1 /*
2 * Copyright (C) 2016 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #ifndef ART_COMPILER_DEBUG_ELF_DEBUG_INFO_WRITER_H_
18 #define ART_COMPILER_DEBUG_ELF_DEBUG_INFO_WRITER_H_
19
20 #include <map>
21 #include <unordered_set>
22 #include <vector>
23
24 #include "art_field-inl.h"
25 #include "base/macros.h"
26 #include "debug/elf_compilation_unit.h"
27 #include "debug/elf_debug_loc_writer.h"
28 #include "debug/method_debug_info.h"
29 #include "dex/code_item_accessors-inl.h"
30 #include "dex/dex_file-inl.h"
31 #include "dex/dex_file.h"
32 #include "dwarf/debug_abbrev_writer.h"
33 #include "dwarf/debug_info_entry_writer.h"
34 #include "elf/elf_builder.h"
35 #include "heap_poisoning.h"
36 #include "linear_alloc-inl.h"
37 #include "mirror/array.h"
38 #include "mirror/class-inl.h"
39 #include "mirror/class.h"
40 #include "oat/oat_file.h"
41 #include "obj_ptr-inl.h"
42
43 namespace art HIDDEN {
44 namespace debug {
45
GetParamNames(const MethodDebugInfo * mi)46 static std::vector<const char*> GetParamNames(const MethodDebugInfo* mi) {
47 std::vector<const char*> names;
48 DCHECK(mi->dex_file != nullptr);
49 CodeItemDebugInfoAccessor accessor(*mi->dex_file, mi->code_item, mi->dex_method_index);
50 if (accessor.HasCodeItem()) {
51 accessor.VisitParameterNames([&](dex::StringIndex string_idx) {
52 names.push_back(string_idx.IsValid() ? mi->dex_file->GetStringData(string_idx) : nullptr);
53 });
54 }
55 return names;
56 }
57
58 // Helper class to write .debug_info and its supporting sections.
59 template<typename ElfTypes>
60 class ElfDebugInfoWriter {
61 using Elf_Addr = typename ElfTypes::Addr;
62
63 public:
ElfDebugInfoWriter(ElfBuilder<ElfTypes> * builder)64 explicit ElfDebugInfoWriter(ElfBuilder<ElfTypes>* builder)
65 : builder_(builder),
66 debug_abbrev_(&debug_abbrev_buffer_) {
67 }
68
Start()69 void Start() {
70 builder_->GetDebugInfo()->Start();
71 }
72
End()73 void End() {
74 builder_->GetDebugInfo()->End();
75 builder_->WriteSection(".debug_abbrev", &debug_abbrev_buffer_);
76 if (!debug_loc_.empty()) {
77 builder_->WriteSection(".debug_loc", &debug_loc_);
78 }
79 if (!debug_ranges_.empty()) {
80 builder_->WriteSection(".debug_ranges", &debug_ranges_);
81 }
82 }
83
84 private:
85 ElfBuilder<ElfTypes>* builder_;
86 std::vector<uint8_t> debug_abbrev_buffer_;
87 dwarf::DebugAbbrevWriter<> debug_abbrev_;
88 std::vector<uint8_t> debug_loc_;
89 std::vector<uint8_t> debug_ranges_;
90
91 std::unordered_set<const char*> defined_dex_classes_; // For CHECKs only.
92
93 template<typename ElfTypes2>
94 friend class ElfCompilationUnitWriter;
95 };
96
97 // Helper class to write one compilation unit.
98 // It holds helper methods and temporary state.
