1 /*
2 * Copyright 2011 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * VA LINUX SYSTEMS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21 * OTHER DEALINGS IN THE SOFTWARE.
22 */
23
24 #ifndef DRM_FOURCC_H
25 #define DRM_FOURCC_H
26
27 #include "drm.h"
28
29 #if defined(__cplusplus)
30 extern "C" {
31 #endif
32
33 /**
34 * DOC: overview
35 *
36 * In the DRM subsystem, framebuffer pixel formats are described using the
37 * fourcc codes defined in `include/uapi/drm/drm_fourcc.h`. In addition to the
38 * fourcc code, a Format Modifier may optionally be provided, in order to
39 * further describe the buffer's format - for example tiling or compression.
40 *
41 * Format Modifiers
42 * ----------------
43 *
44 * Format modifiers are used in conjunction with a fourcc code, forming a
45 * unique fourcc:modifier pair. This format:modifier pair must fully define the
46 * format and data layout of the buffer, and should be the only way to describe
47 * that particular buffer.
48 *
49 * Having multiple fourcc:modifier pairs which describe the same layout should
50 * be avoided, as such aliases run the risk of different drivers exposing
51 * different names for the same data format, forcing userspace to understand
52 * that they are aliases.
53 *
54 * Format modifiers may change any property of the buffer, including the number
55 * of planes and/or the required allocation size. Format modifiers are
56 * vendor-namespaced, and as such the relationship between a fourcc code and a
57 * modifier is specific to the modifer being used. For example, some modifiers
58 * may preserve meaning - such as number of planes - from the fourcc code,
59 * whereas others may not.
60 *
61 * Modifiers must uniquely encode buffer layout. In other words, a buffer must
62 * match only a single modifier. A modifier must not be a subset of layouts of
63 * another modifier. For instance, it's incorrect to encode pitch alignment in
64 * a modifier: a buffer may match a 64-pixel aligned modifier and a 32-pixel
65 * aligned modifier. That said, modifiers can have implicit minimal
66 * requirements.
67 *
68 * For modifiers where the combination of fourcc code and modifier can alias,
69 * a canonical pair needs to be defined and used by all drivers. Preferred
70 * combinations are also encouraged where all combinations might lead to
71 * confusion and unnecessarily reduced interoperability. An example for the
72 * latter is AFBC, where the ABGR layouts are preferred over ARGB layouts.
73 *
74 * There are two kinds of modifier users:
75 *
76 * - Kernel and user-space drivers: for drivers it's important that modifiers
77 * don't alias, otherwise two drivers might support the same format but use
78 * different aliases, preventing them from sharing buffers in an efficient
79 * format.
80 * - Higher-level programs interfacing with KMS/GBM/EGL/Vulkan/etc: these users
81 * see modifiers as opaque tokens they can check for equality and intersect.
82 * These users musn't need to know to reason about the modifier value
83 * (i.e. they are not expected to extract information out of the modifier).
84 *
