1 /*
2 * Copyright (C) 2012 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "art_method-inl.h"
18 #include "base/callee_save_type.h"
19 #include "base/pointer_size.h"
20 #include "callee_save_frame.h"
21 #include "common_throws.h"
22 #include "class_root-inl.h"
23 #include "debug_print.h"
24 #include "debugger.h"
25 #include "dex/dex_file-inl.h"
26 #include "dex/dex_file_types.h"
27 #include "dex/dex_instruction-inl.h"
28 #include "dex/method_reference.h"
29 #include "entrypoints/entrypoint_utils-inl.h"
30 #include "entrypoints/quick/callee_save_frame.h"
31 #include "entrypoints/runtime_asm_entrypoints.h"
32 #include "gc/accounting/card_table-inl.h"
33 #include "imt_conflict_table.h"
34 #include "imtable-inl.h"
35 #include "instrumentation.h"
36 #include "interpreter/interpreter.h"
37 #include "interpreter/interpreter_common.h"
38 #include "interpreter/shadow_frame-inl.h"
39 #include "jit/jit.h"
40 #include "jit/jit_code_cache.h"
41 #include "linear_alloc.h"
42 #include "method_handles.h"
43 #include "mirror/class-inl.h"
44 #include "mirror/dex_cache-inl.h"
45 #include "mirror/method.h"
46 #include "mirror/method_handle_impl.h"
47 #include "mirror/object-inl.h"
48 #include "mirror/object_array-inl.h"
49 #include "mirror/var_handle.h"
50 #include "oat/oat.h"
51 #include "oat/oat_file.h"
52 #include "oat/oat_quick_method_header.h"
53 #include "quick_exception_handler.h"
54 #include "runtime.h"
55 #include "scoped_thread_state_change-inl.h"
56 #include "stack.h"
57 #include "thread-inl.h"
58 #include "var_handles.h"
59 #include "well_known_classes.h"
60
61 namespace art HIDDEN {
62
63 extern "C" NO_RETURN void artDeoptimizeFromCompiledCode(DeoptimizationKind kind, Thread* self);
64 extern "C" NO_RETURN void artDeoptimize(Thread* self, bool skip_method_exit_callbacks);
65
66 // Visits the arguments as saved to the stack by a CalleeSaveType::kRefAndArgs callee save frame.
67 class QuickArgumentVisitor {
68 // Number of bytes for each out register in the caller method's frame.
69 static constexpr size_t kBytesStackArgLocation = 4;
70 // Frame size in bytes of a callee-save frame for RefsAndArgs.
71 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_FrameSize =
72 RuntimeCalleeSaveFrame::GetFrameSize(CalleeSaveType::kSaveRefsAndArgs);
73 // Offset of first GPR arg.
74 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset =
75 RuntimeCalleeSaveFrame::GetGpr1Offset(CalleeSaveType::kSaveRefsAndArgs);
76 // Offset of first FPR arg.
77 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset =
78 RuntimeCalleeSaveFrame::GetFpr1Offset(CalleeSaveType::kSaveRefsAndArgs);
79 // Offset of return address.
80 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_ReturnPcOffset =
81 RuntimeCalleeSaveFrame::GetReturnPcOffset(CalleeSaveType::kSaveRefsAndArgs);
82 #if defined(__arm__)
83 // The callee save frame is pointed to by SP.
84 // | argN | |
85 // | ... | |
86 // | arg4 | |
87 // | arg3 spill | | Caller's frame
88 // | arg2 spill | |
89 // | arg1 spill | |
90 // | Method* | ---
91 // | LR |
92 // | ... | 4x6 bytes callee saves
93 // | R3 |
94 // | R2 |
95 // | R1 |
96 // | S15 |
97 // | : |
98 // | S0 |
99 // | | 4x2 bytes padding
100 // | Method* | <- sp
101 static constexpr bool kSplitPairAcrossRegisterAndStack = false;
102 static constexpr bool kAlignPairRegister = true;
103 static constexpr bool kQuickSoftFloatAbi = false;
104 static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = true;
105 static constexpr bool kQuickSkipOddFpRegisters = false;
106 static constexpr size_t kNumQuickGprArgs = 3;
107 static constexpr size_t kNumQuickFprArgs = 16;
108 static constexpr bool kGprFprLockstep = false;
109 static constexpr bool kNaNBoxing = false;
GprIndexToGprOffset(uint32_t gpr_index)110 static size_t GprIndexToGprOffset(uint32_t gpr_index) {
111 return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
112 }
113 #elif defined(__aarch64__)
114 // The callee save frame is pointed to by SP.
115 // | argN | |
116 // | ... | |
117 // | arg4 | |
118 // | arg3 spill | | Caller's frame
119 // | arg2 spill | |
120 // | arg1 spill | |
121 // | Method* | ---
122 // | LR |
123 // | X29 |
124 // | : |
125 // | X20 |
126 // | X7 |
127 // | : |
128 // | X1 |
129 // | D7 |
130 // | : |
131 // | D0 |
132 // | | padding
133 // | Method* | <- sp
134 static constexpr bool kSplitPairAcrossRegisterAndStack = false;
135 static constexpr bool kAlignPairRegister = false;
136 static constexpr bool kQuickSoftFloatAbi = false; // This is a hard float ABI.
137 static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false;
138 static constexpr bool kQuickSkipOddFpRegisters = false;
139 static constexpr size_t kNumQuickGprArgs = 7; // 7 arguments passed in GPRs.
140 static constexpr size_t kNumQuickFprArgs = 8; // 8 arguments passed in FPRs.
141 static constexpr bool kGprFprLockstep = false;
142 static constexpr bool kNaNBoxing = false;
GprIndexToGprOffset(uint32_t gpr_index)143 static size_t GprIndexToGprOffset(uint32_t gpr_index) {
144 return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
145 }
146 #elif defined(__riscv)
147 // The callee save frame is pointed to by SP.
148 // | argN | |
149 // | ... | |
150 // | reg. arg spills | | Caller's frame
151 // | Method* | ---
152 // | RA |
153 // | S11/X27 | callee-saved 11
154 // | S10/X26 | callee-saved 10
155 // | S9/X25 | callee-saved 9
156 // | S9/X24 | callee-saved 8
157 // | S7/X23 | callee-saved 7
158 // | S6/X22 | callee-saved 6
159 // | S5/X21 | callee-saved 5
160 // | S4/X20 | callee-saved 4
161 // | S3/X19 | callee-saved 3
162 // | S2/X18 | callee-saved 2
163 // | A7/X17 | arg 7
164 // | A6/X16 | arg 6
165 // | A5/X15 | arg 5
166 // | A4/X14 | arg 4
167 // | A3/X13 | arg 3
168 // | A2/X12 | arg 2
169 // | A1/X11 | arg 1 (A0 is the method => skipped)
170 // | S0/X8/FP | callee-saved 0 (S1 is TR => skipped)
171 // | FA7 | float arg 8
172 // | FA6 | float arg 7
173 // | FA5 | float arg 6
174 // | FA4 | float arg 5
175 // | FA3 | float arg 4
176 // | FA2 | float arg 3
177 // | FA1 | float arg 2
178 // | FA0 | float arg 1
179 // | A0/Method* | <- sp
180 static constexpr bool kSplitPairAcrossRegisterAndStack = false;
181 static constexpr bool kAlignPairRegister = false;
182 static constexpr bool kQuickSoftFloatAbi = false;
183 static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false;
184 static constexpr bool kQuickSkipOddFpRegisters = false;
185 static constexpr size_t kNumQuickGprArgs = 7;
186 static constexpr size_t kNumQuickFprArgs = 8;
187 static constexpr bool kGprFprLockstep = false;
188 static constexpr bool kNaNBoxing = true;
GprIndexToGprOffset(uint32_t gpr_index)189 static size_t GprIndexToGprOffset(uint32_t gpr_index) {
190 return (gpr_index + 1) * GetBytesPerGprSpillLocation(kRuntimeISA); // skip S0/X8/FP
191 }
192 #elif defined(__i386__)
193 // The callee save frame is pointed to by SP.
194 // | argN | |
195 // | ... | |
196 // | arg4 | |
197 // | arg3 spill | | Caller's frame
198 // | arg2 spill | |
199 // | arg1 spill | |
200 // | Method* | ---
201 // | Return |
202 // | EBP,ESI,EDI | callee saves
203 // | EBX | arg3
204 // | EDX | arg2
205 // | ECX | arg1
206 // | XMM3 | float arg 4
207 // | XMM2 | float arg 3
208 // | XMM1 | float arg 2
209 // | XMM0 | float arg 1
210 // | EAX/Method* | <- sp
211 static constexpr bool kSplitPairAcrossRegisterAndStack = false;
212 static constexpr bool kAlignPairRegister = false;
213 static constexpr bool kQuickSoftFloatAbi = false; // This is a hard float ABI.
214 static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false;
215 static constexpr bool kQuickSkipOddFpRegisters = false;
216 static constexpr size_t kNumQuickGprArgs = 3; // 3 arguments passed in GPRs.
217 static constexpr size_t kNumQuickFprArgs = 4; // 4 arguments passed in FPRs.
218 static constexpr bool kGprFprLockstep = false;
219 static constexpr bool kNaNBoxing = false;
GprIndexToGprOffset(uint32_t gpr_index)220 static size_t GprIndexToGprOffset(uint32_t gpr_index) {
221 return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
222 }
223 #elif defined(__x86_64__)
224 // The callee save frame is pointed to by SP.
225 // | argN | |
226 // | ... | |
227 // | reg. arg spills | | Caller's frame
228 // | Method* | ---
229 // | Return |
230 // | R15 | callee save
231 // | R14 | callee save
232 // | R13 | callee save
233 // | R12 | callee save
234 // | R9 | arg5
235 // | R8 | arg4
236 // | RSI/R6 | arg1
237 // | RBP/R5 | callee save
238 // | RBX/R3 | callee save
239 // | RDX/R2 | arg2
240 // | RCX/R1 | arg3
241 // | XMM7 | float arg 8
242 // | XMM6 | float arg 7
243 // | XMM5 | float arg 6
244 // | XMM4 | float arg 5
245 // | XMM3 | float arg 4
246 // | XMM2 | float arg 3
247 // | XMM1 | float arg 2
248 // | XMM0 | float arg 1
249 // | Padding |
250 // | RDI/Method* | <- sp
251 static constexpr bool kSplitPairAcrossRegisterAndStack = false;
252 static constexpr bool kAlignPairRegister = false;
253 static constexpr bool kQuickSoftFloatAbi = false; // This is a hard float ABI.
254 static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false;
255 static constexpr bool kQuickSkipOddFpRegisters = false;
256 static constexpr size_t kNumQuickGprArgs = 5; // 5 arguments passed in GPRs.
257 static constexpr size_t kNumQuickFprArgs = 8; // 8 arguments passed in FPRs.
258 static constexpr bool kGprFprLockstep = false;
259 static constexpr bool kNaNBoxing = false;
GprIndexToGprOffset(uint32_t gpr_index)260 static size_t GprIndexToGprOffset(uint32_t gpr_index) {
261 switch (gpr_index) {
262 case 0: return (4 * GetBytesPerGprSpillLocation(kRuntimeISA));
263 case 1: return (1 * GetBytesPerGprSpillLocation(kRuntimeISA));
264 case 2: return (0 * GetBytesPerGprSpillLocation(kRuntimeISA));
265 case 3: return (5 * GetBytesPerGprSpillLocation(kRuntimeISA));
266 case 4: return (6 * GetBytesPerGprSpillLocation(kRuntimeISA));
267 default:
268 LOG(FATAL) << "Unexpected GPR index: " << gpr_index;
269 UNREACHABLE();
270 }
271 }
272 #else
273 #error "Unsupported architecture"
274 #endif
275
276 public:
NaNBoxing()277 static constexpr bool NaNBoxing() { return kNaNBoxing; }
278
GetThisObjectReference(ArtMethod ** sp)279 static StackReference<mirror::Object>* GetThisObjectReference(ArtMethod** sp)
280 REQUIRES_SHARED(Locks::mutator_lock_) {
281 CHECK_GT(kNumQuickGprArgs, 0u);
282 constexpr uint32_t kThisGprIndex = 0u; // 'this' is in the 1st GPR.
283 size_t this_arg_offset = kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset +
284 GprIndexToGprOffset(kThisGprIndex);
285 uint8_t* this_arg_address = reinterpret_cast<uint8_t*>(sp) + this_arg_offset;
286 return reinterpret_cast<StackReference<mirror::Object>*>(this_arg_address);
287 }
288
GetCallingMethodAndDexPc(ArtMethod ** sp,uint32_t * dex_pc)289 static ArtMethod* GetCallingMethodAndDexPc(ArtMethod** sp, uint32_t* dex_pc)
290 REQUIRES_SHARED(Locks::mutator_lock_) {
291 DCHECK((*sp)->IsCalleeSaveMethod());
292 return GetCalleeSaveMethodCallerAndDexPc(sp, CalleeSaveType::kSaveRefsAndArgs, dex_pc);
293 }
294
GetCallingMethod(ArtMethod ** sp)295 static ArtMethod* GetCallingMethod(ArtMethod** sp) REQUIRES_SHARED(Locks::mutator_lock_) {
296 uint32_t dex_pc;
297 return GetCallingMethodAndDexPc(sp, &dex_pc);
298 }
299
GetOuterMethod(ArtMethod ** sp)300 static ArtMethod* GetOuterMethod(ArtMethod** sp) REQUIRES_SHARED(Locks::mutator_lock_) {
301 DCHECK((*sp)->IsCalleeSaveMethod());
302 uint8_t* previous_sp =
303 reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_FrameSize;
304 return *reinterpret_cast<ArtMethod**>(previous_sp);
305 }
306
GetCallingPcAddr(ArtMethod ** sp)307 static uint8_t* GetCallingPcAddr(ArtMethod** sp) REQUIRES_SHARED(Locks::mutator_lock_) {
308 DCHECK((*sp)->IsCalleeSaveMethod());
309 uint8_t* return_adress_spill =
310 reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_ReturnPcOffset;
311 return return_adress_spill;
312 }
313
314 // For the given quick ref and args quick frame, return the caller's PC.
GetCallingPc(ArtMethod ** sp)315 static uintptr_t GetCallingPc(ArtMethod** sp) REQUIRES_SHARED(Locks::mutator_lock_) {
316 return *reinterpret_cast<uintptr_t*>(GetCallingPcAddr(sp));
317 }
318
QuickArgumentVisitor(ArtMethod ** sp,bool is_static,std::string_view shorty)319 QuickArgumentVisitor(ArtMethod** sp, bool is_static, std::string_view shorty)
320 REQUIRES_SHARED(Locks::mutator_lock_)
321 : is_static_(is_static),
322 shorty_(shorty),
323 gpr_args_(reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset),
324 fpr_args_(reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset),
325 stack_args_(reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_FrameSize +
326 sizeof(ArtMethod*)), // Skip ArtMethod*.
327 gpr_index_(0),
328 fpr_index_(0),
329 fpr_double_index_(0),
330 stack_index_(0),
331 cur_type_(Primitive::kPrimVoid),
332 is_split_long_or_double_(false) {
333 static_assert(kQuickSoftFloatAbi == (kNumQuickFprArgs == 0),
334 "Number of Quick FPR arguments unexpected");
335 static_assert(!(kQuickSoftFloatAbi && kQuickDoubleRegAlignedFloatBackFilled),
336 "Double alignment unexpected");
337 // For register alignment, we want to assume that counters(fpr_double_index_) are even if the
338 // next register is even.