99 template<typename ElfTypes>
100 class ElfCompilationUnitWriter {
101 using Elf_Addr = typename ElfTypes::Addr;
102
103 public:
ElfCompilationUnitWriter(ElfDebugInfoWriter<ElfTypes> * owner)104 explicit ElfCompilationUnitWriter(ElfDebugInfoWriter<ElfTypes>* owner)
105 : owner_(owner),
106 info_(Is64BitInstructionSet(owner_->builder_->GetIsa()), &owner->debug_abbrev_) {
107 }
108
Write(const ElfCompilationUnit & compilation_unit)109 void Write(const ElfCompilationUnit& compilation_unit) {
110 CHECK(!compilation_unit.methods.empty());
111 const Elf_Addr base_address = compilation_unit.is_code_address_text_relative
112 ? owner_->builder_->GetText()->GetAddress()
113 : 0;
114 const bool is64bit = Is64BitInstructionSet(owner_->builder_->GetIsa());
115 using namespace dwarf; // NOLINT. For easy access to DWARF constants.
116
117 info_.StartTag(DW_TAG_compile_unit);
118 info_.WriteString(DW_AT_producer, "Android dex2oat");
119 info_.WriteData1(DW_AT_language, DW_LANG_Java);
120 info_.WriteString(DW_AT_comp_dir, "$JAVA_SRC_ROOT");
121 // The low_pc acts as base address for several other addresses/ranges.
122 info_.WriteAddr(DW_AT_low_pc, base_address + compilation_unit.code_address);
123 info_.WriteSecOffset(DW_AT_stmt_list, compilation_unit.debug_line_offset);
124
125 // Write .debug_ranges entries covering code ranges of the whole compilation unit.
126 dwarf::Writer<> debug_ranges(&owner_->debug_ranges_);
127 info_.WriteSecOffset(DW_AT_ranges, owner_->debug_ranges_.size());
128 for (auto mi : compilation_unit.methods) {
129 uint64_t low_pc = mi->code_address - compilation_unit.code_address;
130 uint64_t high_pc = low_pc + mi->code_size;
131 if (is64bit) {
132 debug_ranges.PushUint64(low_pc);
133 debug_ranges.PushUint64(high_pc);
134 } else {
135 debug_ranges.PushUint32(low_pc);
136 debug_ranges.PushUint32(high_pc);
137 }
138 }
139 if (is64bit) {
140 debug_ranges.PushUint64(0); // End of list.
141 debug_ranges.PushUint64(0);
142 } else {
143 debug_ranges.PushUint32(0); // End of list.
144 debug_ranges.PushUint32(0);
145 }
146
147 const char* last_dex_class_desc = nullptr;
148 for (auto mi : compilation_unit.methods) {
149 DCHECK(mi->dex_file != nullptr);
150 const DexFile* dex = mi->dex_file;
151 CodeItemDebugInfoAccessor accessor(*dex, mi->code_item, mi->dex_method_index);
152 const dex::MethodId& dex_method = dex->GetMethodId(mi->dex_method_index);
153 const dex::ProtoId& dex_proto = dex->GetMethodPrototype(dex_method);
154 const dex::TypeList* dex_params = dex->GetProtoParameters(dex_proto);
155 const char* dex_class_desc = dex->GetMethodDeclaringClassDescriptor(dex_method);
156 const bool is_static = (mi->access_flags & kAccStatic) != 0;
157
158 // Enclose the method in correct class definition.
159 if (last_dex_class_desc != dex_class_desc) {
160 if (last_dex_class_desc != nullptr) {
161 EndClassTag();
162 }
163 // Write reference tag for the class we are about to declare.
164 size_t reference_tag_offset = info_.StartTag(DW_TAG_reference_type);
165 type_cache_.emplace(std::string(dex_class_desc), reference_tag_offset);
166 size_t type_attrib_offset = info_.size();
167 info_.WriteRef4(DW_AT_type, 0);
168 info_.EndTag();
169 // Declare the class that owns this method.
170 size_t class_offset = StartClassTag(dex_class_desc);
171 info_.UpdateUint32(type_attrib_offset, class_offset);
172 info_.WriteFlagPresent(DW_AT_declaration);
173 // Check that each class is defined only once.