85 * Vendors should document their modifier usage in as much detail as
86 * possible, to ensure maximum compatibility across devices, drivers and
87 * applications.
88 *
89 * The authoritative list of format modifier codes is found in
90 * `include/uapi/drm/drm_fourcc.h`
91 */
92
93 #define fourcc_code(a, b, c, d) ((__u32)(a) | ((__u32)(b) << 8) | \
94 ((__u32)(c) << 16) | ((__u32)(d) << 24))
95
96 #define DRM_FORMAT_BIG_ENDIAN (1U<<31) /* format is big endian instead of little endian */
97
98 /* Reserve 0 for the invalid format specifier */
99 #define DRM_FORMAT_INVALID 0
100
101 /* color index */
102 #define DRM_FORMAT_C1 fourcc_code('C', '1', ' ', ' ') /* [7:0] C0:C1:C2:C3:C4:C5:C6:C7 1:1:1:1:1:1:1:1 eight pixels/byte */
103 #define DRM_FORMAT_C2 fourcc_code('C', '2', ' ', ' ') /* [7:0] C0:C1:C2:C3 2:2:2:2 four pixels/byte */
104 #define DRM_FORMAT_C4 fourcc_code('C', '4', ' ', ' ') /* [7:0] C0:C1 4:4 two pixels/byte */
105 #define DRM_FORMAT_C8 fourcc_code('C', '8', ' ', ' ') /* [7:0] C */
106
107 /* 1 bpp Darkness (inverse relationship between channel value and brightness) */
108 #define DRM_FORMAT_D1 fourcc_code('D', '1', ' ', ' ') /* [7:0] D0:D1:D2:D3:D4:D5:D6:D7 1:1:1:1:1:1:1:1 eight pixels/byte */
109
110 /* 2 bpp Darkness (inverse relationship between channel value and brightness) */
111 #define DRM_FORMAT_D2 fourcc_code('D', '2', ' ', ' ') /* [7:0] D0:D1:D2:D3 2:2:2:2 four pixels/byte */
112
113 /* 4 bpp Darkness (inverse relationship between channel value and brightness) */
114 #define DRM_FORMAT_D4 fourcc_code('D', '4', ' ', ' ') /* [7:0] D0:D1 4:4 two pixels/byte */
115
116 /* 8 bpp Darkness (inverse relationship between channel value and brightness) */
117 #define DRM_FORMAT_D8 fourcc_code('D', '8', ' ', ' ') /* [7:0] D */
118
119 /* 1 bpp Red (direct relationship between channel value and brightness) */
120 #define DRM_FORMAT_R1 fourcc_code('R', '1', ' ', ' ') /* [7:0] R0:R1:R2:R3:R4:R5:R6:R7 1:1:1:1:1:1:1:1 eight pixels/byte */
121
122 /* 2 bpp Red (direct relationship between channel value and brightness) */
123 #define DRM_FORMAT_R2 fourcc_code('R', '2', ' ', ' ') /* [7:0] R0:R1:R2:R3 2:2:2:2 four pixels/byte */
124
125 /* 4 bpp Red (direct relationship between channel value and brightness) */
126 #define DRM_FORMAT_R4 fourcc_code('R', '4', ' ', ' ') /* [7:0] R0:R1 4:4 two pixels/byte */
127
128 /* 8 bpp Red (direct relationship between channel value and brightness) */
129 #define DRM_FORMAT_R8 fourcc_code('R', '8', ' ', ' ') /* [7:0] R */
130
131 /* 10 bpp Red (direct relationship between channel value and brightness) */
132 #define DRM_FORMAT_R10 fourcc_code('R', '1', '0', ' ') /* [15:0] x:R 6:10 little endian */
133
134 /* 12 bpp Red (direct relationship between channel value and brightness) */
135 #define DRM_FORMAT_R12 fourcc_code('R', '1', '2', ' ') /* [15:0] x:R 4:12 little endian */
136
137 /* 16 bpp Red (direct relationship between channel value and brightness) */
138 #define DRM_FORMAT_R16 fourcc_code('R', '1', '6', ' ') /* [15:0] R little endian */
139
140 /* 16 bpp RG */
141 #define DRM_FORMAT_RG88 fourcc_code('R', 'G', '8', '8') /* [15:0] R:G 8:8 little endian */