339 static_assert(!kQuickDoubleRegAlignedFloatBackFilled || kNumQuickFprArgs % 2 == 0,
340 "Number of Quick FPR arguments not even");
341 DCHECK_EQ(Runtime::Current()->GetClassLinker()->GetImagePointerSize(), kRuntimePointerSize);
342 }
343
~QuickArgumentVisitor()344 virtual ~QuickArgumentVisitor() {}
345
346 virtual void Visit() = 0;
347
GetParamPrimitiveType() const348 Primitive::Type GetParamPrimitiveType() const {
349 return cur_type_;
350 }
351
GetParamAddress() const352 uint8_t* GetParamAddress() const {
353 if (!kQuickSoftFloatAbi) {
354 Primitive::Type type = GetParamPrimitiveType();
355 if (UNLIKELY((type == Primitive::kPrimDouble) || (type == Primitive::kPrimFloat))) {
356 if (type == Primitive::kPrimDouble && kQuickDoubleRegAlignedFloatBackFilled) {
357 if (fpr_double_index_ + 2 < kNumQuickFprArgs + 1) {
358 return fpr_args_ + (fpr_double_index_ * GetBytesPerFprSpillLocation(kRuntimeISA));
359 }
360 } else if (fpr_index_ + 1 < kNumQuickFprArgs + 1) {
361 return fpr_args_ + (fpr_index_ * GetBytesPerFprSpillLocation(kRuntimeISA));
362 }
363 return stack_args_ + (stack_index_ * kBytesStackArgLocation);
364 }
365 }
366 if (gpr_index_ < kNumQuickGprArgs) {
367 return gpr_args_ + GprIndexToGprOffset(gpr_index_);
368 }
369 return stack_args_ + (stack_index_ * kBytesStackArgLocation);
370 }
371
IsSplitLongOrDouble() const372 bool IsSplitLongOrDouble() const {
373 if ((GetBytesPerGprSpillLocation(kRuntimeISA) == 4) ||
374 (GetBytesPerFprSpillLocation(kRuntimeISA) == 4)) {
375 return is_split_long_or_double_;
376 } else {
377 return false; // An optimization for when GPR and FPRs are 64bit.
378 }
379 }
380
IsParamAReference() const381 bool IsParamAReference() const {
382 return GetParamPrimitiveType() == Primitive::kPrimNot;
383 }
384
IsParamALongOrDouble() const385 bool IsParamALongOrDouble() const {
386 Primitive::Type type = GetParamPrimitiveType();
387 return type == Primitive::kPrimLong || type == Primitive::kPrimDouble;
388 }
389
ReadSplitLongParam() const390 uint64_t ReadSplitLongParam() const {
391 // The splitted long is always available through the stack.
392 return *reinterpret_cast<uint64_t*>(stack_args_
393 + stack_index_ * kBytesStackArgLocation);
394 }
395
IncGprIndex()396 void IncGprIndex() {
397 gpr_index_++;
398 if (kGprFprLockstep) {
399 fpr_index_++;
400 }
401 }
402
IncFprIndex()403 void IncFprIndex() {
404 fpr_index_++;
405 if (kGprFprLockstep) {
406 gpr_index_++;
407 }
408 }
409
VisitArguments()410 void VisitArguments() REQUIRES_SHARED(Locks::mutator_lock_) {
411 // (a) 'stack_args_' should point to the first method's argument
412 // (b) whatever the argument type it is, the 'stack_index_' should
413 // be moved forward along with every visiting.
414 gpr_index_ = 0;
415 fpr_index_ = 0;
416 if (kQuickDoubleRegAlignedFloatBackFilled) {
417 fpr_double_index_ = 0;
418 }
419 stack_index_ = 0;
420 if (!is_static_) { // Handle this.
421 cur_type_ = Primitive::kPrimNot;
422 is_split_long_or_double_ = false;
423 Visit();
424 stack_index_++;
425 if (kNumQuickGprArgs > 0) {
426 IncGprIndex();
427 }
428 }
429 for (char c : shorty_.substr(1u)) {
430 cur_type_ = Primitive::GetType(c);
431 switch (cur_type_) {
432 case Primitive::kPrimNot:
433 case Primitive::kPrimBoolean:
434 case Primitive::kPrimByte:
435 case Primitive::kPrimChar:
436 case Primitive::kPrimShort:
437 case Primitive::kPrimInt:
438 is_split_long_or_double_ = false;
439 Visit();
440 stack_index_++;
441 if (gpr_index_ < kNumQuickGprArgs) {
442 IncGprIndex();
443 }
444 break;
445 case Primitive::kPrimFloat:
446 is_split_long_or_double_ = false;
447 Visit();
448 stack_index_++;
449 if (kQuickSoftFloatAbi) {
450 if (gpr_index_ < kNumQuickGprArgs) {
451 IncGprIndex();
452 }
453 } else {
454 if (fpr_index_ + 1 < kNumQuickFprArgs + 1) {
455 IncFprIndex();
456 if (kQuickDoubleRegAlignedFloatBackFilled) {
457 // Double should not overlap with float.
458 // For example, if fpr_index_ = 3, fpr_double_index_ should be at least 4.
459 fpr_double_index_ = std::max(fpr_double_index_, RoundUp(fpr_index_, 2));
460 // Float should not overlap with double.
461 if (fpr_index_ % 2 == 0) {
462 fpr_index_ = std::max(fpr_double_index_, fpr_index_);
463 }
464 } else if (kQuickSkipOddFpRegisters) {
465 IncFprIndex();
466 }
467 }
468 }
469 break;
470 case Primitive::kPrimDouble:
471 case Primitive::kPrimLong:
472 if (kQuickSoftFloatAbi || (cur_type_ == Primitive::kPrimLong)) {
473 if (cur_type_ == Primitive::kPrimLong &&
474 gpr_index_ == 0 &&
475 kAlignPairRegister) {
476 // Currently, this is only for ARM, where we align long parameters with
477 // even-numbered registers by skipping R1 and using R2 instead.
478 IncGprIndex();
479 }
480 is_split_long_or_double_ = (GetBytesPerGprSpillLocation(kRuntimeISA) == 4) &&
481 ((gpr_index_ + 1) == kNumQuickGprArgs);
482 if (!kSplitPairAcrossRegisterAndStack && is_split_long_or_double_) {
483 // We don't want to split this. Pass over this register.
484 gpr_index_++;
485 is_split_long_or_double_ = false;
486 }
487 Visit();
488 if (kBytesStackArgLocation == 4) {
489 stack_index_+= 2;
490 } else {
491 CHECK_EQ(kBytesStackArgLocation, 8U);
492 stack_index_++;
493 }
494 if (gpr_index_ < kNumQuickGprArgs) {
495 IncGprIndex();
496 if (GetBytesPerGprSpillLocation(kRuntimeISA) == 4) {
497 if (gpr_index_ < kNumQuickGprArgs) {
498 IncGprIndex();
499 }
500 }
501 }
502 } else {
503 is_split_long_or_double_ = (GetBytesPerFprSpillLocation(kRuntimeISA) == 4) &&
504 ((fpr_index_ + 1) == kNumQuickFprArgs) && !kQuickDoubleRegAlignedFloatBackFilled;
505 Visit();
506 if (kBytesStackArgLocation == 4) {
507 stack_index_+= 2;
508 } else {
509 CHECK_EQ(kBytesStackArgLocation, 8U);
510 stack_index_++;
511 }
512 if (kQuickDoubleRegAlignedFloatBackFilled) {
513 if (fpr_double_index_ + 2 < kNumQuickFprArgs + 1) {
514 fpr_double_index_ += 2;
515 // Float should not overlap with double.
516 if (fpr_index_ % 2 == 0) {
517 fpr_index_ = std::max(fpr_double_index_, fpr_index_);
518 }
519 }
520 } else if (fpr_index_ + 1 < kNumQuickFprArgs + 1) {
521 IncFprIndex();
522 if (GetBytesPerFprSpillLocation(kRuntimeISA) == 4) {
523 if (fpr_index_ + 1 < kNumQuickFprArgs + 1) {
524 IncFprIndex();
525 }
526 }
527 }
528 }
529 break;
530 default:
531 LOG(FATAL) << "Unexpected type: " << cur_type_ << " in " << shorty_;
532 }
533 }
534 }
535
536 protected:
537 const bool is_static_;
538 const std::string_view shorty_;
539
540 private:
541 uint8_t* const gpr_args_; // Address of GPR arguments in callee save frame.
542 uint8_t* const fpr_args_; // Address of FPR arguments in callee save frame.
543 uint8_t* const stack_args_; // Address of stack arguments in caller's frame.
544 uint32_t gpr_index_; // Index into spilled GPRs.
545 // Index into spilled FPRs.
546 // In case kQuickDoubleRegAlignedFloatBackFilled, it may index a hole while fpr_double_index_
547 // holds a higher register number.
548 uint32_t fpr_index_;
549 // Index into spilled FPRs for aligned double.
550 // Only used when kQuickDoubleRegAlignedFloatBackFilled. Next available double register indexed in
551 // terms of singles, may be behind fpr_index.
552 uint32_t fpr_double_index_;
553 uint32_t stack_index_; // Index into arguments on the stack.
554 // The current type of argument during VisitArguments.
555 Primitive::Type cur_type_;
556 // Does a 64bit parameter straddle the register and stack arguments?
557 bool is_split_long_or_double_;
558 };
559
560 // Returns the 'this' object of a proxy method. This function is only used by StackVisitor. It
561 // allows to use the QuickArgumentVisitor constants without moving all the code in its own module.
artQuickGetProxyThisObject(ArtMethod ** sp)562 extern "C" mirror::Object* artQuickGetProxyThisObject(ArtMethod** sp)
563 REQUIRES_SHARED(Locks::mutator_lock_) {
564 DCHECK((*sp)->IsProxyMethod());
565 return QuickArgumentVisitor::GetThisObjectReference(sp)->AsMirrorPtr();
566 }
567
568 // Visits arguments on the stack placing them into the shadow frame.
569 class BuildQuickShadowFrameVisitor final : public QuickArgumentVisitor {
570 public:
BuildQuickShadowFrameVisitor(ArtMethod ** sp,bool is_static,std::string_view shorty,ShadowFrame * sf,size_t first_arg_reg)571 BuildQuickShadowFrameVisitor(ArtMethod** sp,
572 bool is_static,
573 std::string_view shorty,
574 ShadowFrame* sf,
575 size_t first_arg_reg)
576 : QuickArgumentVisitor(sp, is_static, shorty), sf_(sf), cur_reg_(first_arg_reg) {}
577
578 void Visit() REQUIRES_SHARED(Locks::mutator_lock_) override;
579
580 private:
581 ShadowFrame* const sf_;
582 uint32_t cur_reg_;
583
584 DISALLOW_COPY_AND_ASSIGN(BuildQuickShadowFrameVisitor);
585 };
586
Visit()587 void BuildQuickShadowFrameVisitor::Visit() {
588 Primitive::Type type = GetParamPrimitiveType();
589 switch (type) {
590 case Primitive::kPrimLong: // Fall-through.
591 case Primitive::kPrimDouble:
592 if (IsSplitLongOrDouble()) {
593 sf_->SetVRegLong(cur_reg_, ReadSplitLongParam());
594 } else {
595 sf_->SetVRegLong(cur_reg_, *reinterpret_cast<jlong*>(GetParamAddress()));
596 }
597 ++cur_reg_;
598 break;
599 case Primitive::kPrimNot: {
600 StackReference<mirror::Object>* stack_ref =
601 reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress());
602 sf_->SetVRegReference(cur_reg_, stack_ref->AsMirrorPtr());
603 }
604 break;
605 case Primitive::kPrimBoolean: // Fall-through.
606 case Primitive::kPrimByte: // Fall-through.
607 case Primitive::kPrimChar: // Fall-through.
608 case Primitive::kPrimShort: // Fall-through.
609 case Primitive::kPrimInt: // Fall-through.
610 case Primitive::kPrimFloat:
611 sf_->SetVReg(cur_reg_, *reinterpret_cast<jint*>(GetParamAddress()));
612 break;
613 case Primitive::kPrimVoid:
614 LOG(FATAL) << "UNREACHABLE";
615 UNREACHABLE();
616 }
617 ++cur_reg_;
618 }
619
620 // Don't inline. See b/65159206.
621 NO_INLINE
HandleDeoptimization(JValue * result,ArtMethod * method,ShadowFrame * deopt_frame,ManagedStack * fragment)622 static void HandleDeoptimization(JValue* result,
623 ArtMethod* method,
624 ShadowFrame* deopt_frame,
625 ManagedStack* fragment)
626 REQUIRES_SHARED(Locks::mutator_lock_) {
627 // Coming from partial-fragment deopt.
628 Thread* self = Thread::Current();
629 if (kIsDebugBuild) {
630 // Consistency-check: are the methods as expected? We check that the last shadow frame
631 // (the bottom of the call-stack) corresponds to the called method.
632 ShadowFrame* linked = deopt_frame;
633 while (linked->GetLink() != nullptr) {
634 linked = linked->GetLink();
635 }
636 CHECK_EQ(method, linked->GetMethod()) << method->PrettyMethod() << " "
637 << ArtMethod::PrettyMethod(linked->GetMethod());
638 }
639
640 if (VLOG_IS_ON(deopt)) {
641 // Print out the stack to verify that it was a partial-fragment deopt.
642 LOG(INFO) << "Continue-ing from deopt. Stack is:";
643 QuickExceptionHandler::DumpFramesWithType(self, true);
644 }
645
646 ObjPtr<mirror::Throwable> pending_exception;
647 bool from_code = false;
648 DeoptimizationMethodType method_type;
649 self->PopDeoptimizationContext(/* out */ result,
650 /* out */ &pending_exception,
651 /* out */ &from_code,
652 /* out */ &method_type);
653
654 // Push a transition back into managed code onto the linked list in thread.
655 self->PushManagedStackFragment(fragment);
656
657 // Ensure that the stack is still in order.
658 if (kIsDebugBuild) {
659 class EntireStackVisitor : public StackVisitor {
660 public:
661 explicit EntireStackVisitor(Thread* self_in) REQUIRES_SHARED(Locks::mutator_lock_)
662 : StackVisitor(self_in, nullptr, StackVisitor::StackWalkKind::kIncludeInlinedFrames) {}
663
664 bool VisitFrame() override REQUIRES_SHARED(Locks::mutator_lock_) {
665 // Nothing to do here. In a debug build, ValidateFrame will do the work in the walking
666 // logic. Just always say we want to continue.
667 return true;
668 }
669 };
670 EntireStackVisitor esv(self);
671 esv.WalkStack();
672 }
673
674 // Restore the exception that was pending before deoptimization then interpret the
675 // deoptimized frames.
676 if (pending_exception != nullptr) {
677 self->SetException(pending_exception);
678 }
679 interpreter::EnterInterpreterFromDeoptimize(self,
680 deopt_frame,
681 result,
682 from_code,
683 method_type);
684 }
685
NanBoxResultIfNeeded(int64_t result,char result_shorty)686 static int64_t NanBoxResultIfNeeded(int64_t result, char result_shorty) {
687 return (QuickArgumentVisitor::NaNBoxing() && result_shorty == 'F')
688 ? result | UINT64_C(0xffffffff00000000)
689 : result;
690 }
691
692 NO_STACK_PROTECTOR
artQuickToInterpreterBridge(ArtMethod * method,Thread * self,ArtMethod ** sp)693 extern "C" uint64_t artQuickToInterpreterBridge(ArtMethod* method, Thread* self, ArtMethod** sp)
694 REQUIRES_SHARED(Locks::mutator_lock_) {
695 // Ensure we don't get thread suspension until the object arguments are safely in the shadow
696 // frame.
697 ScopedQuickEntrypointChecks sqec(self);
698
699 if (UNLIKELY(!method->IsInvokable())) {
700 method->ThrowInvocationTimeError(
701 method->IsStatic()
702 ? nullptr
703 : QuickArgumentVisitor::GetThisObjectReference(sp)->AsMirrorPtr());
704 return 0;
705 }
706
707 DCHECK(!method->IsNative()) << method->PrettyMethod();
708
709 JValue result;
710
711 ArtMethod* non_proxy_method = method->GetInterfaceMethodIfProxy(kRuntimePointerSize);
712 DCHECK(non_proxy_method->GetCodeItem() != nullptr) << method->PrettyMethod();
713 std::string_view shorty = non_proxy_method->GetShortyView();
714
715 ManagedStack fragment;
716 ShadowFrame* deopt_frame = self->MaybePopDeoptimizedStackedShadowFrame();
717 if (UNLIKELY(deopt_frame != nullptr)) {
718 HandleDeoptimization(&result, method, deopt_frame, &fragment);
719 } else {
720 CodeItemDataAccessor accessor(non_proxy_method->DexInstructionData());
721 const char* old_cause = self->StartAssertNoThreadSuspension(
722 "Building interpreter shadow frame");
723 uint16_t num_regs = accessor.RegistersSize();
724 // No last shadow coming from quick.