174 bool unique = owner_->defined_dex_classes_.insert(dex_class_desc).second;
175 CHECK(unique) << "Redefinition of " << dex_class_desc;
176 last_dex_class_desc = dex_class_desc;
177 }
178
179 int start_depth = info_.Depth();
180 info_.StartTag(DW_TAG_subprogram);
181 WriteName(dex->GetMethodName(dex_method));
182 info_.WriteAddr(DW_AT_low_pc, base_address + mi->code_address);
183 info_.WriteUdata(DW_AT_high_pc, mi->code_size);
184 std::vector<uint8_t> expr_buffer;
185 Expression expr(&expr_buffer);
186 expr.WriteOpCallFrameCfa();
187 info_.WriteExprLoc(DW_AT_frame_base, expr);
188 WriteLazyType(dex->GetReturnTypeDescriptor(dex_proto));
189
190 // Decode dex register locations for all stack maps.
191 // It might be expensive, so do it just once and reuse the result.
192 std::unique_ptr<const CodeInfo> code_info;
193 std::vector<DexRegisterMap> dex_reg_maps;
194 if (accessor.HasCodeItem() && mi->code_info != nullptr) {
195 code_info.reset(new CodeInfo(mi->code_info));
196 for (StackMap stack_map : code_info->GetStackMaps()) {
197 dex_reg_maps.push_back(code_info->GetDexRegisterMapOf(stack_map));
198 }
199 }
200
201 // Write parameters. DecodeDebugLocalInfo returns them as well, but it does not
202 // guarantee order or uniqueness so it is safer to iterate over them manually.
203 // DecodeDebugLocalInfo might not also be available if there is no debug info.
204 std::vector<const char*> param_names = GetParamNames(mi);
205 uint32_t arg_reg = 0;
206 if (!is_static) {
207 info_.StartTag(DW_TAG_formal_parameter);
208 WriteName("this");
209 info_.WriteFlagPresent(DW_AT_artificial);
210 WriteLazyType(dex_class_desc);
211 if (accessor.HasCodeItem()) {
212 // Write the stack location of the parameter.
213 const uint32_t vreg = accessor.RegistersSize() - accessor.InsSize() + arg_reg;
214 const bool is64bitValue = false;
215 WriteRegLocation(mi, dex_reg_maps, vreg, is64bitValue, compilation_unit.code_address);
216 }
217 arg_reg++;
218 info_.EndTag();
219 }
220 if (dex_params != nullptr) {
221 for (uint32_t i = 0; i < dex_params->Size(); ++i) {
222 info_.StartTag(DW_TAG_formal_parameter);
223 // Parameter names may not be always available.
224 if (i < param_names.size()) {
225 WriteName(param_names[i]);
226 }
227 // Write the type.
228 const char* type_desc = dex->GetTypeDescriptor(dex_params->GetTypeItem(i).type_idx_);
229 WriteLazyType(type_desc);
230 const bool is64bitValue = type_desc[0] == 'D' || type_desc[0] == 'J';
231 if (accessor.HasCodeItem()) {
232 // Write the stack location of the parameter.
233 const uint32_t vreg = accessor.RegistersSize() - accessor.InsSize() + arg_reg;
234 WriteRegLocation(mi, dex_reg_maps, vreg, is64bitValue, compilation_unit.code_address);
235 }
236 arg_reg += is64bitValue ? 2 : 1;
237 info_.EndTag();
238 }
239 if (accessor.HasCodeItem()) {
240 DCHECK_EQ(arg_reg, accessor.InsSize());
241 }
242 }
243
244 // Write local variables.