142 #define DRM_FORMAT_GR88 fourcc_code('G', 'R', '8', '8') /* [15:0] G:R 8:8 little endian */
143
144 /* 32 bpp RG */
145 #define DRM_FORMAT_RG1616 fourcc_code('R', 'G', '3', '2') /* [31:0] R:G 16:16 little endian */
146 #define DRM_FORMAT_GR1616 fourcc_code('G', 'R', '3', '2') /* [31:0] G:R 16:16 little endian */
147
148 /* 8 bpp RGB */
149 #define DRM_FORMAT_RGB332 fourcc_code('R', 'G', 'B', '8') /* [7:0] R:G:B 3:3:2 */
150 #define DRM_FORMAT_BGR233 fourcc_code('B', 'G', 'R', '8') /* [7:0] B:G:R 2:3:3 */
151
152 /* 16 bpp RGB */
153 #define DRM_FORMAT_XRGB4444 fourcc_code('X', 'R', '1', '2') /* [15:0] x:R:G:B 4:4:4:4 little endian */
154 #define DRM_FORMAT_XBGR4444 fourcc_code('X', 'B', '1', '2') /* [15:0] x:B:G:R 4:4:4:4 little endian */
155 #define DRM_FORMAT_RGBX4444 fourcc_code('R', 'X', '1', '2') /* [15:0] R:G:B:x 4:4:4:4 little endian */
156 #define DRM_FORMAT_BGRX4444 fourcc_code('B', 'X', '1', '2') /* [15:0] B:G:R:x 4:4:4:4 little endian */
157
158 #define DRM_FORMAT_ARGB4444 fourcc_code('A', 'R', '1', '2') /* [15:0] A:R:G:B 4:4:4:4 little endian */
159 #define DRM_FORMAT_ABGR4444 fourcc_code('A', 'B', '1', '2') /* [15:0] A:B:G:R 4:4:4:4 little endian */
160 #define DRM_FORMAT_RGBA4444 fourcc_code('R', 'A', '1', '2') /* [15:0] R:G:B:A 4:4:4:4 little endian */
161 #define DRM_FORMAT_BGRA4444 fourcc_code('B', 'A', '1', '2') /* [15:0] B:G:R:A 4:4:4:4 little endian */
162
163 #define DRM_FORMAT_XRGB1555 fourcc_code('X', 'R', '1', '5') /* [15:0] x:R:G:B 1:5:5:5 little endian */
164 #define DRM_FORMAT_XBGR1555 fourcc_code('X', 'B', '1', '5') /* [15:0] x:B:G:R 1:5:5:5 little endian */
165 #define DRM_FORMAT_RGBX5551 fourcc_code('R', 'X', '1', '5') /* [15:0] R:G:B:x 5:5:5:1 little endian */
166 #define DRM_FORMAT_BGRX5551 fourcc_code('B', 'X', '1', '5') /* [15:0] B:G:R:x 5:5:5:1 little endian */
167
168 #define DRM_FORMAT_ARGB1555 fourcc_code('A', 'R', '1', '5') /* [15:0] A:R:G:B 1:5:5:5 little endian */
169 #define DRM_FORMAT_ABGR1555 fourcc_code('A', 'B', '1', '5') /* [15:0] A:B:G:R 1:5:5:5 little endian */
170 #define DRM_FORMAT_RGBA5551 fourcc_code('R', 'A', '1', '5') /* [15:0] R:G:B:A 5:5:5:1 little endian */
171 #define DRM_FORMAT_BGRA5551 fourcc_code('B', 'A', '1', '5') /* [15:0] B:G:R:A 5:5:5:1 little endian */
172
173 #define DRM_FORMAT_RGB565 fourcc_code('R', 'G', '1', '6') /* [15:0] R:G:B 5:6:5 little endian */
174 #define DRM_FORMAT_BGR565 fourcc_code('B', 'G', '1', '6') /* [15:0] B:G:R 5:6:5 little endian */
175
176 /* 24 bpp RGB */
177 #define DRM_FORMAT_RGB888 fourcc_code('R', 'G', '2', '4') /* [23:0] R:G:B little endian */
178 #define DRM_FORMAT_BGR888 fourcc_code('B', 'G', '2', '4') /* [23:0] B:G:R little endian */
179
180 /* 32 bpp RGB */
181 #define DRM_FORMAT_XRGB8888 fourcc_code('X', 'R', '2', '4') /* [31:0] x:R:G:B 8:8:8:8 little endian */
182 #define DRM_FORMAT_XBGR8888 fourcc_code('X', 'B', '2', '4') /* [31:0] x:B:G:R 8:8:8:8 little endian */
183 #define DRM_FORMAT_RGBX8888 fourcc_code('R', 'X', '2', '4') /* [31:0] R:G:B:x 8:8:8:8 little endian */
184 #define DRM_FORMAT_BGRX8888 fourcc_code('B', 'X', '2', '4') /* [31:0] B:G:R:x 8:8:8:8 little endian */