725 ShadowFrameAllocaUniquePtr shadow_frame_unique_ptr =
726 CREATE_SHADOW_FRAME(num_regs, method, /* dex_pc= */ 0);
727 ShadowFrame* shadow_frame = shadow_frame_unique_ptr.get();
728 size_t first_arg_reg = accessor.RegistersSize() - accessor.InsSize();
729 BuildQuickShadowFrameVisitor shadow_frame_builder(
730 sp, method->IsStatic(), shorty, shadow_frame, first_arg_reg);
731 shadow_frame_builder.VisitArguments();
732 self->EndAssertNoThreadSuspension(old_cause);
733
734 // Potentially run <clinit> before pushing the shadow frame. We do not want
735 // to have the called method on the stack if there is an exception.
736 if (!EnsureInitialized(self, shadow_frame)) {
737 DCHECK(self->IsExceptionPending());
738 return 0;
739 }
740
741 // Push a transition back into managed code onto the linked list in thread.
742 self->PushManagedStackFragment(&fragment);
743 self->PushShadowFrame(shadow_frame);
744 result = interpreter::EnterInterpreterFromEntryPoint(self, accessor, shadow_frame);
745 }
746
747 // Pop transition.
748 self->PopManagedStackFragment(fragment);
749
750 // Check if caller needs to be deoptimized for instrumentation reasons.
751 instrumentation::Instrumentation* instr = Runtime::Current()->GetInstrumentation();
752 if (UNLIKELY(instr->ShouldDeoptimizeCaller(self, sp))) {
753 ArtMethod* caller = QuickArgumentVisitor::GetOuterMethod(sp);
754 uintptr_t caller_pc = QuickArgumentVisitor::GetCallingPc(sp);
755 DCHECK(Runtime::Current()->IsAsyncDeoptimizeable(caller, caller_pc));
756 DCHECK(caller != nullptr);
757 DCHECK(self->GetException() != Thread::GetDeoptimizationException());
758 // Push the context of the deoptimization stack so we can restore the return value and the
759 // exception before executing the deoptimized frames.
760 self->PushDeoptimizationContext(result,
761 shorty[0] == 'L' || shorty[0] == '[', // class or array
762 self->GetException(),
763 /* from_code= */ false,
764 DeoptimizationMethodType::kDefault);
765
766 // Set special exception to cause deoptimization.
767 self->SetException(Thread::GetDeoptimizationException());
768 }
769
770 // No need to restore the args since the method has already been run by the interpreter.
771 return NanBoxResultIfNeeded(result.GetJ(), shorty[0]);
772 }
773
774 // Visits arguments on the stack placing them into the args vector, Object* arguments are converted
775 // to jobjects.
776 class BuildQuickArgumentVisitor final : public QuickArgumentVisitor {
777 public:
BuildQuickArgumentVisitor(ArtMethod ** sp,bool is_static,std::string_view shorty,ScopedObjectAccessUnchecked * soa,std::vector<jvalue> * args)778 BuildQuickArgumentVisitor(ArtMethod** sp,
779 bool is_static,
780 std::string_view shorty,
781 ScopedObjectAccessUnchecked* soa,
782 std::vector<jvalue>* args)
783 : QuickArgumentVisitor(sp, is_static, shorty), soa_(soa), args_(args) {}
784
785 void Visit() REQUIRES_SHARED(Locks::mutator_lock_) override;
786
787 private:
788 ScopedObjectAccessUnchecked* const soa_;
789 std::vector<jvalue>* const args_;
790
791 DISALLOW_COPY_AND_ASSIGN(BuildQuickArgumentVisitor);
792 };
793
Visit()794 void BuildQuickArgumentVisitor::Visit() {
795 jvalue val;
796 Primitive::Type type = GetParamPrimitiveType();
797 switch (type) {
798 case Primitive::kPrimNot: {
799 StackReference<mirror::Object>* stack_ref =
800 reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress());
801 val.l = soa_->AddLocalReference<jobject>(stack_ref->AsMirrorPtr());
802 break;
803 }
804 case Primitive::kPrimLong: // Fall-through.
805 case Primitive::kPrimDouble:
806 if (IsSplitLongOrDouble()) {
807 val.j = ReadSplitLongParam();
808 } else {
809 val.j = *reinterpret_cast<jlong*>(GetParamAddress());
810 }
811 break;
812 case Primitive::kPrimBoolean: // Fall-through.
813 case Primitive::kPrimByte: // Fall-through.
814 case Primitive::kPrimChar: // Fall-through.
815 case Primitive::kPrimShort: // Fall-through.
816 case Primitive::kPrimInt: // Fall-through.
817 case Primitive::kPrimFloat:
818 val.i = *reinterpret_cast<jint*>(GetParamAddress());
819 break;
820 case Primitive::kPrimVoid:
821 LOG(FATAL) << "UNREACHABLE";
822 UNREACHABLE();
823 }
824 args_->push_back(val);
825 }
826
827 // Handler for invocation on proxy methods. On entry a frame will exist for the proxy object method
828 // which is responsible for recording callee save registers. We explicitly place into jobjects the
829 // incoming reference arguments (so they survive GC). We invoke the invocation handler, which is a
830 // field within the proxy object, which will box the primitive arguments and deal with error cases.
artQuickProxyInvokeHandler(ArtMethod * proxy_method,mirror::Object * receiver,Thread * self,ArtMethod ** sp)831 extern "C" uint64_t artQuickProxyInvokeHandler(
832 ArtMethod* proxy_method, mirror::Object* receiver, Thread* self, ArtMethod** sp)
833 REQUIRES_SHARED(Locks::mutator_lock_) {
834 DCHECK(proxy_method->IsProxyMethod()) << proxy_method->PrettyMethod();
835 DCHECK(receiver->GetClass()->IsProxyClass()) << proxy_method->PrettyMethod();
836 // Ensure we don't get thread suspension until the object arguments are safely in jobjects.
837 const char* old_cause =
838 self->StartAssertNoThreadSuspension("Adding to IRT proxy object arguments");
839 // Register the top of the managed stack, making stack crawlable.
840 DCHECK_EQ((*sp), proxy_method) << proxy_method->PrettyMethod();
841 self->VerifyStack();
842 // Start new JNI local reference state.
843 JNIEnvExt* env = self->GetJniEnv();
844 ScopedObjectAccessUnchecked soa(env);
845 ScopedJniEnvLocalRefState env_state(env);
846 // Create local ref. copies of proxy method and the receiver.
847 jobject rcvr_jobj = soa.AddLocalReference<jobject>(receiver);
848
849 // Placing arguments into args vector and remove the receiver.
850 ArtMethod* non_proxy_method = proxy_method->GetInterfaceMethodIfProxy(kRuntimePointerSize);
851 CHECK(!non_proxy_method->IsStatic()) << proxy_method->PrettyMethod() << " "
852 << non_proxy_method->PrettyMethod();
853 std::vector<jvalue> args;
854 uint32_t shorty_len = 0;
855 const char* raw_shorty = non_proxy_method->GetShorty(&shorty_len);
856 std::string_view shorty(raw_shorty, shorty_len);
857 BuildQuickArgumentVisitor local_ref_visitor(sp, /* is_static= */ false, shorty, &soa, &args);
858
859 local_ref_visitor.VisitArguments();
860 DCHECK_GT(args.size(), 0U) << proxy_method->PrettyMethod();
861 args.erase(args.begin());
862
863 // Convert proxy method into expected interface method.
864 ArtMethod* interface_method = proxy_method->FindOverriddenMethod(kRuntimePointerSize);
865 DCHECK(interface_method != nullptr) << proxy_method->PrettyMethod();
866 DCHECK(!interface_method->IsProxyMethod()) << interface_method->PrettyMethod();
867 self->EndAssertNoThreadSuspension(old_cause);
868 DCHECK_EQ(Runtime::Current()->GetClassLinker()->GetImagePointerSize(), kRuntimePointerSize);
869 DCHECK(!Runtime::Current()->IsActiveTransaction());
870 ObjPtr<mirror::Method> interface_reflect_method =
871 mirror::Method::CreateFromArtMethod<kRuntimePointerSize>(soa.Self(), interface_method);
872 if (interface_reflect_method == nullptr) {
873 soa.Self()->AssertPendingOOMException();
874 return 0;
875 }
876 jobject interface_method_jobj = soa.AddLocalReference<jobject>(interface_reflect_method);
877
878 // All naked Object*s should now be in jobjects, so its safe to go into the main invoke code
879 // that performs allocations or instrumentation events.
880 instrumentation::Instrumentation* instr = Runtime::Current()->GetInstrumentation();
881 if (instr->HasMethodEntryListeners()) {
882 instr->MethodEnterEvent(soa.Self(), proxy_method);
883 if (soa.Self()->IsExceptionPending()) {
884 instr->MethodUnwindEvent(self,
885 proxy_method,
886 0);
887 return 0;
888 }
889 }
890 JValue result =
891 InvokeProxyInvocationHandler(soa, raw_shorty, rcvr_jobj, interface_method_jobj, args);
892 if (soa.Self()->IsExceptionPending()) {
893 if (instr->HasMethodUnwindListeners()) {
894 instr->MethodUnwindEvent(self,
895 proxy_method,
896 0);
897 }
898 } else if (instr->HasMethodExitListeners()) {
899 instr->MethodExitEvent(self,
900 proxy_method,
901 {},
902 result);
903 }
904
905 return NanBoxResultIfNeeded(result.GetJ(), shorty[0]);
906 }
907
908 // Visitor returning a reference argument at a given position in a Quick stack frame.
909 // NOTE: Only used for testing purposes.
910 class GetQuickReferenceArgumentAtVisitor final : public QuickArgumentVisitor {
911 public:
GetQuickReferenceArgumentAtVisitor(ArtMethod ** sp,std::string_view shorty,size_t arg_pos)912 GetQuickReferenceArgumentAtVisitor(ArtMethod** sp, std::string_view shorty, size_t arg_pos)
913 : QuickArgumentVisitor(sp, /* is_static= */ false, shorty),
914 cur_pos_(0u),
915 arg_pos_(arg_pos),
916 ref_arg_(nullptr) {
917 CHECK_LT(arg_pos, shorty.length()) << "Argument position greater than the number arguments";
918 }
919
Visit()920 void Visit() REQUIRES_SHARED(Locks::mutator_lock_) override {
921 if (cur_pos_ == arg_pos_) {
922 Primitive::Type type = GetParamPrimitiveType();
923 CHECK_EQ(type, Primitive::kPrimNot) << "Argument at searched position is not a reference";
924 ref_arg_ = reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress());
925 }
926 ++cur_pos_;
927 }
928
GetReferenceArgument()929 StackReference<mirror::Object>* GetReferenceArgument() {
930 return ref_arg_;
931 }
932
933 private:
934 // The position of the currently visited argument.
935 size_t cur_pos_;
936 // The position of the searched argument.
937 const size_t arg_pos_;
938 // The reference argument, if found.
939 StackReference<mirror::Object>* ref_arg_;
940
941 DISALLOW_COPY_AND_ASSIGN(GetQuickReferenceArgumentAtVisitor);
942 };
943
944 // Returning reference argument at position `arg_pos` in Quick stack frame at address `sp`.
945 // NOTE: Only used for testing purposes.
artQuickGetProxyReferenceArgumentAt(size_t arg_pos,ArtMethod ** sp)946 EXPORT extern "C" StackReference<mirror::Object>* artQuickGetProxyReferenceArgumentAt(
947 size_t arg_pos, ArtMethod** sp) REQUIRES_SHARED(Locks::mutator_lock_) {
948 ArtMethod* proxy_method = *sp;
949 ArtMethod* non_proxy_method = proxy_method->GetInterfaceMethodIfProxy(kRuntimePointerSize);
950 CHECK(!non_proxy_method->IsStatic())
951 << proxy_method->PrettyMethod() << " " << non_proxy_method->PrettyMethod();
952 std::string_view shorty = non_proxy_method->GetShortyView();
953 GetQuickReferenceArgumentAtVisitor ref_arg_visitor(sp, shorty, arg_pos);
954 ref_arg_visitor.VisitArguments();
955 StackReference<mirror::Object>* ref_arg = ref_arg_visitor.GetReferenceArgument();
956 return ref_arg;
957 }
958
959 // Visitor returning all the reference arguments in a Quick stack frame.
960 class GetQuickReferenceArgumentsVisitor final : public QuickArgumentVisitor {
961 public:
GetQuickReferenceArgumentsVisitor(ArtMethod ** sp,bool is_static,std::string_view shorty)962 GetQuickReferenceArgumentsVisitor(ArtMethod** sp, bool is_static, std::string_view shorty)
963 : QuickArgumentVisitor(sp, is_static, shorty) {}
964
Visit()965 void Visit() REQUIRES_SHARED(Locks::mutator_lock_) override {
966 Primitive::Type type = GetParamPrimitiveType();
967 if (type == Primitive::kPrimNot) {
968 StackReference<mirror::Object>* ref_arg =
969 reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress());
970 ref_args_.push_back(ref_arg);
971 }
972 }
973
GetReferenceArguments()974 std::vector<StackReference<mirror::Object>*> GetReferenceArguments() {
975 return ref_args_;
976 }
977
978 private:
979 // The reference arguments.
980 std::vector<StackReference<mirror::Object>*> ref_args_;
981
982 DISALLOW_COPY_AND_ASSIGN(GetQuickReferenceArgumentsVisitor);
983 };
984
985 // Returning all reference arguments in Quick stack frame at address `sp`.
GetProxyReferenceArguments(ArtMethod ** sp)986 std::vector<StackReference<mirror::Object>*> GetProxyReferenceArguments(ArtMethod** sp)
987 REQUIRES_SHARED(Locks::mutator_lock_) {
988 ArtMethod* proxy_method = *sp;
989 ArtMethod* non_proxy_method = proxy_method->GetInterfaceMethodIfProxy(kRuntimePointerSize);
990 CHECK(!non_proxy_method->IsStatic())
991 << proxy_method->PrettyMethod() << " " << non_proxy_method->PrettyMethod();
992 std::string_view shorty = non_proxy_method->GetShortyView();
993 GetQuickReferenceArgumentsVisitor ref_args_visitor(sp, /*is_static=*/ false, shorty);
994 ref_args_visitor.VisitArguments();
995 std::vector<StackReference<mirror::Object>*> ref_args = ref_args_visitor.GetReferenceArguments();
996 return ref_args;
997 }
998
999 // Read object references held in arguments from quick frames and place in a JNI local references,
1000 // so they don't get garbage collected.
1001 class RememberForGcArgumentVisitor final : public QuickArgumentVisitor {
1002 public:
RememberForGcArgumentVisitor(ArtMethod ** sp,bool is_static,std::string_view shorty,ScopedObjectAccessUnchecked * soa)1003 RememberForGcArgumentVisitor(ArtMethod** sp,
1004 bool is_static,
1005 std::string_view shorty,
1006 ScopedObjectAccessUnchecked* soa)
1007 : QuickArgumentVisitor(sp, is_static, shorty), soa_(soa) {}
1008
1009 void Visit() REQUIRES_SHARED(Locks::mutator_lock_) override;
1010
1011 void FixupReferences() REQUIRES_SHARED(Locks::mutator_lock_);
1012
1013 private:
1014 ScopedObjectAccessUnchecked* const soa_;
1015 // References which we must update when exiting in case the GC moved the objects.
1016 std::vector<std::pair<jobject, StackReference<mirror::Object>*> > references_;
1017
1018 DISALLOW_COPY_AND_ASSIGN(RememberForGcArgumentVisitor);
1019 };
1020
Visit()1021 void RememberForGcArgumentVisitor::Visit() {
1022 if (IsParamAReference()) {
1023 StackReference<mirror::Object>* stack_ref =
1024 reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress());
1025 jobject reference =
1026 soa_->AddLocalReference<jobject>(stack_ref->AsMirrorPtr());
1027 references_.push_back(std::make_pair(reference, stack_ref));
1028 }
1029 }
1030
FixupReferences()1031 void RememberForGcArgumentVisitor::FixupReferences() {
1032 // Fixup any references which may have changed.