245 std::vector<DexFile::LocalInfo> local_infos;
246 if (accessor.DecodeDebugLocalInfo(is_static,
247 mi->dex_method_index,
248 [&](const DexFile::LocalInfo& entry) {
249 local_infos.push_back(entry);
250 })) {
251 for (const DexFile::LocalInfo& var : local_infos) {
252 if (var.reg_ < accessor.RegistersSize() - accessor.InsSize()) {
253 info_.StartTag(DW_TAG_variable);
254 WriteName(var.name_);
255 WriteLazyType(var.descriptor_);
256 bool is64bitValue = var.descriptor_[0] == 'D' || var.descriptor_[0] == 'J';
257 WriteRegLocation(mi,
258 dex_reg_maps,
259 var.reg_,
260 is64bitValue,
261 compilation_unit.code_address,
262 var.start_address_,
263 var.end_address_);
264 info_.EndTag();
265 }
266 }
267 }
268
269 info_.EndTag();
270 CHECK_EQ(info_.Depth(), start_depth); // Balanced start/end.
271 }
272 if (last_dex_class_desc != nullptr) {
273 EndClassTag();
274 }
275 FinishLazyTypes();
276 CloseNamespacesAboveDepth(0);
277 info_.EndTag(); // DW_TAG_compile_unit
278 CHECK_EQ(info_.Depth(), 0);
279 std::vector<uint8_t> buffer;
280 buffer.reserve(info_.data()->size() + KB);
281 // All compilation units share single table which is at the start of .debug_abbrev.
282 const size_t debug_abbrev_offset = 0;
283 WriteDebugInfoCU(debug_abbrev_offset, info_, &buffer);
284 owner_->builder_->GetDebugInfo()->WriteFully(buffer.data(), buffer.size());
285 }
286
Write(const ArrayRef<mirror::Class * > & types)287 void Write(const ArrayRef<mirror::Class*>& types) REQUIRES_SHARED(Locks::mutator_lock_) {
288 using namespace dwarf; // NOLINT. For easy access to DWARF constants.
289
290 info_.StartTag(DW_TAG_compile_unit);
291 info_.WriteString(DW_AT_producer, "Android dex2oat");
292 info_.WriteData1(DW_AT_language, DW_LANG_Java);
293
294 // Base class references to be patched at the end.
295 std::map<size_t, mirror::Class*> base_class_references;
296
297 // Already written declarations or definitions.
298 std::map<mirror::Class*, size_t> class_declarations;
299
300 std::vector<uint8_t> expr_buffer;
301 for (mirror::Class* type : types) {
302 if (type->IsPrimitive()) {
303 // For primitive types the definition and the declaration is the same.
304 if (type->GetPrimitiveType() != Primitive::kPrimVoid) {
305 WriteTypeDeclaration(type->GetDescriptor(nullptr));
306 }
307 } else if (type->IsArrayClass()) {
308 ObjPtr<mirror::Class> element_type = type->GetComponentType();
309 uint32_t component_size = type->GetComponentSize();
310 uint32_t data_offset = mirror::Array::DataOffset(component_size).Uint32Value();
311 uint32_t length_offset = mirror::Array::LengthOffset().Uint32Value();
312
313 CloseNamespacesAboveDepth(0); // Declare in root namespace.
314 info_.StartTag(DW_TAG_array_type);
315 std::string descriptor_string;
316 WriteLazyType(element_type->GetDescriptor(&descriptor_string));
317 WriteLinkageName(type);
318 info_.WriteUdata(DW_AT_data_member_location, data_offset);
319 info_.StartTag(DW_TAG_subrange_type);
320 Expression count_expr(&expr_buffer);
321 count_expr.WriteOpPushObjectAddress();
322 count_expr.WriteOpPlusUconst(length_offset);
323 count_expr.WriteOpDerefSize(4); // Array length is always 32-bit wide.
324 info_.WriteExprLoc(DW_AT_count, count_expr);
325 info_.EndTag(); // DW_TAG_subrange_type.
326 info_.EndTag(); // DW_TAG_array_type.
327 } else if (type->IsInterface()) {
328 // Skip. Variables cannot have an interface as a dynamic type.