185
186 #define DRM_FORMAT_ARGB8888 fourcc_code('A', 'R', '2', '4') /* [31:0] A:R:G:B 8:8:8:8 little endian */
187 #define DRM_FORMAT_ABGR8888 fourcc_code('A', 'B', '2', '4') /* [31:0] A:B:G:R 8:8:8:8 little endian */
188 #define DRM_FORMAT_RGBA8888 fourcc_code('R', 'A', '2', '4') /* [31:0] R:G:B:A 8:8:8:8 little endian */
189 #define DRM_FORMAT_BGRA8888 fourcc_code('B', 'A', '2', '4') /* [31:0] B:G:R:A 8:8:8:8 little endian */
190
191 #define DRM_FORMAT_XRGB2101010 fourcc_code('X', 'R', '3', '0') /* [31:0] x:R:G:B 2:10:10:10 little endian */
192 #define DRM_FORMAT_XBGR2101010 fourcc_code('X', 'B', '3', '0') /* [31:0] x:B:G:R 2:10:10:10 little endian */
193 #define DRM_FORMAT_RGBX1010102 fourcc_code('R', 'X', '3', '0') /* [31:0] R:G:B:x 10:10:10:2 little endian */
194 #define DRM_FORMAT_BGRX1010102 fourcc_code('B', 'X', '3', '0') /* [31:0] B:G:R:x 10:10:10:2 little endian */
195
196 #define DRM_FORMAT_ARGB2101010 fourcc_code('A', 'R', '3', '0') /* [31:0] A:R:G:B 2:10:10:10 little endian */
197 #define DRM_FORMAT_ABGR2101010 fourcc_code('A', 'B', '3', '0') /* [31:0] A:B:G:R 2:10:10:10 little endian */
198 #define DRM_FORMAT_RGBA1010102 fourcc_code('R', 'A', '3', '0') /* [31:0] R:G:B:A 10:10:10:2 little endian */
199 #define DRM_FORMAT_BGRA1010102 fourcc_code('B', 'A', '3', '0') /* [31:0] B:G:R:A 10:10:10:2 little endian */
200
201 /* 64 bpp RGB */
202 #define DRM_FORMAT_XRGB16161616 fourcc_code('X', 'R', '4', '8') /* [63:0] x:R:G:B 16:16:16:16 little endian */
203 #define DRM_FORMAT_XBGR16161616 fourcc_code('X', 'B', '4', '8') /* [63:0] x:B:G:R 16:16:16:16 little endian */
204
205 #define DRM_FORMAT_ARGB16161616 fourcc_code('A', 'R', '4', '8') /* [63:0] A:R:G:B 16:16:16:16 little endian */
206 #define DRM_FORMAT_ABGR16161616 fourcc_code('A', 'B', '4', '8') /* [63:0] A:B:G:R 16:16:16:16 little endian */
207
208 /*
209 * Floating point 64bpp RGB
210 * IEEE 754-2008 binary16 half-precision float
211 * [15:0] sign:exponent:mantissa 1:5:10
212 */
213 #define DRM_FORMAT_XRGB16161616F fourcc_code('X', 'R', '4', 'H') /* [63:0] x:R:G:B 16:16:16:16 little endian */
214 #define DRM_FORMAT_XBGR16161616F fourcc_code('X', 'B', '4', 'H') /* [63:0] x:B:G:R 16:16:16:16 little endian */
215
216 #define DRM_FORMAT_ARGB16161616F fourcc_code('A', 'R', '4', 'H') /* [63:0] A:R:G:B 16:16:16:16 little endian */
217 #define DRM_FORMAT_ABGR16161616F fourcc_code('A', 'B', '4', 'H') /* [63:0] A:B:G:R 16:16:16:16 little endian */
218
219 /*
220 * RGBA format with 10-bit components packed in 64-bit per pixel, with 6 bits
221 * of unused padding per component:
222 */
223 #define DRM_FORMAT_AXBXGXRX106106106106 fourcc_code('A', 'B', '1', '0') /* [63:0] A:x:B:x:G:x:R:x 10:6:10:6:10:6:10:6 little endian */
224
225 /* packed YCbCr */
226 #define DRM_FORMAT_YUYV fourcc_code('Y', 'U', 'Y', 'V') /* [31:0] Cr0:Y1:Cb0:Y0 8:8:8:8 little endian */
227 #define DRM_FORMAT_YVYU fourcc_code('Y', 'V', 'Y', 'U') /* [31:0] Cb0:Y1:Cr0:Y0 8:8:8:8 little endian */
228 #define DRM_FORMAT_UYVY fourcc_code('U', 'Y', 'V', 'Y') /* [31:0] Y1:Cr0:Y0:Cb0 8:8:8:8 little endian */