1033 for (const auto& pair : references_) {
1034 pair.second->Assign(soa_->Decode<mirror::Object>(pair.first));
1035 soa_->Env()->DeleteLocalRef(pair.first);
1036 }
1037 }
1038
DumpInstruction(ArtMethod * method,uint32_t dex_pc)1039 static std::string DumpInstruction(ArtMethod* method, uint32_t dex_pc)
1040 REQUIRES_SHARED(Locks::mutator_lock_) {
1041 if (dex_pc == static_cast<uint32_t>(-1)) {
1042 CHECK(method == WellKnownClasses::java_lang_String_charAt);
1043 return "<native>";
1044 } else {
1045 CodeItemInstructionAccessor accessor = method->DexInstructions();
1046 CHECK_LT(dex_pc, accessor.InsnsSizeInCodeUnits());
1047 return accessor.InstructionAt(dex_pc).DumpString(method->GetDexFile());
1048 }
1049 }
1050
DumpB74410240ClassData(ObjPtr<mirror::Class> klass)1051 static void DumpB74410240ClassData(ObjPtr<mirror::Class> klass)
1052 REQUIRES_SHARED(Locks::mutator_lock_) {
1053 std::string storage;
1054 const char* descriptor = klass->GetDescriptor(&storage);
1055 LOG(FATAL_WITHOUT_ABORT) << " " << DescribeLoaders(klass->GetClassLoader(), descriptor);
1056 const OatDexFile* oat_dex_file = klass->GetDexFile().GetOatDexFile();
1057 if (oat_dex_file != nullptr) {
1058 const OatFile* oat_file = oat_dex_file->GetOatFile();
1059 const char* dex2oat_cmdline =
1060 oat_file->GetOatHeader().GetStoreValueByKey(OatHeader::kDex2OatCmdLineKey);
1061 LOG(FATAL_WITHOUT_ABORT) << " OatFile: " << oat_file->GetLocation()
1062 << "; " << (dex2oat_cmdline != nullptr ? dex2oat_cmdline : "<not recorded>");
1063 }
1064 }
1065
DumpB74410240DebugData(ArtMethod ** sp)1066 static void DumpB74410240DebugData(ArtMethod** sp) REQUIRES_SHARED(Locks::mutator_lock_) {
1067 // Mimick the search for the caller and dump some data while doing so.
1068 LOG(FATAL_WITHOUT_ABORT) << "Dumping debugging data, please attach a bugreport to b/74410240.";
1069
1070 constexpr CalleeSaveType type = CalleeSaveType::kSaveRefsAndArgs;
1071 CHECK_EQ(*sp, Runtime::Current()->GetCalleeSaveMethod(type));
1072
1073 constexpr size_t callee_frame_size = RuntimeCalleeSaveFrame::GetFrameSize(type);
1074 auto** caller_sp = reinterpret_cast<ArtMethod**>(
1075 reinterpret_cast<uintptr_t>(sp) + callee_frame_size);
1076 constexpr size_t callee_return_pc_offset = RuntimeCalleeSaveFrame::GetReturnPcOffset(type);
1077 uintptr_t caller_pc = *reinterpret_cast<uintptr_t*>(
1078 (reinterpret_cast<uint8_t*>(sp) + callee_return_pc_offset));
1079 ArtMethod* outer_method = *caller_sp;
1080
1081 const OatQuickMethodHeader* current_code = outer_method->GetOatQuickMethodHeader(caller_pc);
1082 CHECK(current_code != nullptr);
1083 CHECK(current_code->IsOptimized());
1084 uintptr_t native_pc_offset = current_code->NativeQuickPcOffset(caller_pc);
1085 CodeInfo code_info(current_code);
1086 StackMap stack_map = code_info.GetStackMapForNativePcOffset(native_pc_offset);
1087 CHECK(stack_map.IsValid());
1088 uint32_t dex_pc = stack_map.GetDexPc();
1089
1090 // Log the outer method and its associated dex file and class table pointer which can be used
1091 // to find out if the inlined methods were defined by other dex file(s) or class loader(s).
1092 ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
1093 LOG(FATAL_WITHOUT_ABORT) << "Outer: " << outer_method->PrettyMethod()
1094 << " native pc: " << caller_pc
1095 << " dex pc: " << dex_pc
1096 << " dex file: " << outer_method->GetDexFile()->GetLocation()
1097 << " class table: " << class_linker->ClassTableForClassLoader(outer_method->GetClassLoader());
1098 DumpB74410240ClassData(outer_method->GetDeclaringClass());
1099 LOG(FATAL_WITHOUT_ABORT) << " instruction: " << DumpInstruction(outer_method, dex_pc);
1100
1101 ArtMethod* caller = outer_method;
1102 BitTableRange<InlineInfo> inline_infos = code_info.GetInlineInfosOf(stack_map);
1103 for (InlineInfo inline_info : inline_infos) {
1104 const char* tag = "";
1105 dex_pc = inline_info.GetDexPc();
1106 if (inline_info.EncodesArtMethod()) {
1107 tag = "encoded ";
1108 caller = inline_info.GetArtMethod();
1109 } else {
1110 uint32_t method_index = code_info.GetMethodIndexOf(inline_info);
1111 if (dex_pc == static_cast<uint32_t>(-1)) {
1112 tag = "special ";
1113 CHECK(inline_info.Equals(inline_infos.back()));
1114 caller = WellKnownClasses::java_lang_String_charAt;
1115 CHECK_EQ(caller->GetDexMethodIndex(), method_index);
1116 } else {
1117 ObjPtr<mirror::DexCache> dex_cache = caller->GetDexCache();
1118 ObjPtr<mirror::ClassLoader> class_loader = caller->GetClassLoader();
1119 caller = class_linker->LookupResolvedMethod(method_index, dex_cache, class_loader);
1120 CHECK(caller != nullptr);
1121 }
1122 }
1123 LOG(FATAL_WITHOUT_ABORT) << "InlineInfo #" << inline_info.Row()
1124 << ": " << tag << caller->PrettyMethod()
1125 << " dex pc: " << dex_pc
1126 << " dex file: " << caller->GetDexFile()->GetLocation()
1127 << " class table: "
1128 << class_linker->ClassTableForClassLoader(caller->GetClassLoader());
1129 DumpB74410240ClassData(caller->GetDeclaringClass());
1130 LOG(FATAL_WITHOUT_ABORT) << " instruction: " << DumpInstruction(caller, dex_pc);
1131 }
1132 }
1133
1134 // Lazily resolve a method for quick. Called by stub code.
artQuickResolutionTrampoline(ArtMethod * called,mirror::Object * receiver,Thread * self,ArtMethod ** sp)1135 extern "C" const void* artQuickResolutionTrampoline(
1136 ArtMethod* called, mirror::Object* receiver, Thread* self, ArtMethod** sp)
1137 REQUIRES_SHARED(Locks::mutator_lock_) {
1138 // The resolution trampoline stashes the resolved method into the callee-save frame to transport
1139 // it. Thus, when exiting, the stack cannot be verified (as the resolved method most likely
1140 // does not have the same stack layout as the callee-save method).
1141 ScopedQuickEntrypointChecks sqec(self, kIsDebugBuild, false);
1142 // Start new JNI local reference state
1143 JNIEnvExt* env = self->GetJniEnv();
1144 ScopedObjectAccessUnchecked soa(env);
1145 ScopedJniEnvLocalRefState env_state(env);
1146 const char* old_cause = self->StartAssertNoThreadSuspension("Quick method resolution set up");
1147
1148 // Compute details about the called method (avoid GCs)
1149 ClassLinker* linker = Runtime::Current()->GetClassLinker();
1150 InvokeType invoke_type;
1151 MethodReference called_method(nullptr, 0);
1152 const bool called_method_known_on_entry = !called->IsRuntimeMethod();
1153 ArtMethod* caller = nullptr;
1154 if (!called_method_known_on_entry) {
1155 uint32_t dex_pc;
1156 caller = QuickArgumentVisitor::GetCallingMethodAndDexPc(sp, &dex_pc);
1157 called_method.dex_file = caller->GetDexFile();
1158
1159 {
1160 CodeItemInstructionAccessor accessor(caller->DexInstructions());
1161 CHECK_LT(dex_pc, accessor.InsnsSizeInCodeUnits());
1162 const Instruction& instr = accessor.InstructionAt(dex_pc);
1163 Instruction::Code instr_code = instr.Opcode();
1164 bool is_range;
1165 switch (instr_code) {
1166 case Instruction::INVOKE_DIRECT:
1167 invoke_type = kDirect;
1168 is_range = false;
1169 break;
1170 case Instruction::INVOKE_DIRECT_RANGE:
1171 invoke_type = kDirect;
1172 is_range = true;
1173 break;
1174 case Instruction::INVOKE_STATIC:
1175 invoke_type = kStatic;
1176 is_range = false;
1177 break;
1178 case Instruction::INVOKE_STATIC_RANGE:
1179 invoke_type = kStatic;
1180 is_range = true;
1181 break;
1182 case Instruction::INVOKE_SUPER:
1183 invoke_type = kSuper;
1184 is_range = false;
1185 break;
1186 case Instruction::INVOKE_SUPER_RANGE:
1187 invoke_type = kSuper;
1188 is_range = true;
1189 break;
1190 case Instruction::INVOKE_VIRTUAL:
1191 invoke_type = kVirtual;
1192 is_range = false;
1193 break;
1194 case Instruction::INVOKE_VIRTUAL_RANGE:
1195 invoke_type = kVirtual;
1196 is_range = true;
1197 break;
1198 case Instruction::INVOKE_INTERFACE:
1199 invoke_type = kInterface;
1200 is_range = false;
1201 break;
1202 case Instruction::INVOKE_INTERFACE_RANGE:
1203 invoke_type = kInterface;
1204 is_range = true;
1205 break;
1206 default:
1207 DumpB74410240DebugData(sp);
1208 LOG(FATAL) << "Unexpected call into trampoline: " << instr.DumpString(nullptr);
1209 UNREACHABLE();
1210 }
1211 called_method.index = (is_range) ? instr.VRegB_3rc() : instr.VRegB_35c();
1212 VLOG(dex) << "Accessed dex file for invoke " << invoke_type << " "
1213 << called_method.index;
1214 }
1215 } else {
1216 invoke_type = kStatic;
1217 called_method.dex_file = called->GetDexFile();
1218 called_method.index = called->GetDexMethodIndex();
1219 }
1220 std::string_view shorty =
1221 called_method.dex_file->GetMethodShortyView(called_method.GetMethodId());
1222 RememberForGcArgumentVisitor visitor(sp, invoke_type == kStatic, shorty, &soa);
1223 visitor.VisitArguments();
1224 self->EndAssertNoThreadSuspension(old_cause);
1225 const bool virtual_or_interface = invoke_type == kVirtual || invoke_type == kInterface;
1226 // Resolve method filling in dex cache.
1227 if (!called_method_known_on_entry) {
1228 StackHandleScope<1> hs(self);
1229 mirror::Object* fake_receiver = nullptr;
1230 HandleWrapper<mirror::Object> h_receiver(
1231 hs.NewHandleWrapper(virtual_or_interface ? &receiver : &fake_receiver));
1232 DCHECK_EQ(caller->GetDexFile(), called_method.dex_file);
1233 called = linker->ResolveMethod<ClassLinker::ResolveMode::kCheckICCEAndIAE>(
1234 self, called_method.index, caller, invoke_type);
1235 }
1236 const void* code = nullptr;
1237 if (LIKELY(!self->IsExceptionPending())) {
1238 // Incompatible class change should have been handled in resolve method.
1239 CHECK(!called->CheckIncompatibleClassChange(invoke_type))
1240 << called->PrettyMethod() << " " << invoke_type;
1241 if (virtual_or_interface || invoke_type == kSuper) {
1242 // Refine called method based on receiver for kVirtual/kInterface, and
1243 // caller for kSuper.
1244 ArtMethod* orig_called = called;
1245 if (invoke_type == kVirtual) {
1246 CHECK(receiver != nullptr) << invoke_type;
1247 called = receiver->GetClass()->FindVirtualMethodForVirtual(called, kRuntimePointerSize);
1248 } else if (invoke_type == kInterface) {
1249 CHECK(receiver != nullptr) << invoke_type;
1250 called = receiver->GetClass()->FindVirtualMethodForInterface(called, kRuntimePointerSize);
1251 } else {
1252 DCHECK_EQ(invoke_type, kSuper);
1253 CHECK(caller != nullptr) << invoke_type;
1254 ObjPtr<mirror::Class> ref_class = linker->LookupResolvedType(
1255 caller->GetDexFile()->GetMethodId(called_method.index).class_idx_, caller);
1256 if (ref_class->IsInterface()) {
1257 called = ref_class->FindVirtualMethodForInterfaceSuper(called, kRuntimePointerSize);
1258 } else {
1259 called = caller->GetDeclaringClass()->GetSuperClass()->GetVTableEntry(
1260 called->GetMethodIndex(), kRuntimePointerSize);
1261 }
1262 }
1263
1264 CHECK(called != nullptr) << orig_called->PrettyMethod() << " "
1265 << mirror::Object::PrettyTypeOf(receiver) << " "
1266 << invoke_type << " " << orig_called->GetVtableIndex();
1267 }
1268 // Now that we know the actual target, update .bss entry in oat file, if
1269 // any.
1270 if (!called_method_known_on_entry) {
1271 // We only put non copied methods in the BSS. Putting a copy can lead to an
1272 // odd situation where the ArtMethod being executed is unrelated to the
1273 // receiver of the method.
1274 called = called->GetCanonicalMethod();
1275 if (invoke_type == kSuper || invoke_type == kInterface || invoke_type == kVirtual) {
1276 if (called->GetDexFile() == called_method.dex_file) {
1277 called_method.index = called->GetDexMethodIndex();
1278 } else {
1279 called_method.index = called->FindDexMethodIndexInOtherDexFile(
1280 *called_method.dex_file, called_method.index);
1281 DCHECK_NE(called_method.index, dex::kDexNoIndex);
1282 }
1283 }
1284 ArtMethod* outer_method = QuickArgumentVisitor::GetOuterMethod(sp);
1285 MaybeUpdateBssMethodEntry(called, called_method, outer_method);
1286 }
1287
1288 // Static invokes need class initialization check but instance invokes can proceed even if
1289 // the class is erroneous, i.e. in the edge case of escaping instances of erroneous classes.
1290 bool success = true;
1291 if (called->StillNeedsClinitCheck()) {
1292 // Ensure that the called method's class is initialized.
1293 StackHandleScope<1> hs(soa.Self());
1294 Handle<mirror::Class> h_called_class = hs.NewHandle(called->GetDeclaringClass());
1295 success = linker->EnsureInitialized(soa.Self(), h_called_class, true, true);
1296 }
1297 if (success) {
1298 // When the clinit check is at entry of the AOT/nterp code, we do the clinit check
1299 // before doing the suspend check. To ensure the code sees the latest
1300 // version of the class (the code doesn't do a read barrier to reduce
1301 // size), do a suspend check now.
1302 self->CheckSuspend();
1303 instrumentation::Instrumentation* instrumentation = Runtime::Current()->GetInstrumentation();
1304 // Check if we need instrumented code here. Since resolution stubs could suspend, it is
1305 // possible that we instrumented the entry points after we started executing the resolution
1306 // stub.
1307 code = instrumentation->GetMaybeInstrumentedCodeForInvoke(called);
1308 } else {
1309 DCHECK(called->GetDeclaringClass()->IsErroneous());
1310 DCHECK(self->IsExceptionPending());
1311 }
1312 }
1313 CHECK_EQ(code == nullptr, self->IsExceptionPending());
1314 // Fixup any locally saved objects may have moved during a GC.
1315 visitor.FixupReferences();
1316 // Place called method in callee-save frame to be placed as first argument to quick method.
1317 *sp = called;
1318
1319 return code;
1320 }
1321
1322 /*
1323 * This class uses a couple of observations to unite the different calling conventions through
1324 * a few constants.
1325 *
1326 * 1) Number of registers used for passing is normally even, so counting down has no penalty for
1327 * possible alignment.
1328 * 2) Known 64b architectures store 8B units on the stack, both for integral and floating point
1329 * types, so using uintptr_t is OK. Also means that we can use kRegistersNeededX to denote
1330 * when we have to split things
1331 * 3) The only soft-float, Arm, is 32b, so no widening needs to be taken into account for floats
1332 * and we can use Int handling directly.
1333 * 4) Only 64b architectures widen, and their stack is aligned 8B anyways, so no padding code
1334 * necessary when widening. Also, widening of Ints will take place implicitly, and the
1335 * extension should be compatible with Aarch64, which mandates copying the available bits
1336 * into LSB and leaving the rest unspecified.