329 // We do not expose the interface information to the debugger in any way.
330 } else {
331 std::string descriptor_string;
332 const char* desc = type->GetDescriptor(&descriptor_string);
333 size_t class_offset = StartClassTag(desc);
334 class_declarations.emplace(type, class_offset);
335
336 if (!type->IsVariableSize()) {
337 info_.WriteUdata(DW_AT_byte_size, type->GetObjectSize());
338 }
339
340 WriteLinkageName(type);
341
342 if (type->IsObjectClass()) {
343 // Generate artificial member which is used to get the dynamic type of variable.
344 // The run-time value of this field will correspond to linkage name of some type.
345 // We need to do it only once in j.l.Object since all other types inherit it.
346 info_.StartTag(DW_TAG_member);
347 WriteName(".dynamic_type");
348 WriteLazyType(sizeof(uintptr_t) == 8 ? "J" : "I");
349 info_.WriteFlagPresent(DW_AT_artificial);
350 // Create DWARF expression to get the value of the methods_ field.
351 Expression expr(&expr_buffer);
352 // The address of the object has been implicitly pushed on the stack.
353 // Dereference the klass_ field of Object (32-bit; possibly poisoned).
354 DCHECK_EQ(type->ClassOffset().Uint32Value(), 0u);
355 DCHECK_EQ(sizeof(mirror::HeapReference<mirror::Class>), 4u);
356 expr.WriteOpDerefSize(4);
357 if (kPoisonHeapReferences) {
358 expr.WriteOpNeg();
359 // DWARF stack is pointer sized. Ensure that the high bits are clear.
360 expr.WriteOpConstu(0xFFFFFFFF);
361 expr.WriteOpAnd();
362 }
363 // Add offset to the methods_ field.
364 expr.WriteOpPlusUconst(mirror::Class::MethodsOffset().Uint32Value());
365 // Top of stack holds the location of the field now.
366 info_.WriteExprLoc(DW_AT_data_member_location, expr);
367 info_.EndTag(); // DW_TAG_member.
368 }
369
370 // Base class.
371 ObjPtr<mirror::Class> base_class = type->GetSuperClass();
372 if (base_class != nullptr) {
373 info_.StartTag(DW_TAG_inheritance);
374 base_class_references.emplace(info_.size(), base_class.Ptr());
375 info_.WriteRef4(DW_AT_type, 0);
376 info_.WriteUdata(DW_AT_data_member_location, 0);
377 info_.WriteSdata(DW_AT_accessibility, DW_ACCESS_public);
378 info_.EndTag(); // DW_TAG_inheritance.
379 }
380
381 // Member variables.
382 for (uint32_t i = 0, count = type->NumInstanceFields(); i < count; ++i) {
383 ArtField* field = type->GetInstanceField(i);
384 info_.StartTag(DW_TAG_member);
385 WriteName(field->GetName());
386 WriteLazyType(field->GetTypeDescriptor());
387 info_.WriteUdata(DW_AT_data_member_location, field->GetOffset().Uint32Value());
388 uint32_t access_flags = field->GetAccessFlags();
389 if (access_flags & kAccPublic) {
390 info_.WriteSdata(DW_AT_accessibility, DW_ACCESS_public);
391 } else if (access_flags & kAccProtected) {
392 info_.WriteSdata(DW_AT_accessibility, DW_ACCESS_protected);
393 } else if (access_flags & kAccPrivate) {
394 info_.WriteSdata(DW_AT_accessibility, DW_ACCESS_private);
395 }
396 info_.EndTag(); // DW_TAG_member.
397 }
398
399 if (type->IsStringClass()) {
400 // Emit debug info about an artifical class member for java.lang.String which represents
401 // the first element of the data stored in a string instance. Consumers of the debug
402 // info will be able to read the content of java.lang.String based on the count (real
403 // field) and based on the location of this data member.