229 #define DRM_FORMAT_VYUY fourcc_code('V', 'Y', 'U', 'Y') /* [31:0] Y1:Cb0:Y0:Cr0 8:8:8:8 little endian */
230
231 #define DRM_FORMAT_AYUV fourcc_code('A', 'Y', 'U', 'V') /* [31:0] A:Y:Cb:Cr 8:8:8:8 little endian */
232 #define DRM_FORMAT_AVUY8888 fourcc_code('A', 'V', 'U', 'Y') /* [31:0] A:Cr:Cb:Y 8:8:8:8 little endian */
233 #define DRM_FORMAT_XYUV8888 fourcc_code('X', 'Y', 'U', 'V') /* [31:0] X:Y:Cb:Cr 8:8:8:8 little endian */
234 #define DRM_FORMAT_XVUY8888 fourcc_code('X', 'V', 'U', 'Y') /* [31:0] X:Cr:Cb:Y 8:8:8:8 little endian */
235 #define DRM_FORMAT_VUY888 fourcc_code('V', 'U', '2', '4') /* [23:0] Cr:Cb:Y 8:8:8 little endian */
236 #define DRM_FORMAT_VUY101010 fourcc_code('V', 'U', '3', '0') /* Y followed by U then V, 10:10:10. Non-linear modifier only */
237
238 /*
239 * packed Y2xx indicate for each component, xx valid data occupy msb
240 * 16-xx padding occupy lsb
241 */
242 #define DRM_FORMAT_Y210 fourcc_code('Y', '2', '1', '0') /* [63:0] Cr0:0:Y1:0:Cb0:0:Y0:0 10:6:10:6:10:6:10:6 little endian per 2 Y pixels */
243 #define DRM_FORMAT_Y212 fourcc_code('Y', '2', '1', '2') /* [63:0] Cr0:0:Y1:0:Cb0:0:Y0:0 12:4:12:4:12:4:12:4 little endian per 2 Y pixels */
244 #define DRM_FORMAT_Y216 fourcc_code('Y', '2', '1', '6') /* [63:0] Cr0:Y1:Cb0:Y0 16:16:16:16 little endian per 2 Y pixels */
245
246 /*
247 * packed Y4xx indicate for each component, xx valid data occupy msb
248 * 16-xx padding occupy lsb except Y410
249 */
250 #define DRM_FORMAT_Y410 fourcc_code('Y', '4', '1', '0') /* [31:0] A:Cr:Y:Cb 2:10:10:10 little endian */
251 #define DRM_FORMAT_Y412 fourcc_code('Y', '4', '1', '2') /* [63:0] A:0:Cr:0:Y:0:Cb:0 12:4:12:4:12:4:12:4 little endian */
252 #define DRM_FORMAT_Y416 fourcc_code('Y', '4', '1', '6') /* [63:0] A:Cr:Y:Cb 16:16:16:16 little endian */
253
254 #define DRM_FORMAT_XVYU2101010 fourcc_code('X', 'V', '3', '0') /* [31:0] X:Cr:Y:Cb 2:10:10:10 little endian */
255 #define DRM_FORMAT_XVYU12_16161616 fourcc_code('X', 'V', '3', '6') /* [63:0] X:0:Cr:0:Y:0:Cb:0 12:4:12:4:12:4:12:4 little endian */
256 #define DRM_FORMAT_XVYU16161616 fourcc_code('X', 'V', '4', '8') /* [63:0] X:Cr:Y:Cb 16:16:16:16 little endian */
257
258 /*
259 * packed YCbCr420 2x2 tiled formats
260 * first 64 bits will contain Y,Cb,Cr components for a 2x2 tile
261 */
262 /* [63:0] A3:A2:Y3:0:Cr0:0:Y2:0:A1:A0:Y1:0:Cb0:0:Y0:0 1:1:8:2:8:2:8:2:1:1:8:2:8:2:8:2 little endian */
263 #define DRM_FORMAT_Y0L0 fourcc_code('Y', '0', 'L', '0')
264 /* [63:0] X3:X2:Y3:0:Cr0:0:Y2:0:X1:X0:Y1:0:Cb0:0:Y0:0 1:1:8:2:8:2:8:2:1:1:8:2:8:2:8:2 little endian */
265 #define DRM_FORMAT_X0L0 fourcc_code('X', '0', 'L', '0')
266
267 /* [63:0] A3:A2:Y3:Cr0:Y2:A1:A0:Y1:Cb0:Y0 1:1:10:10:10:1:1:10:10:10 little endian */
268 #define DRM_FORMAT_Y0L2 fourcc_code('Y', '0', 'L', '2')
269 /* [63:0] X3:X2:Y3:Cr0:Y2:X1:X0:Y1:Cb0:Y0 1:1:10:10:10:1:1:10:10:10 little endian */
270 #define DRM_FORMAT_X0L2 fourcc_code('X', '0', 'L', '2')
271
272 /*
273 * 1-plane YUV 4:2:0
274 * In these formats, the component ordering is specified (Y, followed by U
275 * then V), but the exact Linear layout is undefined.
276 * These formats can only be used with a non-Linear modifier.
