> fmt::Result64     fn fmt(&self, f: &mut Formatter) -> fmt::Result {
65         match self {
66             Self::FdtErrorPci(e) => write!(f, "Error getting PCI node from FDT: {}", e),
67             Self::FdtNoPci => write!(f, "Failed to find PCI bus in FDT."),
68             Self::FdtErrorReg(e) => write!(f, "Error getting reg property from PCI node: {}", e),
69             Self::FdtMissingReg => write!(f, "PCI node missing reg property."),
70             Self::FdtRegEmpty => write!(f, "Empty reg property on PCI node."),
71             Self::FdtRegMissingSize => write!(f, "PCI reg property missing size."),
72             Self::CamWrongSize(cam_size) => write!(
73                 f,
74                 "FDT says PCI CAM is {} bytes but we expected {}.",
75                 cam_size, PCI_CFG_SIZE
76             ),
77             Self::FdtErrorRanges(e) => {
78                 write!(f, "Error getting ranges property from PCI node: {}", e)
79             }
80             Self::FdtMissingRanges => write!(f, "PCI node missing ranges property."),
81             Self::RangeAddressMismatch { bus_address, cpu_physical } => {
82                 write!(
83                     f,
84                     "bus address {:#018x} != CPU physical address {:#018x}",
85                     bus_address, cpu_physical
86                 )
87             }
88             Self::NoSuitableRange => write!(f, "No suitable PCI memory range found."),
89         }
90     }
91 }
92 
93 /// Information about the PCI bus parsed from the device tree.
94 #[derive(Clone, Debug)]
95 pub struct PciInfo {
96     /// The MMIO range used by the memory-mapped PCI CAM.
97     pub cam_range: Range<usize>,
98     /// The MMIO range from which 32-bit PCI BARs should be allocated.
99     pub bar_range: Range<u32>,
100 }
101 
102 impl PciInfo {
103     /// Finds the PCI node in the FDT, parses its properties and validates it.
from_fdt(fdt: &Fdt) -> Result<Self, PciError>104     pub fn from_fdt(fdt: &Fdt) -> Result<Self, PciError> {
105         let pci_node = pci_node(fdt)?;
106 
107         let cam_range = parse_cam_range(&pci_node)?;
108         let bar_range = parse_ranges(&pci_node)?;
109 
110         Ok(Self { cam_range, bar_range })
111     }
112 
113     /// Returns the `PciRoot` for the memory-mapped CAM found in the FDT. The CAM should be mapped
114     /// before this is called, by calling [`PciInfo::map`].
115     ///
116     /// # Safety
117     ///
118     /// To prevent concurrent access, only one `PciRoot` should exist in the program. Thus this
119     /// method must only be called once, and there must be no other `PciRoot` constructed using the
120     /// same CAM.
make_pci_root(&self) -> PciRoot121     pub unsafe fn make_pci_root(&self) -> PciRoot {
122         // SAFETY: We trust that the FDT gave us a valid MMIO base address for the CAM. The caller
123         // guarantees to only call us once, so there are no other references to it.
124         unsafe { PciRoot::new(self.cam_range.start as *mut u8, Cam::MmioCam) }
125     }
126 }
127 
128 /// Finds an FDT node with compatible=pci-host-cam-generic.
pci_node(fdt: &Fdt) -> Result<FdtNode, PciError>129 fn pci_node(fdt: &Fdt) -> Result<FdtNode, PciError> {
130     fdt.compatible_nodes(CStr::from_bytes_with_nul(b"pci-host-cam-generic\0").unwrap())
131         .map_err(PciError::FdtErrorPci)?
132         .next()
133         .ok_or(PciError::FdtNoPci)
134 }
135 
136 /// Parses the "reg" property of the given PCI FDT node to find the MMIO CAM range.
parse_cam_range(pci_node: &FdtNode) -> Result<Range<usize>, PciError>137 fn parse_cam_range(pci_node: &FdtNode) -> Result<Range<usize>, PciError> {
138     let pci_reg = pci_node
139         .reg()
140         .map_err(PciError::FdtErrorReg)?
141         .ok_or(PciError::FdtMissingReg)?