1337 * 5) Aligning longs and doubles is necessary on arm only, and it's the same in registers and on
1338 * the stack.
1339 * 6) There is only little endian.
1340 *
1341 *
1342 * Actual work is supposed to be done in a delegate of the template type. The interface is as
1343 * follows:
1344 *
1345 * void PushGpr(uintptr_t): Add a value for the next GPR
1346 *
1347 * void PushFpr4(float): Add a value for the next FPR of size 32b. Is only called if we need
1348 * padding, that is, think the architecture is 32b and aligns 64b.
1349 *
1350 * void PushFpr8(uint64_t): Push a double. We _will_ call this on 32b, it's the callee's job to
1351 * split this if necessary. The current state will have aligned, if
1352 * necessary.
1353 *
1354 * void PushStack(uintptr_t): Push a value to the stack.
1355 */
1356 template<class T> class BuildNativeCallFrameStateMachine {
1357 public:
1358 static constexpr bool kNaNBoxing = QuickArgumentVisitor::NaNBoxing();
1359 #if defined(__arm__)
1360 static constexpr bool kNativeSoftFloatAbi = true;
1361 static constexpr bool kNativeSoftFloatAfterHardFloat = false;
1362 static constexpr size_t kNumNativeGprArgs = 4; // 4 arguments passed in GPRs, r0-r3
1363 static constexpr size_t kNumNativeFprArgs = 0; // 0 arguments passed in FPRs.
1364
1365 static constexpr size_t kRegistersNeededForLong = 2;
1366 static constexpr size_t kRegistersNeededForDouble = 2;
1367 static constexpr bool kMultiRegistersAligned = true;
1368 static constexpr bool kMultiGPRegistersWidened = false;
1369 static constexpr bool kAlignLongOnStack = true;
1370 static constexpr bool kAlignDoubleOnStack = true;
1371 #elif defined(__aarch64__)
1372 static constexpr bool kNativeSoftFloatAbi = false; // This is a hard float ABI.
1373 static constexpr bool kNativeSoftFloatAfterHardFloat = false;
1374 static constexpr size_t kNumNativeGprArgs = 8; // 8 arguments passed in GPRs.
1375 static constexpr size_t kNumNativeFprArgs = 8; // 8 arguments passed in FPRs.
1376
1377 static constexpr size_t kRegistersNeededForLong = 1;
1378 static constexpr size_t kRegistersNeededForDouble = 1;
1379 static constexpr bool kMultiRegistersAligned = false;
1380 static constexpr bool kMultiGPRegistersWidened = false;
1381 static constexpr bool kAlignLongOnStack = false;
1382 static constexpr bool kAlignDoubleOnStack = false;
1383 #elif defined(__riscv)
1384 static constexpr bool kNativeSoftFloatAbi = false;
1385 static constexpr bool kNativeSoftFloatAfterHardFloat = true;
1386 static constexpr size_t kNumNativeGprArgs = 8;
1387 static constexpr size_t kNumNativeFprArgs = 8;
1388
1389 static constexpr size_t kRegistersNeededForLong = 1;
1390 static constexpr size_t kRegistersNeededForDouble = 1;
1391 static constexpr bool kMultiRegistersAligned = false;
1392 static constexpr bool kMultiGPRegistersWidened = true;
1393 static constexpr bool kAlignLongOnStack = false;
1394 static constexpr bool kAlignDoubleOnStack = false;
1395 #elif defined(__i386__)
1396 static constexpr bool kNativeSoftFloatAbi = false; // Not using int registers for fp
1397 static constexpr bool kNativeSoftFloatAfterHardFloat = false;
1398 static constexpr size_t kNumNativeGprArgs = 0; // 0 arguments passed in GPRs.
1399 static constexpr size_t kNumNativeFprArgs = 0; // 0 arguments passed in FPRs.
1400
1401 static constexpr size_t kRegistersNeededForLong = 2;
1402 static constexpr size_t kRegistersNeededForDouble = 2;
1403 static constexpr bool kMultiRegistersAligned = false; // x86 not using regs, anyways
1404 static constexpr bool kMultiGPRegistersWidened = false;
1405 static constexpr bool kAlignLongOnStack = false;
1406 static constexpr bool kAlignDoubleOnStack = false;
1407 #elif defined(__x86_64__)
1408 static constexpr bool kNativeSoftFloatAbi = false; // This is a hard float ABI.
1409 static constexpr bool kNativeSoftFloatAfterHardFloat = false;
1410 static constexpr size_t kNumNativeGprArgs = 6; // 6 arguments passed in GPRs.
1411 static constexpr size_t kNumNativeFprArgs = 8; // 8 arguments passed in FPRs.
1412
1413 static constexpr size_t kRegistersNeededForLong = 1;
1414 static constexpr size_t kRegistersNeededForDouble = 1;
1415 static constexpr bool kMultiRegistersAligned = false;
1416 static constexpr bool kMultiGPRegistersWidened = false;
1417 static constexpr bool kAlignLongOnStack = false;
1418 static constexpr bool kAlignDoubleOnStack = false;
1419 #else
1420 #error "Unsupported architecture"
1421 #endif
1422
1423 public:
BuildNativeCallFrameStateMachine(T * delegate)1424 explicit BuildNativeCallFrameStateMachine(T* delegate)
1425 : gpr_index_(kNumNativeGprArgs),
1426 fpr_index_(kNumNativeFprArgs),
1427 stack_entries_(0),
1428 delegate_(delegate) {
1429 // For register alignment, we want to assume that counters (gpr_index_, fpr_index_) are even iff
1430 // the next register is even; counting down is just to make the compiler happy...
1431 static_assert(kNumNativeGprArgs % 2 == 0U, "Number of native GPR arguments not even");
1432 static_assert(kNumNativeFprArgs % 2 == 0U, "Number of native FPR arguments not even");
1433 }
1434
~BuildNativeCallFrameStateMachine()1435 virtual ~BuildNativeCallFrameStateMachine() {}
1436
HavePointerGpr() const1437 bool HavePointerGpr() const {
1438 return gpr_index_ > 0;
1439 }
1440
AdvancePointer(const void * val)1441 void AdvancePointer(const void* val) {
1442 if (HavePointerGpr()) {
1443 gpr_index_--;
1444 PushGpr(reinterpret_cast<uintptr_t>(val));
1445 } else {
1446 stack_entries_++; // TODO: have a field for pointer length as multiple of 32b
1447 PushStack(reinterpret_cast<uintptr_t>(val));
1448 gpr_index_ = 0;
1449 }
1450 }
1451
HaveIntGpr() const1452 bool HaveIntGpr() const {
1453 return gpr_index_ > 0;
1454 }
1455
AdvanceInt(uint32_t val)1456 void AdvanceInt(uint32_t val) {
1457 if (HaveIntGpr()) {
1458 gpr_index_--;
1459 if (kMultiGPRegistersWidened) {
1460 DCHECK_EQ(sizeof(uintptr_t), sizeof(int64_t));
1461 PushGpr(static_cast<int64_t>(bit_cast<int32_t, uint32_t>(val)));
1462 } else {
1463 PushGpr(val);
1464 }
1465 } else {
1466 stack_entries_++;
1467 if (kMultiGPRegistersWidened) {
1468 DCHECK_EQ(sizeof(uintptr_t), sizeof(int64_t));
1469 PushStack(static_cast<int64_t>(bit_cast<int32_t, uint32_t>(val)));
1470 } else {
1471 PushStack(val);
1472 }
1473 gpr_index_ = 0;
1474 }
1475 }
1476
HaveLongGpr() const1477 bool HaveLongGpr() const {
1478 return gpr_index_ >= kRegistersNeededForLong + (LongGprNeedsPadding() ? 1 : 0);
1479 }
1480
LongGprNeedsPadding() const1481 bool LongGprNeedsPadding() const {
1482 return kRegistersNeededForLong > 1 && // only pad when using multiple registers
1483 kAlignLongOnStack && // and when it needs alignment
1484 (gpr_index_ & 1) == 1; // counter is odd, see constructor
1485 }
1486
LongStackNeedsPadding() const1487 bool LongStackNeedsPadding() const {
1488 return kRegistersNeededForLong > 1 && // only pad when using multiple registers
1489 kAlignLongOnStack && // and when it needs 8B alignment
1490 (stack_entries_ & 1) == 1; // counter is odd
1491 }
1492
AdvanceLong(uint64_t val)1493 void AdvanceLong(uint64_t val) {
1494 if (HaveLongGpr()) {
1495 if (LongGprNeedsPadding()) {
1496 PushGpr(0);
1497 gpr_index_--;
1498 }
1499 if (kRegistersNeededForLong == 1) {
1500 PushGpr(static_cast<uintptr_t>(val));
1501 } else {
1502 PushGpr(static_cast<uintptr_t>(val & 0xFFFFFFFF));
1503 PushGpr(static_cast<uintptr_t>((val >> 32) & 0xFFFFFFFF));
1504 }
1505 gpr_index_ -= kRegistersNeededForLong;
1506 } else {
1507 if (LongStackNeedsPadding()) {
1508 PushStack(0);
1509 stack_entries_++;
1510 }
1511 if (kRegistersNeededForLong == 1) {
1512 PushStack(static_cast<uintptr_t>(val));
1513 stack_entries_++;
1514 } else {
1515 PushStack(static_cast<uintptr_t>(val & 0xFFFFFFFF));
1516 PushStack(static_cast<uintptr_t>((val >> 32) & 0xFFFFFFFF));
1517 stack_entries_ += 2;
1518 }
1519 gpr_index_ = 0;
1520 }
1521 }
1522
HaveFloatFpr() const1523 bool HaveFloatFpr() const {
1524 return fpr_index_ > 0;
1525 }
1526
AdvanceFloat(uint32_t val)1527 void AdvanceFloat(uint32_t val) {
1528 if (kNativeSoftFloatAbi) {
1529 AdvanceInt(val);
1530 } else if (HaveFloatFpr()) {
1531 fpr_index_--;
1532 if (kRegistersNeededForDouble == 1) {
1533 if (kNaNBoxing) {
1534 // NaN boxing: no widening, just use the bits, but reset upper bits to 1s.
1535 // See e.g. RISC-V manual, D extension, section "NaN Boxing of Narrower Values".
1536 PushFpr8(UINT64_C(0xFFFFFFFF00000000) | static_cast<uint64_t>(val));
1537 } else {
1538 // No widening, just use the bits.
1539 PushFpr8(static_cast<uint64_t>(val));
1540 }
1541 } else {
1542 PushFpr4(val);
1543 }
1544 } else if (kNativeSoftFloatAfterHardFloat) {
1545 // After using FP arg registers, pass FP args in general purpose registers or on the stack.
1546 AdvanceInt(val);
1547 } else {
1548 stack_entries_++;
1549 PushStack(static_cast<uintptr_t>(val));
1550 fpr_index_ = 0;
1551 }
1552 }
1553
HaveDoubleFpr() const1554 bool HaveDoubleFpr() const {
1555 return fpr_index_ >= kRegistersNeededForDouble + (DoubleFprNeedsPadding() ? 1 : 0);
1556 }
1557
DoubleFprNeedsPadding() const1558 bool DoubleFprNeedsPadding() const {
1559 return kRegistersNeededForDouble > 1 && // only pad when using multiple registers
1560 kAlignDoubleOnStack && // and when it needs alignment
1561 (fpr_index_ & 1) == 1; // counter is odd, see constructor
1562 }
1563
DoubleStackNeedsPadding() const1564 bool DoubleStackNeedsPadding() const {
1565 return kRegistersNeededForDouble > 1 && // only pad when using multiple registers
1566 kAlignDoubleOnStack && // and when it needs 8B alignment
1567 (stack_entries_ & 1) == 1; // counter is odd
1568 }
1569
AdvanceDouble(uint64_t val)1570 void AdvanceDouble(uint64_t val) {
1571 if (kNativeSoftFloatAbi) {
1572 AdvanceLong(val);
1573 } else if (HaveDoubleFpr()) {
1574 if (DoubleFprNeedsPadding()) {
1575 PushFpr4(0);
1576 fpr_index_--;
1577 }
1578 PushFpr8(val);
1579 fpr_index_ -= kRegistersNeededForDouble;
1580 } else if (kNativeSoftFloatAfterHardFloat) {
1581 // After using FP arg registers, pass FP args in general purpose registers or on the stack.
1582 AdvanceLong(val);
1583 } else {
1584 if (DoubleStackNeedsPadding()) {
1585 PushStack(0);
1586 stack_entries_++;
1587 }
1588 if (kRegistersNeededForDouble == 1) {
1589 PushStack(static_cast<uintptr_t>(val));
1590 stack_entries_++;
1591 } else {
1592 PushStack(static_cast<uintptr_t>(val & 0xFFFFFFFF));
1593 PushStack(static_cast<uintptr_t>((val >> 32) & 0xFFFFFFFF));
1594 stack_entries_ += 2;
1595 }
1596 fpr_index_ = 0;
1597 }
1598 }
1599
GetStackEntries() const1600 uint32_t GetStackEntries() const {
1601 return stack_entries_;
1602 }
1603
GetNumberOfUsedGprs() const1604 uint32_t GetNumberOfUsedGprs() const {
1605 return kNumNativeGprArgs - gpr_index_;
1606 }
1607
GetNumberOfUsedFprs() const1608 uint32_t GetNumberOfUsedFprs() const {
1609 return kNumNativeFprArgs - fpr_index_;
1610 }
1611
1612 private:
PushGpr(uintptr_t val)1613 void PushGpr(uintptr_t val) {
1614 delegate_->PushGpr(val);
1615 }
PushFpr4(float val)1616 void PushFpr4(float val) {
1617 delegate_->PushFpr4(val);
1618 }
PushFpr8(uint64_t val)1619 void PushFpr8(uint64_t val) {
1620 delegate_->PushFpr8(val);
1621 }
PushStack(uintptr_t val)1622 void PushStack(uintptr_t val) {
1623 delegate_->PushStack(val);
1624 }
1625
1626 uint32_t gpr_index_; // Number of free GPRs
1627 uint32_t fpr_index_; // Number of free FPRs
1628 uint32_t stack_entries_; // Stack entries are in multiples of 32b, as floats are usually not
1629 // extended
1630 T* const delegate_; // What Push implementation gets called
1631 };
1632
1633 // Computes the sizes of register stacks and call stack area. Handling of references can be extended
1634 // in subclasses.
1635 //
1636 // To handle native pointers, use "L" in the shorty for an object reference, which simulates
1637 // them with handles.
1638 class ComputeNativeCallFrameSize {
1639 public:
ComputeNativeCallFrameSize()1640 ComputeNativeCallFrameSize() : num_stack_entries_(0) {}
1641
~ComputeNativeCallFrameSize()1642 virtual ~ComputeNativeCallFrameSize() {}
1643
GetStackSize() const1644 uint32_t GetStackSize() const {
1645 return num_stack_entries_ * sizeof(uintptr_t);
1646 }
1647
LayoutStackArgs(uint8_t * sp8) const1648 uint8_t* LayoutStackArgs(uint8_t* sp8) const {
1649 sp8 -= GetStackSize();
1650 // Align by kStackAlignment; it is at least as strict as native stack alignment.