277 */
278 #define DRM_FORMAT_YUV420_8BIT fourcc_code('Y', 'U', '0', '8')
279 #define DRM_FORMAT_YUV420_10BIT fourcc_code('Y', 'U', '1', '0')
280
281 /*
282 * 2 plane RGB + A
283 * index 0 = RGB plane, same format as the corresponding non _A8 format has
284 * index 1 = A plane, [7:0] A
285 */
286 #define DRM_FORMAT_XRGB8888_A8 fourcc_code('X', 'R', 'A', '8')
287 #define DRM_FORMAT_XBGR8888_A8 fourcc_code('X', 'B', 'A', '8')
288 #define DRM_FORMAT_RGBX8888_A8 fourcc_code('R', 'X', 'A', '8')
289 #define DRM_FORMAT_BGRX8888_A8 fourcc_code('B', 'X', 'A', '8')
290 #define DRM_FORMAT_RGB888_A8 fourcc_code('R', '8', 'A', '8')
291 #define DRM_FORMAT_BGR888_A8 fourcc_code('B', '8', 'A', '8')
292 #define DRM_FORMAT_RGB565_A8 fourcc_code('R', '5', 'A', '8')
293 #define DRM_FORMAT_BGR565_A8 fourcc_code('B', '5', 'A', '8')
294
295 /*
296 * 2 plane YCbCr
297 * index 0 = Y plane, [7:0] Y
298 * index 1 = Cr:Cb plane, [15:0] Cr:Cb little endian
299 * or
300 * index 1 = Cb:Cr plane, [15:0] Cb:Cr little endian
301 */
302 #define DRM_FORMAT_NV12 fourcc_code('N', 'V', '1', '2') /* 2x2 subsampled Cr:Cb plane */
303 #define DRM_FORMAT_NV21 fourcc_code('N', 'V', '2', '1') /* 2x2 subsampled Cb:Cr plane */
304 #define DRM_FORMAT_NV16 fourcc_code('N', 'V', '1', '6') /* 2x1 subsampled Cr:Cb plane */
305 #define DRM_FORMAT_NV61 fourcc_code('N', 'V', '6', '1') /* 2x1 subsampled Cb:Cr plane */
306 #define DRM_FORMAT_NV24 fourcc_code('N', 'V', '2', '4') /* non-subsampled Cr:Cb plane */
307 #define DRM_FORMAT_NV42 fourcc_code('N', 'V', '4', '2') /* non-subsampled Cb:Cr plane */
308 /*
309 * 2 plane YCbCr
310 * index 0 = Y plane, [39:0] Y3:Y2:Y1:Y0 little endian
311 * index 1 = Cr:Cb plane, [39:0] Cr1:Cb1:Cr0:Cb0 little endian
312 */
313 #define DRM_FORMAT_NV15 fourcc_code('N', 'V', '1', '5') /* 2x2 subsampled Cr:Cb plane */
314 #define DRM_FORMAT_NV20 fourcc_code('N', 'V', '2', '0') /* 2x1 subsampled Cr:Cb plane */
315 #define DRM_FORMAT_NV30 fourcc_code('N', 'V', '3', '0') /* non-subsampled Cr:Cb plane */
316
317 /*
318 * 2 plane YCbCr MSB aligned
319 * index 0 = Y plane, [15:0] Y:x [10:6] little endian
320 * index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [10:6:10:6] little endian
321 */
322 #define DRM_FORMAT_P210 fourcc_code('P', '2', '1', '0') /* 2x1 subsampled Cr:Cb plane, 10 bit per channel */
323
324 /*
325 * 2 plane YCbCr MSB aligned
326 * index 0 = Y plane, [15:0] Y:x [10:6] little endian
327 * index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [10:6:10:6] little endian
328 */
329 #define DRM_FORMAT_P010 fourcc_code('P', '0', '1', '0') /* 2x2 subsampled Cr:Cb plane 10 bits per channel */
330
331 /*
332 * 2 plane YCbCr MSB aligned
333 * index 0 = Y plane, [15:0] Y:x [12:4] little endian
334 * index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [12:4:12:4] little endian
335 */
336 #define DRM_FORMAT_P012 fourcc_code('P', '0', '1', '2') /* 2x2 subsampled Cr:Cb plane 12 bits per channel */
337
338 /*
339 * 2 plane YCbCr MSB aligned
340 * index 0 = Y plane, [15:0] Y little endian
341 * index 1 = Cr:Cb plane, [31:0] Cr:Cb [16:16] little endian
342 */
343 #define DRM_FORMAT_P016 fourcc_code('P', '0', '1', '6') /* 2x2 subsampled Cr:Cb plane 16 bits per channel */
344
345 /* 2 plane YCbCr420.
346 * 3 10 bit components and 2 padding bits packed into 4 bytes.