142         .next()
143         .ok_or(PciError::FdtRegEmpty)?;
144     let cam_addr = pci_reg.addr as usize;
145     let cam_size = pci_reg.size.ok_or(PciError::FdtRegMissingSize)? as usize;
146     debug!("Found PCI CAM at {:#x}-{:#x}", cam_addr, cam_addr + cam_size);
147     // Check that the CAM is the size we expect, so we don't later try accessing it beyond its
148     // bounds. If it is a different size then something is very wrong and we shouldn't continue to
149     // access it; maybe there is some new version of PCI we don't know about.
150     if cam_size != PCI_CFG_SIZE {
151         return Err(PciError::CamWrongSize(cam_size));
152     }
153 
154     Ok(cam_addr..cam_addr + cam_size)
155 }
156 
157 /// Parses the "ranges" property of the given PCI FDT node, and returns the largest suitable range
158 /// to use for non-prefetchable 32-bit memory BARs.
parse_ranges(pci_node: &FdtNode) -> Result<Range<u32>, PciError>159 fn parse_ranges(pci_node: &FdtNode) -> Result<Range<u32>, PciError> {
160     let mut memory_address = 0;
161     let mut memory_size = 0;
162 
163     for AddressRange { addr: (flags, bus_address), parent_addr: cpu_physical, size } in pci_node
164         .ranges::<(u32, u64), u64, u64>()
165         .map_err(PciError::FdtErrorRanges)?
166         .ok_or(PciError::FdtMissingRanges)?
167     {
168         let flags = PciMemoryFlags(flags);
169         let prefetchable = flags.prefetchable();
170         let range_type = flags.range_type();
171         debug!(
172             "range: {:?} {}prefetchable bus address: {:#018x} CPU physical address: {:#018x} size: {:#018x}",
173             range_type,
174             if prefetchable { "" } else { "non-" },
175             bus_address,
176             cpu_physical,
177             size,
178         );
179 
180         // Use a 64-bit range for 32-bit memory, if it is low enough, because crosvm doesn't
181         // currently provide any 32-bit ranges.
182         if !prefetchable
183             && matches!(range_type, PciRangeType::Memory32 | PciRangeType::Memory64)
184             && size > memory_size.into()
185             && bus_address + size < u32::MAX.into()
186         {
187             if bus_address != cpu_physical {
188                 return Err(PciError::RangeAddressMismatch { bus_address, cpu_physical });
189             }
190             memory_address = u32::try_from(cpu_physical).unwrap();
191             memory_size = u32::try_from(size).unwrap();
192         }
193     }
194 
195     if memory_size == 0 {
196         return Err(PciError::NoSuitableRange);
197     }
198 
199     Ok(memory_address..memory_address + memory_size)
200 }
201 
202 /// Encodes memory flags of a PCI range
203 #[derive(Copy, Clone, Debug, Eq, PartialEq)]
204 pub struct PciMemoryFlags(pub u32);
205 
206 impl PciMemoryFlags {
207     /// Returns whether this PCI range is prefetchable
prefetchable(self) -> bool208     pub fn prefetchable(self) -> bool {
209         self.0 & 0x80000000 != 0
210     }
211 
212     /// Returns the type of this PCI range
range_type(self) -> PciRangeType213     pub fn range_type(self) -> PciRangeType {
214         PciRangeType::from((self.0 & 0x3000000) >> 24)
215     }
216 }
217 
218 /// Type of a PCI range
219 #[derive(Copy, Clone, Debug, Eq, PartialEq)]
220 pub enum PciRangeType {
221     /// Range represents the PCI configuration space
222     ConfigurationSpace,
223     /// Range is on IO space
224     IoSpace,
225     /// Range is on 32-bit MMIO space
226     Memory32,
227     /// Range is on 64-bit MMIO space
228     Memory64,
229 }
230 
231 impl From<u32> for PciRangeType {
from(value: u32) -> Self232     fn from(value: u32) -> Self {
233         match value {
234             0 => Self::ConfigurationSpace,
235             1 => Self::IoSpace,
236             2 => Self::Memory32,
237             3 => Self::Memory64,
238             _ => panic!("Tried to convert invalid range type {}", value),
239         }
240     }
241 }
242