1651 sp8 = reinterpret_cast<uint8_t*>(RoundDown(reinterpret_cast<uintptr_t>(sp8), kStackAlignment));
1652 return sp8;
1653 }
1654
WalkHeader(BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize> * sm)1655 virtual void WalkHeader(
1656 [[maybe_unused]] BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>* sm)
1657 REQUIRES_SHARED(Locks::mutator_lock_) {}
1658
Walk(std::string_view shorty)1659 void Walk(std::string_view shorty) REQUIRES_SHARED(Locks::mutator_lock_) {
1660 BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize> sm(this);
1661
1662 WalkHeader(&sm);
1663
1664 for (char c : shorty.substr(1u)) {
1665 Primitive::Type cur_type_ = Primitive::GetType(c);
1666 switch (cur_type_) {
1667 case Primitive::kPrimNot:
1668 sm.AdvancePointer(nullptr);
1669 break;
1670 case Primitive::kPrimBoolean:
1671 case Primitive::kPrimByte:
1672 case Primitive::kPrimChar:
1673 case Primitive::kPrimShort:
1674 case Primitive::kPrimInt:
1675 sm.AdvanceInt(0);
1676 break;
1677 case Primitive::kPrimFloat:
1678 sm.AdvanceFloat(0);
1679 break;
1680 case Primitive::kPrimDouble:
1681 sm.AdvanceDouble(0);
1682 break;
1683 case Primitive::kPrimLong:
1684 sm.AdvanceLong(0);
1685 break;
1686 default:
1687 LOG(FATAL) << "Unexpected type: " << cur_type_ << " in " << shorty;
1688 UNREACHABLE();
1689 }
1690 }
1691
1692 num_stack_entries_ = sm.GetStackEntries();
1693 }
1694
PushGpr(uintptr_t)1695 void PushGpr(uintptr_t /* val */) {
1696 // not optimizing registers, yet
1697 }
1698
PushFpr4(float)1699 void PushFpr4(float /* val */) {
1700 // not optimizing registers, yet
1701 }
1702
PushFpr8(uint64_t)1703 void PushFpr8(uint64_t /* val */) {
1704 // not optimizing registers, yet
1705 }
1706
PushStack(uintptr_t)1707 void PushStack(uintptr_t /* val */) {
1708 // counting is already done in the superclass
1709 }
1710
1711 protected:
1712 uint32_t num_stack_entries_;
1713 };
1714
1715 class ComputeGenericJniFrameSize final : public ComputeNativeCallFrameSize {
1716 public:
ComputeGenericJniFrameSize(bool critical_native)1717 explicit ComputeGenericJniFrameSize(bool critical_native)
1718 : critical_native_(critical_native) {}
1719
ComputeLayout(ArtMethod ** managed_sp,std::string_view shorty)1720 uintptr_t* ComputeLayout(ArtMethod** managed_sp, std::string_view shorty)
1721 REQUIRES_SHARED(Locks::mutator_lock_) {
1722 DCHECK_EQ(Runtime::Current()->GetClassLinker()->GetImagePointerSize(), kRuntimePointerSize);
1723
1724 Walk(shorty);
1725
1726 // Add space for cookie.
1727 DCHECK_ALIGNED(managed_sp, sizeof(uintptr_t));
1728 static_assert(sizeof(uintptr_t) >= sizeof(jni::LRTSegmentState));
1729 uint8_t* sp8 = reinterpret_cast<uint8_t*>(managed_sp) - sizeof(uintptr_t);
1730
1731 // Layout stack arguments.
1732 sp8 = LayoutStackArgs(sp8);
1733
1734 // Return the new bottom.
1735 DCHECK_ALIGNED(sp8, sizeof(uintptr_t));
1736 return reinterpret_cast<uintptr_t*>(sp8);
1737 }
1738
GetStartGprRegs(uintptr_t * reserved_area)1739 static uintptr_t* GetStartGprRegs(uintptr_t* reserved_area) {
1740 return reserved_area;
1741 }
1742
GetStartFprRegs(uintptr_t * reserved_area)1743 static uint32_t* GetStartFprRegs(uintptr_t* reserved_area) {
1744 constexpr size_t num_gprs =
1745 BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>::kNumNativeGprArgs;
1746 return reinterpret_cast<uint32_t*>(GetStartGprRegs(reserved_area) + num_gprs);
1747 }
1748
GetHiddenArgSlot(uintptr_t * reserved_area)1749 static uintptr_t* GetHiddenArgSlot(uintptr_t* reserved_area) {
1750 // Note: `num_fprs` is 0 on architectures where sizeof(uintptr_t) does not match the
1751 // FP register size (it is actually 0 on all supported 32-bit architectures).
1752 constexpr size_t num_fprs =
1753 BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>::kNumNativeFprArgs;
1754 return reinterpret_cast<uintptr_t*>(GetStartFprRegs(reserved_area)) + num_fprs;
1755 }
1756
GetOutArgsSpSlot(uintptr_t * reserved_area)1757 static uintptr_t* GetOutArgsSpSlot(uintptr_t* reserved_area) {
1758 return GetHiddenArgSlot(reserved_area) + 1;
1759 }
1760
1761 // Add JNIEnv* and jobj/jclass before the shorty-derived elements.
1762 void WalkHeader(BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>* sm) override
1763 REQUIRES_SHARED(Locks::mutator_lock_);
1764
1765 private:
1766 const bool critical_native_;
1767 };
1768
WalkHeader(BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize> * sm)1769 void ComputeGenericJniFrameSize::WalkHeader(
1770 BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>* sm) {
1771 // First 2 parameters are always excluded for @CriticalNative.
1772 if (UNLIKELY(critical_native_)) {
1773 return;
1774 }
1775
1776 // JNIEnv
1777 sm->AdvancePointer(nullptr);
1778
1779 // Class object or this as first argument
1780 sm->AdvancePointer(nullptr);
1781 }
1782
1783 // Class to push values to three separate regions. Used to fill the native call part. Adheres to
1784 // the template requirements of BuildGenericJniFrameStateMachine.
1785 class FillNativeCall {
1786 public:
FillNativeCall(uintptr_t * gpr_regs,uint32_t * fpr_regs,uintptr_t * stack_args)1787 FillNativeCall(uintptr_t* gpr_regs, uint32_t* fpr_regs, uintptr_t* stack_args) :
1788 cur_gpr_reg_(gpr_regs), cur_fpr_reg_(fpr_regs), cur_stack_arg_(stack_args) {}
1789
~FillNativeCall()1790 virtual ~FillNativeCall() {}
1791
Reset(uintptr_t * gpr_regs,uint32_t * fpr_regs,uintptr_t * stack_args)1792 void Reset(uintptr_t* gpr_regs, uint32_t* fpr_regs, uintptr_t* stack_args) {
1793 cur_gpr_reg_ = gpr_regs;
1794 cur_fpr_reg_ = fpr_regs;
1795 cur_stack_arg_ = stack_args;
1796 }
1797
PushGpr(uintptr_t val)1798 void PushGpr(uintptr_t val) {
1799 *cur_gpr_reg_ = val;
1800 cur_gpr_reg_++;
1801 }
1802
PushFpr4(float val)1803 void PushFpr4(float val) {
1804 *cur_fpr_reg_ = val;
1805 cur_fpr_reg_++;
1806 }
1807
PushFpr8(uint64_t val)1808 void PushFpr8(uint64_t val) {
1809 uint64_t* tmp = reinterpret_cast<uint64_t*>(cur_fpr_reg_);
1810 *tmp = val;
1811 cur_fpr_reg_ += 2;
1812 }
1813
PushStack(uintptr_t val)1814 void PushStack(uintptr_t val) {
1815 *cur_stack_arg_ = val;
1816 cur_stack_arg_++;
1817 }
1818
1819 private:
1820 uintptr_t* cur_gpr_reg_;
1821 uint32_t* cur_fpr_reg_;
1822 uintptr_t* cur_stack_arg_;
1823 };
1824
1825 // Visits arguments on the stack placing them into a region lower down the stack for the benefit
1826 // of transitioning into native code.
1827 class BuildGenericJniFrameVisitor final : public QuickArgumentVisitor {
1828 public:
BuildGenericJniFrameVisitor(Thread * self,bool is_static,bool critical_native,std::string_view shorty,ArtMethod ** managed_sp,uintptr_t * reserved_area)1829 BuildGenericJniFrameVisitor(Thread* self,
1830 bool is_static,
1831 bool critical_native,
1832 std::string_view shorty,
1833 ArtMethod** managed_sp,
1834 uintptr_t* reserved_area)
1835 : QuickArgumentVisitor(managed_sp, is_static, shorty),
1836 jni_call_(nullptr, nullptr, nullptr),
1837 sm_(&jni_call_),
1838 current_vreg_(nullptr) {
1839 DCHECK_ALIGNED(managed_sp, kStackAlignment);
1840 DCHECK_ALIGNED(reserved_area, sizeof(uintptr_t));
1841
1842 ComputeGenericJniFrameSize fsc(critical_native);
1843 uintptr_t* out_args_sp = fsc.ComputeLayout(managed_sp, shorty);
1844
1845 // Store hidden argument for @CriticalNative.
1846 uintptr_t* hidden_arg_slot = fsc.GetHiddenArgSlot(reserved_area);
1847 constexpr uintptr_t kGenericJniTag = 1u;
1848 ArtMethod* method = *managed_sp;
1849 *hidden_arg_slot = critical_native ? (reinterpret_cast<uintptr_t>(method) | kGenericJniTag)
1850 : 0xebad6a89u; // Bad value.
1851
1852 // Set out args SP.
1853 uintptr_t* out_args_sp_slot = fsc.GetOutArgsSpSlot(reserved_area);
1854 *out_args_sp_slot = reinterpret_cast<uintptr_t>(out_args_sp);
1855
1856 // Prepare vreg pointer for spilling references.
1857 static constexpr size_t frame_size =
1858 RuntimeCalleeSaveFrame::GetFrameSize(CalleeSaveType::kSaveRefsAndArgs);
1859 current_vreg_ = reinterpret_cast<uint32_t*>(
1860 reinterpret_cast<uint8_t*>(managed_sp) + frame_size + sizeof(ArtMethod*));
1861
1862 jni_call_.Reset(fsc.GetStartGprRegs(reserved_area),
1863 fsc.GetStartFprRegs(reserved_area),
1864 out_args_sp);
1865
1866 // First 2 parameters are always excluded for CriticalNative methods.
1867 if (LIKELY(!critical_native)) {
1868 // jni environment is always first argument
1869 sm_.AdvancePointer(self->GetJniEnv());
1870
1871 if (is_static) {
1872 // The `jclass` is a pointer to the method's declaring class.
1873 // The declaring class must be marked.
1874 auto* declaring_class = reinterpret_cast<mirror::CompressedReference<mirror::Class>*>(
1875 method->GetDeclaringClassAddressWithoutBarrier());
1876 if (gUseReadBarrier) {
1877 artJniReadBarrier(method);
1878 }
1879 sm_.AdvancePointer(declaring_class);
1880 } // else "this" reference is already handled by QuickArgumentVisitor.
1881 }
1882 }
1883
1884 void Visit() REQUIRES_SHARED(Locks::mutator_lock_) override;
1885
1886 private:
1887 FillNativeCall jni_call_;
1888 BuildNativeCallFrameStateMachine<FillNativeCall> sm_;
1889
1890 // Pointer to the current vreg in caller's reserved out vreg area.
1891 // Used for spilling reference arguments.
1892 uint32_t* current_vreg_;
1893
1894 DISALLOW_COPY_AND_ASSIGN(BuildGenericJniFrameVisitor);
1895 };
1896
Visit()1897 void BuildGenericJniFrameVisitor::Visit() {
1898 Primitive::Type type = GetParamPrimitiveType();
1899 switch (type) {
1900 case Primitive::kPrimLong: {
1901 jlong long_arg;
1902 if (IsSplitLongOrDouble()) {
1903 long_arg = ReadSplitLongParam();
1904 } else {
1905 long_arg = *reinterpret_cast<jlong*>(GetParamAddress());
1906 }
1907 sm_.AdvanceLong(long_arg);
1908 current_vreg_ += 2u;
1909 break;
1910 }
1911 case Primitive::kPrimDouble: {
1912 uint64_t double_arg;
1913 if (IsSplitLongOrDouble()) {
1914 // Read into union so that we don't case to a double.
1915 double_arg = ReadSplitLongParam();
1916 } else {
1917 double_arg = *reinterpret_cast<uint64_t*>(GetParamAddress());
1918 }
1919 sm_.AdvanceDouble(double_arg);
1920 current_vreg_ += 2u;
1921 break;
1922 }
1923 case Primitive::kPrimNot: {
1924 mirror::Object* obj =
1925 reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress())->AsMirrorPtr();
1926 StackReference<mirror::Object>* spill_ref =
1927 reinterpret_cast<StackReference<mirror::Object>*>(current_vreg_);
1928 spill_ref->Assign(obj);
1929 sm_.AdvancePointer(obj != nullptr ? spill_ref : nullptr);
1930 current_vreg_ += 1u;
1931 break;
1932 }
1933 case Primitive::kPrimFloat:
1934 sm_.AdvanceFloat(*reinterpret_cast<uint32_t*>(GetParamAddress()));
1935 current_vreg_ += 1u;
1936 break;
1937 case Primitive::kPrimBoolean: // Fall-through.
1938 case Primitive::kPrimByte: // Fall-through.
1939 case Primitive::kPrimChar: // Fall-through.
1940 case Primitive::kPrimShort: // Fall-through.
1941 case Primitive::kPrimInt: // Fall-through.
1942 sm_.AdvanceInt(*reinterpret_cast<jint*>(GetParamAddress()));
1943 current_vreg_ += 1u;
1944 break;
1945 case Primitive::kPrimVoid:
1946 LOG(FATAL) << "UNREACHABLE";
1947 UNREACHABLE();
1948 }
1949 }
1950
1951 /*
1952 * Initializes the reserved area assumed to be directly below `managed_sp` for a native call:
1953 *
1954 * On entry, the stack has a standard callee-save frame above `managed_sp`,
1955 * and the reserved area below it. Starting below `managed_sp`, we reserve space
1956 * for local reference cookie (not present for @CriticalNative), HandleScope
1957 * (not present for @CriticalNative) and stack args (if args do not fit into
1958 * registers). At the bottom of the reserved area, there is space for register
1959 * arguments, hidden arg (for @CriticalNative) and the SP for the native call
1960 * (i.e. pointer to the stack args area), which the calling stub shall load
1961 * to perform the native call. We fill all these fields, perform class init
1962 * check (for static methods) and/or locking (for synchronized methods) if
1963 * needed and return to the stub.
1964 *
1965 * The return value is the pointer to the native code, null on failure.
1966 *
1967 * NO_THREAD_SAFETY_ANALYSIS: Depending on the use case, the trampoline may
1968 * or may not lock a synchronization object and transition out of Runnable.
1969 */
artQuickGenericJniTrampoline(Thread * self,ArtMethod ** managed_sp,uintptr_t * reserved_area)1970 extern "C" const void* artQuickGenericJniTrampoline(Thread* self,
1971 ArtMethod** managed_sp,
1972 uintptr_t* reserved_area)
1973 REQUIRES_SHARED(Locks::mutator_lock_) NO_THREAD_SAFETY_ANALYSIS {
1974 // Note: We cannot walk the stack properly until fixed up below.
1975 ArtMethod* called = *managed_sp;
1976 DCHECK(called->IsNative()) << called->PrettyMethod(true);
1977 Runtime* runtime = Runtime::Current();
1978 std::string_view shorty = called->GetShortyView();
1979 bool critical_native = called->IsCriticalNative();
1980 bool fast_native = called->IsFastNative();
1981 bool normal_native = !critical_native && !fast_native;
1982
1983 // Run the visitor and update sp.
1984 BuildGenericJniFrameVisitor visitor(self,
1985 called->IsStatic(),
1986 critical_native,
1987 shorty,
1988 managed_sp,
1989 reserved_area);
1990 {
1991 ScopedAssertNoThreadSuspension sants(__FUNCTION__);
1992 visitor.VisitArguments();
1993 }
1994
1995 // Fix up managed-stack things in Thread. After this we can walk the stack.
1996 self->SetTopOfStackGenericJniTagged(managed_sp);
1997
1998 self->VerifyStack();
1999
2000 // We can now walk the stack if needed by JIT GC from MethodEntered() for JIT-on-first-use.
2001 jit::Jit* jit = runtime->GetJit();
2002 if (jit != nullptr) {
2003 jit->MethodEntered(self, called);
2004 }
2005
2006 // We can set the entrypoint of a native method to generic JNI even when the
2007 // class hasn't been initialized, so we need to do the initialization check
2008 // before invoking the native code.
2009 if (called->StillNeedsClinitCheck()) {
2010 // Ensure static method's class is initialized.
2011 StackHandleScope<1> hs(self);
2012 Handle<mirror::Class> h_class = hs.NewHandle(called->GetDeclaringClass());
2013 if (!runtime->GetClassLinker()->EnsureInitialized(self, h_class, true, true)) {
2014 DCHECK(Thread::Current()->IsExceptionPending()) << called->PrettyMethod();
2015 return nullptr; // Report error.