404 info_.StartTag(DW_TAG_member);
405 WriteName("value");
406 // We don't support fields with C like array types so we just say its type is java char.
407 WriteLazyType("C"); // char.
408 info_.WriteUdata(DW_AT_data_member_location,
409 mirror::String::ValueOffset().Uint32Value());
410 info_.WriteSdata(DW_AT_accessibility, DW_ACCESS_private);
411 info_.EndTag(); // DW_TAG_member.
412 }
413
414 EndClassTag();
415 }
416 }
417
418 // Write base class declarations.
419 for (const auto& base_class_reference : base_class_references) {
420 size_t reference_offset = base_class_reference.first;
421 mirror::Class* base_class = base_class_reference.second;
422 const auto it = class_declarations.find(base_class);
423 if (it != class_declarations.end()) {
424 info_.UpdateUint32(reference_offset, it->second);
425 } else {
426 // Declare base class. We can not use the standard WriteLazyType
427 // since we want to avoid the DW_TAG_reference_tag wrapping.
428 std::string tmp_storage;
429 const char* base_class_desc = base_class->GetDescriptor(&tmp_storage);
430 size_t base_class_declaration_offset = StartClassTag(base_class_desc);
431 info_.WriteFlagPresent(DW_AT_declaration);
432 WriteLinkageName(base_class);
433 EndClassTag();
434 class_declarations.emplace(base_class, base_class_declaration_offset);
435 info_.UpdateUint32(reference_offset, base_class_declaration_offset);
436 }
437 }
438
439 FinishLazyTypes();
440 CloseNamespacesAboveDepth(0);
441 info_.EndTag(); // DW_TAG_compile_unit.
442 CHECK_EQ(info_.Depth(), 0);
443 std::vector<uint8_t> buffer;
444 buffer.reserve(info_.data()->size() + KB);
445 // All compilation units share single table which is at the start of .debug_abbrev.
446 const size_t debug_abbrev_offset = 0;
447 WriteDebugInfoCU(debug_abbrev_offset, info_, &buffer);
448 owner_->builder_->GetDebugInfo()->WriteFully(buffer.data(), buffer.size());
449 }
450
451 // Write table into .debug_loc which describes location of dex register.
452 // The dex register might be valid only at some points and it might
453 // move between machine registers and stack.
454 void WriteRegLocation(const MethodDebugInfo* method_info,
455 const std::vector<DexRegisterMap>& dex_register_maps,
456 uint16_t vreg,
457 bool is64bitValue,
458 uint64_t compilation_unit_code_address,
459 uint32_t dex_pc_low = 0,
460 uint32_t dex_pc_high = 0xFFFFFFFF) {
461 WriteDebugLocEntry(method_info,
462 dex_register_maps,
463 vreg,
464 is64bitValue,
465 compilation_unit_code_address,
466 dex_pc_low,
467 dex_pc_high,
468 owner_->builder_->GetIsa(),
469 &info_,
470 &owner_->debug_loc_,
471 &owner_->debug_ranges_);
472 }
473
474 // Linkage name uniquely identifies type.
475 // It is used to determine the dynamic type of objects.
476 // We use the methods_ field of class since it is unique and it is not moved by the GC.
WriteLinkageName(mirror::Class * type)477 void WriteLinkageName(mirror::Class* type) REQUIRES_SHARED(Locks::mutator_lock_) {
478 auto* methods_ptr = type->GetMethodsPtr();
479 if (methods_ptr == nullptr) {
480 // Some types might have no methods. Allocate empty array instead.