347 * index 0 = Y plane, [31:0] x:Y2:Y1:Y0 2:10:10:10 little endian
348 * index 1 = Cr:Cb plane, [63:0] x:Cr2:Cb2:Cr1:x:Cb1:Cr0:Cb0 [2:10:10:10:2:10:10:10] little endian
349 */
350 #define DRM_FORMAT_P030 fourcc_code('P', '0', '3', '0') /* 2x2 subsampled Cr:Cb plane 10 bits per channel packed */
351
352 /* 3 plane non-subsampled (444) YCbCr
353 * 16 bits per component, but only 10 bits are used and 6 bits are padded
354 * index 0: Y plane, [15:0] Y:x [10:6] little endian
355 * index 1: Cb plane, [15:0] Cb:x [10:6] little endian
356 * index 2: Cr plane, [15:0] Cr:x [10:6] little endian
357 */
358 #define DRM_FORMAT_Q410 fourcc_code('Q', '4', '1', '0')
359
360 /* 3 plane non-subsampled (444) YCrCb
361 * 16 bits per component, but only 10 bits are used and 6 bits are padded
362 * index 0: Y plane, [15:0] Y:x [10:6] little endian
363 * index 1: Cr plane, [15:0] Cr:x [10:6] little endian
364 * index 2: Cb plane, [15:0] Cb:x [10:6] little endian
365 */
366 #define DRM_FORMAT_Q401 fourcc_code('Q', '4', '0', '1')
367
368 /*
369 * 3 plane YCbCr
370 * index 0: Y plane, [7:0] Y
371 * index 1: Cb plane, [7:0] Cb
372 * index 2: Cr plane, [7:0] Cr
373 * or
374 * index 1: Cr plane, [7:0] Cr
375 * index 2: Cb plane, [7:0] Cb
376 */
377 #define DRM_FORMAT_YUV410 fourcc_code('Y', 'U', 'V', '9') /* 4x4 subsampled Cb (1) and Cr (2) planes */
378 #define DRM_FORMAT_YVU410 fourcc_code('Y', 'V', 'U', '9') /* 4x4 subsampled Cr (1) and Cb (2) planes */
379 #define DRM_FORMAT_YUV411 fourcc_code('Y', 'U', '1', '1') /* 4x1 subsampled Cb (1) and Cr (2) planes */
380 #define DRM_FORMAT_YVU411 fourcc_code('Y', 'V', '1', '1') /* 4x1 subsampled Cr (1) and Cb (2) planes */
381 #define DRM_FORMAT_YUV420 fourcc_code('Y', 'U', '1', '2') /* 2x2 subsampled Cb (1) and Cr (2) planes */
382 #define DRM_FORMAT_YVU420 fourcc_code('Y', 'V', '1', '2') /* 2x2 subsampled Cr (1) and Cb (2) planes */
383 #define DRM_FORMAT_YUV422 fourcc_code('Y', 'U', '1', '6') /* 2x1 subsampled Cb (1) and Cr (2) planes */
384 #define DRM_FORMAT_YVU422 fourcc_code('Y', 'V', '1', '6') /* 2x1 subsampled Cr (1) and Cb (2) planes */
385 #define DRM_FORMAT_YUV444 fourcc_code('Y', 'U', '2', '4') /* non-subsampled Cb (1) and Cr (2) planes */
386 #define DRM_FORMAT_YVU444 fourcc_code('Y', 'V', '2', '4') /* non-subsampled Cr (1) and Cb (2) planes */
387
388
389 /*
390 * Format Modifiers:
391 *
392 * Format modifiers describe, typically, a re-ordering or modification
393 * of the data in a plane of an FB. This can be used to express tiled/
394 * swizzled formats, or compression, or a combination of the two.
395 *
396 * The upper 8 bits of the format modifier are a vendor-id as assigned
397 * below. The lower 56 bits are assigned as vendor sees fit.
398 */
399
400 /* Vendor Ids: */
401 #define DRM_FORMAT_MOD_VENDOR_NONE 0
402 #define DRM_FORMAT_MOD_VENDOR_INTEL 0x01
403 #define DRM_FORMAT_MOD_VENDOR_AMD 0x02
404 #define DRM_FORMAT_MOD_VENDOR_NVIDIA 0x03
405 #define DRM_FORMAT_MOD_VENDOR_SAMSUNG 0x04
406 #define DRM_FORMAT_MOD_VENDOR_QCOM 0x05
407 #define DRM_FORMAT_MOD_VENDOR_VIVANTE 0x06
408 #define DRM_FORMAT_MOD_VENDOR_BROADCOM 0x07
409 #define DRM_FORMAT_MOD_VENDOR_ARM 0x08
410 #define DRM_FORMAT_MOD_VENDOR_ALLWINNER 0x09
411 #define DRM_FORMAT_MOD_VENDOR_AMLOGIC 0x0a
412
413 /* add more to the end as needed */
414
415 #define DRM_FORMAT_RESERVED ((1ULL << 56) - 1)
416
417 #define fourcc_mod_get_vendor(modifier) \
418 (((modifier) >> 56) & 0xff)
419
420 #define fourcc_mod_is_vendor(modifier, vendor) \
421 (fourcc_mod_get_vendor(modifier) == DRM_FORMAT_MOD_VENDOR_## vendor)
422
423 #define fourcc_mod_code(vendor, val) \
424 ((((__u64)DRM_FORMAT_MOD_VENDOR_## vendor) << 56) | ((val) & 0x00ffffffffffffffULL))
425
426 /*
427 * Format Modifier tokens:
428 *
429 * When adding a new token please document the layout with a code comment,
430 * similar to the fourcc codes above. drm_fourcc.h is considered the
431 * authoritative source for all of these.