2016 }
2017 }
2018
2019 instrumentation::Instrumentation* instr = Runtime::Current()->GetInstrumentation();
2020 if (UNLIKELY(instr->HasMethodEntryListeners())) {
2021 instr->MethodEnterEvent(self, called);
2022 if (self->IsExceptionPending()) {
2023 return nullptr;
2024 }
2025 }
2026
2027 // Skip calling `artJniMethodStart()` for @CriticalNative and @FastNative.
2028 if (LIKELY(normal_native)) {
2029 // Start JNI.
2030 if (called->IsSynchronized()) {
2031 ObjPtr<mirror::Object> lock = GetGenericJniSynchronizationObject(self, called);
2032 DCHECK(lock != nullptr);
2033 lock->MonitorEnter(self);
2034 if (self->IsExceptionPending()) {
2035 return nullptr; // Report error.
2036 }
2037 }
2038 if (UNLIKELY(self->ReadFlag(ThreadFlag::kMonitorJniEntryExit))) {
2039 artJniMonitoredMethodStart(self);
2040 } else {
2041 artJniMethodStart(self);
2042 }
2043 } else {
2044 DCHECK(!called->IsSynchronized())
2045 << "@FastNative/@CriticalNative and synchronize is not supported";
2046 }
2047
2048 // Skip pushing LRT frame for @CriticalNative.
2049 if (LIKELY(!critical_native)) {
2050 // Push local reference frame.
2051 JNIEnvExt* env = self->GetJniEnv();
2052 DCHECK(env != nullptr);
2053 uint32_t cookie = bit_cast<uint32_t>(env->PushLocalReferenceFrame());
2054
2055 // Save the cookie on the stack.
2056 uint32_t* sp32 = reinterpret_cast<uint32_t*>(managed_sp);
2057 *(sp32 - 1) = cookie;
2058 }
2059
2060 // Retrieve the stored native code.
2061 // Note that it may point to the lookup stub or trampoline.
2062 // FIXME: This is broken for @CriticalNative as the art_jni_dlsym_lookup_stub
2063 // does not handle that case. Calls from compiled stubs are also broken.
2064 void const* nativeCode = called->GetEntryPointFromJni();
2065
2066 VLOG(third_party_jni) << "GenericJNI: "
2067 << called->PrettyMethod()
2068 << " -> "
2069 << std::hex << reinterpret_cast<uintptr_t>(nativeCode);
2070
2071 // Return native code.
2072 return nativeCode;
2073 }
2074
2075 // Defined in quick_jni_entrypoints.cc.
2076 extern uint64_t GenericJniMethodEnd(Thread* self,
2077 uint32_t saved_local_ref_cookie,
2078 jvalue result,
2079 uint64_t result_f,
2080 ArtMethod* called);
2081
2082 /*
2083 * Is called after the native JNI code. Responsible for cleanup (handle scope, saved state) and
2084 * unlocking.
2085 */
artQuickGenericJniEndTrampoline(Thread * self,jvalue result,uint64_t result_f)2086 extern "C" uint64_t artQuickGenericJniEndTrampoline(Thread* self,
2087 jvalue result,
2088 uint64_t result_f) {
2089 // We're here just back from a native call. We don't have the shared mutator lock at this point
2090 // yet until we call GoToRunnable() later in GenericJniMethodEnd(). Accessing objects or doing
2091 // anything that requires a mutator lock before that would cause problems as GC may have the
2092 // exclusive mutator lock and may be moving objects, etc.
2093 ArtMethod** sp = self->GetManagedStack()->GetTopQuickFrame();
2094 DCHECK(self->GetManagedStack()->GetTopQuickFrameGenericJniTag());
2095 uint32_t* sp32 = reinterpret_cast<uint32_t*>(sp);
2096 ArtMethod* called = *sp;
2097 uint32_t cookie = *(sp32 - 1);
2098 return GenericJniMethodEnd(self, cookie, result, result_f, called);
2099 }
2100
2101 // We use TwoWordReturn to optimize scalar returns. We use the hi value for code, and the lo value
2102 // for the method pointer.
2103 //
2104 // It is valid to use this, as at the usage points here (returns from C functions) we are assuming
2105 // to hold the mutator lock (see REQUIRES_SHARED(Locks::mutator_lock_) annotations).
2106
2107 template <InvokeType type>
artInvokeCommon(uint32_t method_idx,ObjPtr<mirror::Object> this_object,Thread * self,ArtMethod ** sp)2108 static TwoWordReturn artInvokeCommon(uint32_t method_idx,
2109 ObjPtr<mirror::Object> this_object,
2110 Thread* self,
2111 ArtMethod** sp) {
2112 ScopedQuickEntrypointChecks sqec(self);
2113 DCHECK_EQ(*sp, Runtime::Current()->GetCalleeSaveMethod(CalleeSaveType::kSaveRefsAndArgs));
2114 uint32_t dex_pc;
2115 ArtMethod* caller_method = QuickArgumentVisitor::GetCallingMethodAndDexPc(sp, &dex_pc);
2116 CodeItemInstructionAccessor accessor(caller_method->DexInstructions());
2117 DCHECK_LT(dex_pc, accessor.InsnsSizeInCodeUnits());
2118 const Instruction& instr = accessor.InstructionAt(dex_pc);
2119 bool string_init = false;
2120 ArtMethod* method = FindMethodToCall<type>(
2121 self, caller_method, &this_object, instr, /* only_lookup_tls_cache= */ true, &string_init);
2122
2123 if (UNLIKELY(method == nullptr)) {
2124 if (self->IsExceptionPending()) {
2125 // Return a failure if the first lookup threw an exception.
2126 return GetTwoWordFailureValue(); // Failure.
2127 }
2128 const DexFile* dex_file = caller_method->GetDexFile();
2129 std::string_view shorty =
2130 dex_file->GetMethodShortyView(dex_file->GetMethodId(method_idx));
2131 {
2132 // Remember the args in case a GC happens in FindMethodToCall.
2133 ScopedObjectAccessUnchecked soa(self->GetJniEnv());
2134 RememberForGcArgumentVisitor visitor(sp, type == kStatic, shorty, &soa);
2135 visitor.VisitArguments();
2136
2137 method = FindMethodToCall<type>(self,
2138 caller_method,
2139 &this_object,
2140 instr,
2141 /* only_lookup_tls_cache= */ false,
2142 &string_init);
2143
2144 visitor.FixupReferences();
2145 }
2146
2147 if (UNLIKELY(method == nullptr)) {
2148 CHECK(self->IsExceptionPending());
2149 return GetTwoWordFailureValue(); // Failure.
2150 }
2151 }
2152 DCHECK(!self->IsExceptionPending());
2153 const void* code = method->GetEntryPointFromQuickCompiledCode();
2154
2155 // When we return, the caller will branch to this address, so it had better not be 0!
2156 DCHECK(code != nullptr) << "Code was null in method: " << method->PrettyMethod()
2157 << " location: "
2158 << method->GetDexFile()->GetLocation();
2159
2160 return GetTwoWordSuccessValue(reinterpret_cast<uintptr_t>(code),
2161 reinterpret_cast<uintptr_t>(method));
2162 }
2163
2164 // Explicit artInvokeCommon template function declarations to please analysis tool.
2165 #define EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(type) \
2166 template REQUIRES_SHARED(Locks::mutator_lock_) \
2167 TwoWordReturn artInvokeCommon<type>( \
2168 uint32_t method_idx, ObjPtr<mirror::Object> his_object, Thread* self, ArtMethod** sp)
2169
2170 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kVirtual);
2171 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kInterface);
2172 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kDirect);
2173 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kStatic);
2174 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kSuper);
2175 #undef EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL
2176
2177 // See comments in runtime_support_asm.S
artInvokeInterfaceTrampolineWithAccessCheck(uint32_t method_idx,mirror::Object * this_object,Thread * self,ArtMethod ** sp)2178 extern "C" TwoWordReturn artInvokeInterfaceTrampolineWithAccessCheck(
2179 uint32_t method_idx, mirror::Object* this_object, Thread* self, ArtMethod** sp)
2180 REQUIRES_SHARED(Locks::mutator_lock_) {
2181 return artInvokeCommon<kInterface>(method_idx, this_object, self, sp);
2182 }
2183
artInvokeDirectTrampolineWithAccessCheck(uint32_t method_idx,mirror::Object * this_object,Thread * self,ArtMethod ** sp)2184 extern "C" TwoWordReturn artInvokeDirectTrampolineWithAccessCheck(
2185 uint32_t method_idx, mirror::Object* this_object, Thread* self, ArtMethod** sp)
2186 REQUIRES_SHARED(Locks::mutator_lock_) {
2187 return artInvokeCommon<kDirect>(method_idx, this_object, self, sp);
2188 }
2189
artInvokeStaticTrampolineWithAccessCheck(uint32_t method_idx,mirror::Object * this_object,Thread * self,ArtMethod ** sp)2190 extern "C" TwoWordReturn artInvokeStaticTrampolineWithAccessCheck(
2191 uint32_t method_idx, [[maybe_unused]] mirror::Object* this_object, Thread* self, ArtMethod** sp)
2192 REQUIRES_SHARED(Locks::mutator_lock_) {
2193 // For static, this_object is not required and may be random garbage. Don't pass it down so that
2194 // it doesn't cause ObjPtr alignment failure check.
2195 return artInvokeCommon<kStatic>(method_idx, nullptr, self, sp);
2196 }
2197
artInvokeSuperTrampolineWithAccessCheck(uint32_t method_idx,mirror::Object * this_object,Thread * self,ArtMethod ** sp)2198 extern "C" TwoWordReturn artInvokeSuperTrampolineWithAccessCheck(
2199 uint32_t method_idx, mirror::Object* this_object, Thread* self, ArtMethod** sp)
2200 REQUIRES_SHARED(Locks::mutator_lock_) {
2201 return artInvokeCommon<kSuper>(method_idx, this_object, self, sp);
2202 }
2203
artInvokeVirtualTrampolineWithAccessCheck(uint32_t method_idx,mirror::Object * this_object,Thread * self,ArtMethod ** sp)2204 extern "C" TwoWordReturn artInvokeVirtualTrampolineWithAccessCheck(
2205 uint32_t method_idx, mirror::Object* this_object, Thread* self, ArtMethod** sp)
2206 REQUIRES_SHARED(Locks::mutator_lock_) {
2207 return artInvokeCommon<kVirtual>(method_idx, this_object, self, sp);
2208 }
2209
2210 // Determine target of interface dispatch. The interface method and this object are known non-null.
2211 // The interface method is the method returned by the dex cache in the conflict trampoline.
artInvokeInterfaceTrampoline(ArtMethod * interface_method,mirror::Object * raw_this_object,Thread * self,ArtMethod ** sp)2212 extern "C" TwoWordReturn artInvokeInterfaceTrampoline(ArtMethod* interface_method,
2213 mirror::Object* raw_this_object,
2214 Thread* self,
2215 ArtMethod** sp)
2216 REQUIRES_SHARED(Locks::mutator_lock_) {
2217 ScopedQuickEntrypointChecks sqec(self);
2218
2219 Runtime* runtime = Runtime::Current();
2220 bool resolve_method = ((interface_method == nullptr) || interface_method->IsRuntimeMethod());
2221 if (UNLIKELY(resolve_method)) {
2222 // The interface method is unresolved, so resolve it in the dex file of the caller.
2223 // Fetch the dex_method_idx of the target interface method from the caller.
2224 StackHandleScope<1> hs(self);
2225 Handle<mirror::Object> this_object = hs.NewHandle(raw_this_object);
2226 uint32_t dex_pc;
2227 ArtMethod* caller_method = QuickArgumentVisitor::GetCallingMethodAndDexPc(sp, &dex_pc);
2228 uint32_t dex_method_idx;
2229 const Instruction& instr = caller_method->DexInstructions().InstructionAt(dex_pc);
2230 Instruction::Code instr_code = instr.Opcode();
2231 DCHECK(instr_code == Instruction::INVOKE_INTERFACE ||
2232 instr_code == Instruction::INVOKE_INTERFACE_RANGE)
2233 << "Unexpected call into interface trampoline: " << instr.DumpString(nullptr);
2234 if (instr_code == Instruction::INVOKE_INTERFACE) {
2235 dex_method_idx = instr.VRegB_35c();
2236 } else {
2237 DCHECK_EQ(instr_code, Instruction::INVOKE_INTERFACE_RANGE);
2238 dex_method_idx = instr.VRegB_3rc();
2239 }
2240
2241 const DexFile& dex_file = *caller_method->GetDexFile();
2242 std::string_view shorty =
2243 dex_file.GetMethodShortyView(dex_file.GetMethodId(dex_method_idx));
2244 {
2245 // Remember the args in case a GC happens in ClassLinker::ResolveMethod().
2246 ScopedObjectAccessUnchecked soa(self->GetJniEnv());
2247 RememberForGcArgumentVisitor visitor(sp, false, shorty, &soa);
2248 visitor.VisitArguments();
2249 ClassLinker* class_linker = runtime->GetClassLinker();
2250 interface_method = class_linker->ResolveMethod<ClassLinker::ResolveMode::kNoChecks>(
2251 self, dex_method_idx, caller_method, kInterface);
2252 visitor.FixupReferences();
2253 }
2254
2255 if (UNLIKELY(interface_method == nullptr)) {
2256 CHECK(self->IsExceptionPending());
2257 return GetTwoWordFailureValue(); // Failure.
2258 }
2259 ArtMethod* outer_method = QuickArgumentVisitor::GetOuterMethod(sp);
2260 MaybeUpdateBssMethodEntry(
2261 interface_method, MethodReference(&dex_file, dex_method_idx), outer_method);
2262
2263 // Refresh `raw_this_object` which may have changed after resolution.
2264 raw_this_object = this_object.Get();
2265 }
2266
2267 // The compiler and interpreter make sure the conflict trampoline is never
2268 // called on a method that resolves to j.l.Object.
2269 DCHECK(!interface_method->GetDeclaringClass()->IsObjectClass());
2270 DCHECK(interface_method->GetDeclaringClass()->IsInterface());
2271 DCHECK(!interface_method->IsRuntimeMethod());
2272 DCHECK(!interface_method->IsCopied());
2273
2274 ObjPtr<mirror::Object> obj_this = raw_this_object;
2275 ObjPtr<mirror::Class> cls = obj_this->GetClass();
2276 uint32_t imt_index = interface_method->GetImtIndex();
2277 ImTable* imt = cls->GetImt(kRuntimePointerSize);
2278 ArtMethod* conflict_method = imt->Get(imt_index, kRuntimePointerSize);
2279 DCHECK(conflict_method->IsRuntimeMethod());
2280
2281 if (UNLIKELY(resolve_method)) {
2282 // Now that we know the interface method, look it up in the conflict table.
2283 ImtConflictTable* current_table = conflict_method->GetImtConflictTable(kRuntimePointerSize);
2284 DCHECK(current_table != nullptr);
2285 ArtMethod* method = current_table->Lookup(interface_method, kRuntimePointerSize);
2286 if (method != nullptr) {
2287 return GetTwoWordSuccessValue(
2288 reinterpret_cast<uintptr_t>(method->GetEntryPointFromQuickCompiledCode()),
2289 reinterpret_cast<uintptr_t>(method));
2290 }
2291 // Interface method is not in the conflict table. Continue looking up in the
2292 // iftable.
2293 }
2294
2295 ArtMethod* method = cls->FindVirtualMethodForInterface(interface_method, kRuntimePointerSize);
2296 if (UNLIKELY(method == nullptr)) {
2297 ArtMethod* caller_method = QuickArgumentVisitor::GetCallingMethod(sp);
2298 ThrowIncompatibleClassChangeErrorClassForInterfaceDispatch(
2299 interface_method, obj_this.Ptr(), caller_method);
2300 return GetTwoWordFailureValue();
2301 }
2302
2303 // We arrive here if we have found an implementation, and it is not in the ImtConflictTable.
2304 // We create a new table with the new pair { interface_method, method }.
2305
2306 // Classes in the boot image should never need to update conflict methods in
2307 // their IMT.
2308 CHECK(!runtime->GetHeap()->ObjectIsInBootImageSpace(cls.Ptr())) << cls->PrettyClass();
2309 ArtMethod* new_conflict_method = runtime->GetClassLinker()->AddMethodToConflictTable(
2310 cls.Ptr(),
2311 conflict_method,
2312 interface_method,
2313 method);
2314 if (new_conflict_method != conflict_method) {
2315 // Update the IMT if we create a new conflict method. No fence needed here, as the
2316 // data is consistent.