481 LinearAlloc* allocator = Runtime::Current()->GetLinearAlloc();
482 void* storage = allocator->Alloc(Thread::Current(),
483 sizeof(LengthPrefixedArray<ArtMethod>),
484 LinearAllocKind::kNoGCRoots);
485 methods_ptr = new (storage) LengthPrefixedArray<ArtMethod>(0);
486 type->SetMethodsPtr(methods_ptr, 0, 0);
487 DCHECK(type->GetMethodsPtr() != nullptr);
488 }
489 char name[32];
490 snprintf(name, sizeof(name), "0x%" PRIXPTR, reinterpret_cast<uintptr_t>(methods_ptr));
491 info_.WriteString(dwarf::DW_AT_linkage_name, name);
492 }
493
494 // Some types are difficult to define as we go since they need
495 // to be enclosed in the right set of namespaces. Therefore we
496 // just define all types lazily at the end of compilation unit.
WriteLazyType(const char * type_descriptor)497 void WriteLazyType(const char* type_descriptor) {
498 if (type_descriptor != nullptr && type_descriptor[0] != 'V') {
499 lazy_types_.emplace(std::string(type_descriptor), info_.size());
500 info_.WriteRef4(dwarf::DW_AT_type, 0);
501 }
502 }
503
FinishLazyTypes()504 void FinishLazyTypes() {
505 for (const auto& lazy_type : lazy_types_) {
506 info_.UpdateUint32(lazy_type.second, WriteTypeDeclaration(lazy_type.first));
507 }
508 lazy_types_.clear();
509 }
510
511 private:
WriteName(const char * name)512 void WriteName(const char* name) {
513 if (name != nullptr) {
514 info_.WriteString(dwarf::DW_AT_name, name);
515 }
516 }
517
518 // Convert dex type descriptor to DWARF.
519 // Returns offset in the compilation unit.
WriteTypeDeclaration(const std::string & desc)520 size_t WriteTypeDeclaration(const std::string& desc) {
521 using namespace dwarf; // NOLINT. For easy access to DWARF constants.
522
523 DCHECK(!desc.empty());
524 const auto it = type_cache_.find(desc);
525 if (it != type_cache_.end()) {
526 return it->second;
527 }
528
529 size_t offset;
530 if (desc[0] == 'L') {
531 // Class type. For example: Lpackage/name;
532 size_t class_offset = StartClassTag(desc.c_str());
533 info_.WriteFlagPresent(DW_AT_declaration);
534 EndClassTag();
535 // Reference to the class type.
536 offset = info_.StartTag(DW_TAG_reference_type);
537 info_.WriteRef(DW_AT_type, class_offset);
538 info_.EndTag();
539 } else if (desc[0] == '[') {
540 // Array type.
541 size_t element_type = WriteTypeDeclaration(desc.substr(1));
542 CloseNamespacesAboveDepth(0); // Declare in root namespace.
543 size_t array_type = info_.StartTag(DW_TAG_array_type);
544 info_.WriteFlagPresent(DW_AT_declaration);
545 info_.WriteRef(DW_AT_type, element_type);
546 info_.EndTag();
547 offset = info_.StartTag(DW_TAG_reference_type);
548 info_.WriteRef4(DW_AT_type, array_type);
549 info_.EndTag();
550 } else {
551 // Primitive types.
552 DCHECK_EQ(desc.size(), 1u);
553
554 const char* name;
555 uint32_t encoding;
556 uint32_t byte_size;
557 switch (desc[0]) {
558 case 'B':
559 name = "byte";
560 encoding = DW_ATE_signed;
561 byte_size = 1;
562 break;
563 case 'C':
564 name = "char";
565 encoding = DW_ATE_UTF;
566 byte_size = 2;
567 break;
568 case 'D':
569 name = "double";
570 encoding = DW_ATE_float;
571 byte_size = 8;
572 break;
573 case 'F':
574 name = "float";
575 encoding = DW_ATE_float;
576 byte_size = 4;
577 break;
578 case 'I':
579 name = "int";
580 encoding = DW_ATE_signed;
581 byte_size = 4;
582 break;
583 case 'J':
584 name = "long";
585 encoding = DW_ATE_signed;
586 byte_size = 8;
587 break;
588 case 'S':
589 name = "short";
590 encoding = DW_ATE_signed;
591 byte_size = 2;
592 break;
593 case 'Z':
594 name = "boolean";
595 encoding = DW_ATE_boolean;
596 byte_size = 1;
597 break;
598 case 'V':
599 LOG(FATAL) << "Void type should not be encoded";
600 UNREACHABLE();
601 default:
602 LOG(FATAL) << "Unknown dex type descriptor: \"" << desc << "\"";
603 UNREACHABLE();
604 }
605 CloseNamespacesAboveDepth(0); // Declare in root namespace.
606 offset = info_.StartTag(DW_TAG_base_type);
607 WriteName(name);
608 info_.WriteData1(DW_AT_encoding, encoding);
609 info_.WriteData1(DW_AT_byte_size, byte_size);
610 info_.EndTag();
611 }
612
613 type_cache_.emplace(desc, offset);
614 return offset;
615 }
616
617 // Start DW_TAG_class_type tag nested in DW_TAG_namespace tags.
618 // Returns offset of the class tag in the compilation unit.
StartClassTag(const char * desc)619 size_t StartClassTag(const char* desc) {
620 std::string name = SetNamespaceForClass(desc);
621 size_t offset = info_.StartTag(dwarf::DW_TAG_class_type);
622 WriteName(name.c_str());
623 return offset;
624 }
625
EndClassTag()626 void EndClassTag() {
627 info_.EndTag();
628 }
629
630 // Set the current namespace nesting to one required by the given class.
631 // Returns the class name with namespaces, 'L', and ';' stripped.
SetNamespaceForClass(const char * desc)632 std::string SetNamespaceForClass(const char* desc) {
633 DCHECK(desc != nullptr && desc[0] == 'L');
634 desc++; // Skip the initial 'L'.
635 size_t depth = 0;
636 for (const char* end; (end = strchr(desc, '/')) != nullptr; desc = end + 1, ++depth) {
637 // Check whether the name at this depth is already what we need.
638 if (depth < current_namespace_.size()) {
639 const std::string& name = current_namespace_[depth];
640 if (name.compare(0, name.size(), desc, end - desc) == 0) {
641 continue;
642 }
643 }
644 // Otherwise we need to open a new namespace tag at this depth.
645 CloseNamespacesAboveDepth(depth);
646 info_.StartTag(dwarf::DW_TAG_namespace);
647 std::string name(desc, end - desc);
648 WriteName(name.c_str());
649 current_namespace_.push_back(std::move(name));
650 }
651 CloseNamespacesAboveDepth(depth);
652 return std::string(desc, strchr(desc, ';') - desc);
653 }
654
655 // Close namespace tags to reach the given nesting depth.
CloseNamespacesAboveDepth(size_t depth)656 void CloseNamespacesAboveDepth(size_t depth) {
657 DCHECK_LE(depth, current_namespace_.size());
658 while (current_namespace_.size() > depth) {
659 info_.EndTag();
660 current_namespace_.pop_back();
661 }
662 }
663
664 // For access to the ELF sections.
665 ElfDebugInfoWriter<ElfTypes>* owner_;
666 // Temporary buffer to create and store the entries.
667 dwarf::DebugInfoEntryWriter<> info_;
668 // Cache of already translated type descriptors.
669 std::map<std::string, size_t> type_cache_; // type_desc -> definition_offset.
670 // 32-bit references which need to be resolved to a type later.
671 // Given type may be used multiple times. Therefore we need a multimap.
672 std::multimap<std::string, size_t> lazy_types_; // type_desc -> patch_offset.
673 // The current set of open namespace tags which are active and not closed yet.
674 std::vector<std::string> current_namespace_;
675 };
676
677 } // namespace debug
678 } // namespace art
679
680 #endif // ART_COMPILER_DEBUG_ELF_DEBUG_INFO_WRITER_H_
681
682