2317 imt->Set(imt_index,
2318 new_conflict_method,
2319 kRuntimePointerSize);
2320 }
2321
2322 const void* code = method->GetEntryPointFromQuickCompiledCode();
2323
2324 // When we return, the caller will branch to this address, so it had better not be 0!
2325 DCHECK(code != nullptr) << "Code was null in method: " << method->PrettyMethod()
2326 << " location: " << method->GetDexFile()->GetLocation();
2327
2328 return GetTwoWordSuccessValue(reinterpret_cast<uintptr_t>(code),
2329 reinterpret_cast<uintptr_t>(method));
2330 }
2331
2332 // Returns uint64_t representing raw bits from JValue.
artInvokePolymorphic(mirror::Object * raw_receiver,Thread * self,ArtMethod ** sp)2333 extern "C" uint64_t artInvokePolymorphic(mirror::Object* raw_receiver, Thread* self, ArtMethod** sp)
2334 REQUIRES_SHARED(Locks::mutator_lock_) {
2335 ScopedQuickEntrypointChecks sqec(self);
2336 DCHECK(raw_receiver != nullptr);
2337 DCHECK_EQ(*sp, Runtime::Current()->GetCalleeSaveMethod(CalleeSaveType::kSaveRefsAndArgs));
2338
2339 // Start new JNI local reference state
2340 JNIEnvExt* env = self->GetJniEnv();
2341 ScopedObjectAccessUnchecked soa(env);
2342 ScopedJniEnvLocalRefState env_state(env);
2343 const char* old_cause = self->StartAssertNoThreadSuspension("Making stack arguments safe.");
2344
2345 // From the instruction, get the |callsite_shorty| and expose arguments on the stack to the GC.
2346 uint32_t dex_pc;
2347 ArtMethod* caller_method = QuickArgumentVisitor::GetCallingMethodAndDexPc(sp, &dex_pc);
2348 const Instruction& inst = caller_method->DexInstructions().InstructionAt(dex_pc);
2349 DCHECK(inst.Opcode() == Instruction::INVOKE_POLYMORPHIC ||
2350 inst.Opcode() == Instruction::INVOKE_POLYMORPHIC_RANGE);
2351 const dex::ProtoIndex proto_idx(inst.VRegH());
2352 std::string_view shorty = caller_method->GetDexFile()->GetShortyView(proto_idx);
2353 static const bool kMethodIsStatic = false; // invoke() and invokeExact() are not static.
2354 RememberForGcArgumentVisitor gc_visitor(sp, kMethodIsStatic, shorty, &soa);
2355 gc_visitor.VisitArguments();
2356
2357 // Wrap raw_receiver in a Handle for safety.
2358 StackHandleScope<3> hs(self);
2359 Handle<mirror::Object> receiver_handle(hs.NewHandle(raw_receiver));
2360 raw_receiver = nullptr;
2361 self->EndAssertNoThreadSuspension(old_cause);
2362
2363 // Resolve method.
2364 ClassLinker* linker = Runtime::Current()->GetClassLinker();
2365 ArtMethod* resolved_method = linker->ResolveMethod<ClassLinker::ResolveMode::kCheckICCEAndIAE>(
2366 self, inst.VRegB(), caller_method, kVirtual);
2367
2368 Handle<mirror::MethodType> method_type(
2369 hs.NewHandle(linker->ResolveMethodType(self, proto_idx, caller_method)));
2370 if (UNLIKELY(method_type.IsNull())) {
2371 // This implies we couldn't resolve one or more types in this method handle.
2372 CHECK(self->IsExceptionPending());
2373 return 0UL;
2374 }
2375
2376 DCHECK_EQ(ArtMethod::NumArgRegisters(shorty) + 1u, (uint32_t)inst.VRegA());
2377 DCHECK_EQ(resolved_method->IsStatic(), kMethodIsStatic);
2378
2379 // Fix references before constructing the shadow frame.
2380 gc_visitor.FixupReferences();
2381
2382 // Construct shadow frame placing arguments consecutively from |first_arg|.
2383 const bool is_range = (inst.Opcode() == Instruction::INVOKE_POLYMORPHIC_RANGE);
2384 const size_t num_vregs = is_range ? inst.VRegA_4rcc() : inst.VRegA_45cc();
2385 const size_t first_arg = 0;
2386 ShadowFrameAllocaUniquePtr shadow_frame_unique_ptr =
2387 CREATE_SHADOW_FRAME(num_vregs, resolved_method, dex_pc);
2388 ShadowFrame* shadow_frame = shadow_frame_unique_ptr.get();
2389 ScopedStackedShadowFramePusher frame_pusher(self, shadow_frame);
2390 BuildQuickShadowFrameVisitor shadow_frame_builder(sp,
2391 kMethodIsStatic,
2392 shorty,
2393 shadow_frame,
2394 first_arg);
2395 shadow_frame_builder.VisitArguments();
2396
2397 // Push a transition back into managed code onto the linked list in thread.
2398 ManagedStack fragment;
2399 self->PushManagedStackFragment(&fragment);
2400
2401 // Call DoInvokePolymorphic with |is_range| = true, as shadow frame has argument registers in
2402 // consecutive order.
2403 RangeInstructionOperands operands(first_arg + 1, num_vregs - 1);
2404 Intrinsics intrinsic = static_cast<Intrinsics>(resolved_method->GetIntrinsic());
2405 JValue result;
2406 bool success = false;
2407 if (resolved_method->GetDeclaringClass() == GetClassRoot<mirror::MethodHandle>(linker)) {
2408 Handle<mirror::MethodHandle> method_handle(hs.NewHandle(
2409 ObjPtr<mirror::MethodHandle>::DownCast(receiver_handle.Get())));
2410 if (intrinsic == Intrinsics::kMethodHandleInvokeExact) {
2411 success = MethodHandleInvokeExact(self,
2412 *shadow_frame,
2413 method_handle,
2414 method_type,
2415 &operands,
2416 &result);
2417 } else {
2418 DCHECK_EQ(static_cast<uint32_t>(intrinsic),
2419 static_cast<uint32_t>(Intrinsics::kMethodHandleInvoke));
2420 success = MethodHandleInvoke(self,
2421 *shadow_frame,
2422 method_handle,
2423 method_type,
2424 &operands,
2425 &result);
2426 }
2427 } else {
2428 DCHECK_EQ(GetClassRoot<mirror::VarHandle>(linker), resolved_method->GetDeclaringClass());
2429 Handle<mirror::VarHandle> var_handle(hs.NewHandle(
2430 ObjPtr<mirror::VarHandle>::DownCast(receiver_handle.Get())));
2431 mirror::VarHandle::AccessMode access_mode =
2432 mirror::VarHandle::GetAccessModeByIntrinsic(intrinsic);
2433 success = VarHandleInvokeAccessor(self,
2434 *shadow_frame,
2435 var_handle,
2436 method_type,
2437 access_mode,
2438 &operands,
2439 &result);
2440 }
2441
2442 DCHECK(success || self->IsExceptionPending());
2443
2444 // Pop transition record.
2445 self->PopManagedStackFragment(fragment);
2446
2447 bool is_ref = (shorty[0] == 'L');
2448 Runtime::Current()->GetInstrumentation()->PushDeoptContextIfNeeded(
2449 self, DeoptimizationMethodType::kDefault, is_ref, result);
2450
2451 return NanBoxResultIfNeeded(result.GetJ(), shorty[0]);
2452 }
2453
2454 // Returns uint64_t representing raw bits from JValue.
artInvokeCustom(uint32_t call_site_idx,Thread * self,ArtMethod ** sp)2455 extern "C" uint64_t artInvokeCustom(uint32_t call_site_idx, Thread* self, ArtMethod** sp)
2456 REQUIRES_SHARED(Locks::mutator_lock_) {
2457 ScopedQuickEntrypointChecks sqec(self);
2458 DCHECK_EQ(*sp, Runtime::Current()->GetCalleeSaveMethod(CalleeSaveType::kSaveRefsAndArgs));
2459
2460 // invoke-custom is effectively a static call (no receiver).
2461 static constexpr bool kMethodIsStatic = true;
2462
2463 // Start new JNI local reference state
2464 JNIEnvExt* env = self->GetJniEnv();
2465 ScopedObjectAccessUnchecked soa(env);
2466 ScopedJniEnvLocalRefState env_state(env);
2467
2468 const char* old_cause = self->StartAssertNoThreadSuspension("Making stack arguments safe.");
2469
2470 // From the instruction, get the |callsite_shorty| and expose arguments on the stack to the GC.
2471 uint32_t dex_pc;
2472 ArtMethod* caller_method = QuickArgumentVisitor::GetCallingMethodAndDexPc(sp, &dex_pc);
2473 const DexFile* dex_file = caller_method->GetDexFile();
2474 const dex::ProtoIndex proto_idx(dex_file->GetProtoIndexForCallSite(call_site_idx));
2475 std::string_view shorty = caller_method->GetDexFile()->GetShortyView(proto_idx);
2476
2477 // Construct the shadow frame placing arguments consecutively from |first_arg|.
2478 const size_t first_arg = 0;
2479 const size_t num_vregs = ArtMethod::NumArgRegisters(shorty);
2480 ShadowFrameAllocaUniquePtr shadow_frame_unique_ptr =
2481 CREATE_SHADOW_FRAME(num_vregs, caller_method, dex_pc);
2482 ShadowFrame* shadow_frame = shadow_frame_unique_ptr.get();
2483 ScopedStackedShadowFramePusher frame_pusher(self, shadow_frame);
2484 BuildQuickShadowFrameVisitor shadow_frame_builder(sp,
2485 kMethodIsStatic,
2486 shorty,
2487 shadow_frame,
2488 first_arg);
2489 shadow_frame_builder.VisitArguments();
2490
2491 // Push a transition back into managed code onto the linked list in thread.
2492 ManagedStack fragment;
2493 self->PushManagedStackFragment(&fragment);
2494 self->EndAssertNoThreadSuspension(old_cause);
2495
2496 // Perform the invoke-custom operation.
2497 RangeInstructionOperands operands(first_arg, num_vregs);
2498 JValue result;
2499 bool success =
2500 interpreter::DoInvokeCustom(self, *shadow_frame, call_site_idx, &operands, &result);
2501 DCHECK(success || self->IsExceptionPending());
2502
2503 // Pop transition record.
2504 self->PopManagedStackFragment(fragment);
2505
2506 bool is_ref = (shorty[0] == 'L');
2507 Runtime::Current()->GetInstrumentation()->PushDeoptContextIfNeeded(
2508 self, DeoptimizationMethodType::kDefault, is_ref, result);
2509
2510 return NanBoxResultIfNeeded(result.GetJ(), shorty[0]);
2511 }
2512
artJniMethodEntryHook(Thread * self)2513 extern "C" void artJniMethodEntryHook(Thread* self)
2514 REQUIRES_SHARED(Locks::mutator_lock_) {
2515 instrumentation::Instrumentation* instr = Runtime::Current()->GetInstrumentation();
2516 ArtMethod* method = *self->GetManagedStack()->GetTopQuickFrame();
2517 instr->MethodEnterEvent(self, method);
2518 }
2519
artMethodEntryHook(ArtMethod * method,Thread * self,ArtMethod ** sp)2520 extern "C" void artMethodEntryHook(ArtMethod* method, Thread* self, ArtMethod** sp)
2521 REQUIRES_SHARED(Locks::mutator_lock_) {
2522 instrumentation::Instrumentation* instr = Runtime::Current()->GetInstrumentation();
2523 if (instr->HasFastMethodEntryListenersOnly()) {
2524 instr->MethodEnterEvent(self, method);
2525 return;
2526 }
2527
2528 if (instr->HasMethodEntryListeners()) {
2529 instr->MethodEnterEvent(self, method);
2530 // MethodEnter callback could have requested a deopt for ex: by setting a breakpoint, so
2531 // check if we need a deopt here.
2532 if (instr->ShouldDeoptimizeCaller(self, sp) || instr->IsDeoptimized(method)) {
2533 // Instrumentation can request deoptimizing only a particular method (for ex: when
2534 // there are break points on the method). In such cases deoptimize only this method.
2535 // FullFrame deoptimizations are handled on method exits.
2536 artDeoptimizeFromCompiledCode(DeoptimizationKind::kDebugging, self);
2537 }
2538 } else {
2539 DCHECK(!instr->IsDeoptimized(method));
2540 }
2541 }
2542
artMethodExitHook(Thread * self,ArtMethod ** sp,uint64_t * gpr_result,uint64_t * fpr_result,uint32_t frame_size)2543 extern "C" void artMethodExitHook(Thread* self,
2544 ArtMethod** sp,
2545 uint64_t* gpr_result,
2546 uint64_t* fpr_result,
2547 uint32_t frame_size)
2548 REQUIRES_SHARED(Locks::mutator_lock_) {
2549 DCHECK_EQ(reinterpret_cast<uintptr_t>(self), reinterpret_cast<uintptr_t>(Thread::Current()));
2550 // Instrumentation exit stub must not be entered with a pending exception.
2551 CHECK(!self->IsExceptionPending())
2552 << "Enter instrumentation exit stub with pending exception " << self->GetException()->Dump();
2553
2554 instrumentation::Instrumentation* instr = Runtime::Current()->GetInstrumentation();
2555 DCHECK(instr->RunExitHooks());
2556
2557 ArtMethod* method = *sp;
2558 if (instr->HasFastMethodExitListenersOnly()) {
2559 // Fast method listeners are only used for tracing which don't need any deoptimization checks
2560 // or a return value.
2561 JValue return_value;
2562 instr->MethodExitEvent(self, method, /* frame= */ {}, return_value);
2563 return;
2564 }
2565
2566 bool is_ref = false;
2567 if (instr->HasMethodExitListeners()) {
2568 StackHandleScope<1> hs(self);
2569
2570 CHECK(gpr_result != nullptr);
2571 CHECK(fpr_result != nullptr);
2572
2573 JValue return_value = instr->GetReturnValue(method, &is_ref, gpr_result, fpr_result);
2574 MutableHandle<mirror::Object> res(hs.NewHandle<mirror::Object>(nullptr));
2575 if (is_ref) {
2576 // Take a handle to the return value so we won't lose it if we suspend.
2577 res.Assign(return_value.GetL());
2578 }
2579 DCHECK(!method->IsRuntimeMethod());
2580
2581 // If we need a deoptimization MethodExitEvent will be called by the interpreter when it
2582 // re-executes the return instruction. For native methods we have to process method exit
2583 // events here since deoptimization just removes the native frame.
2584 instr->MethodExitEvent(self, method, /* frame= */ {}, return_value);
2585
2586 if (is_ref) {
2587 // Restore the return value if it's a reference since it might have moved.
2588 *reinterpret_cast<mirror::Object**>(gpr_result) = res.Get();
2589 return_value.SetL(res.Get());
2590 }
2591 }
2592
2593 if (self->IsExceptionPending() || self->ObserveAsyncException()) {
2594 // The exception was thrown from the method exit callback. We should not call method unwind
2595 // callbacks for this case.
2596 self->QuickDeliverException(/* is_method_exit_exception= */ true);
2597 UNREACHABLE();
2598 }
2599
2600 // We should deoptimize here if the caller requires a deoptimization or if the current method
2601 // needs a deoptimization. We may need deoptimization for the current method if method exit
2602 // hooks requested this frame to be popped. IsForcedInterpreterNeededForUpcall checks for that.
2603 const bool deoptimize = instr->ShouldDeoptimizeCaller(self, sp, frame_size) ||
2604 Dbg::IsForcedInterpreterNeededForUpcall(self, method);
2605 if (deoptimize) {
2606 JValue ret_val = instr->GetReturnValue(method, &is_ref, gpr_result, fpr_result);
2607 DeoptimizationMethodType deopt_method_type = instr->GetDeoptimizationMethodType(method);
2608 self->PushDeoptimizationContext(
2609 ret_val, is_ref, self->GetException(), false, deopt_method_type);
2610 // Method exit callback has already been run for this method. So tell the deoptimizer to skip
2611 // callbacks for this frame.
2612 artDeoptimize(self, /*skip_method_exit_callbacks = */ true);
2613 UNREACHABLE();
2614 }
2615 }
2616
2617 } // namespace art
2618