432 *
433 * Generic modifier names:
434 *
435 * DRM_FORMAT_MOD_GENERIC_* definitions are used to provide vendor-neutral names
436 * for layouts which are common across multiple vendors. To preserve
437 * compatibility, in cases where a vendor-specific definition already exists and
438 * a generic name for it is desired, the common name is a purely symbolic alias
439 * and must use the same numerical value as the original definition.
440 *
441 * Note that generic names should only be used for modifiers which describe
442 * generic layouts (such as pixel re-ordering), which may have
443 * independently-developed support across multiple vendors.
444 *
445 * In future cases where a generic layout is identified before merging with a
446 * vendor-specific modifier, a new 'GENERIC' vendor or modifier using vendor
447 * 'NONE' could be considered. This should only be for obvious, exceptional
448 * cases to avoid polluting the 'GENERIC' namespace with modifiers which only
449 * apply to a single vendor.
450 *
451 * Generic names should not be used for cases where multiple hardware vendors
452 * have implementations of the same standardised compression scheme (such as
453 * AFBC). In those cases, all implementations should use the same format
454 * modifier(s), reflecting the vendor of the standard.
455 */
456
457 #define DRM_FORMAT_MOD_GENERIC_16_16_TILE DRM_FORMAT_MOD_SAMSUNG_16_16_TILE
458
459 /*
460 * Invalid Modifier
461 *
462 * This modifier can be used as a sentinel to terminate the format modifiers
463 * list, or to initialize a variable with an invalid modifier. It might also be
464 * used to report an error back to userspace for certain APIs.
465 */
466 #define DRM_FORMAT_MOD_INVALID fourcc_mod_code(NONE, DRM_FORMAT_RESERVED)
467
468 /*
469 * Linear Layout
470 *
471 * Just plain linear layout. Note that this is different from no specifying any
472 * modifier (e.g. not setting DRM_MODE_FB_MODIFIERS in the DRM_ADDFB2 ioctl),
473 * which tells the driver to also take driver-internal information into account
474 * and so might actually result in a tiled framebuffer.
475 */
476 #define DRM_FORMAT_MOD_LINEAR fourcc_mod_code(NONE, 0)
477
478 /*
479 * Deprecated: use DRM_FORMAT_MOD_LINEAR instead
480 *
481 * The "none" format modifier doesn't actually mean that the modifier is
482 * implicit, instead it means that the layout is linear. Whether modifiers are
483 * used is out-of-band information carried in an API-specific way (e.g. in a
484 * flag for drm_mode_fb_cmd2).
485 */
486 #define DRM_FORMAT_MOD_NONE 0
487
488 /* Intel framebuffer modifiers */
489
490 /*
491 * Intel X-tiling layout
492 *
493 * This is a tiled layout using 4Kb tiles (except on gen2 where the tiles 2Kb)
494 * in row-major layout. Within the tile bytes are laid out row-major, with
495 * a platform-dependent stride. On top of that the memory can apply
496 * platform-depending swizzling of some higher address bits into bit6.
497 *
498 * Note that this layout is only accurate on intel gen 8+ or valleyview chipsets.
499 * On earlier platforms the is highly platforms specific and not useful for
500 * cross-driver sharing. It exists since on a given platform it does uniquely
501 * identify the layout in a simple way for i915-specific userspace, which
502 * facilitated conversion of userspace to modifiers. Additionally the exact
503 * format on some really old platforms is not known.
504 */
505 #define I915_FORMAT_MOD_X_TILED fourcc_mod_code(INTEL, 1)
506
507 /*
508 * Intel Y-tiling layout
509 *
510 * This is a tiled layout using 4Kb tiles (except on gen2 where the tiles 2Kb)
511 * in row-major layout. Within the tile bytes are laid out in OWORD (16 bytes)
512 * chunks column-major, with a platform-dependent height. On top of that the
513 * memory can apply platform-depending swizzling of some higher address bits
514 * into bit6.
515 *
516 * Note that this layout is only accurate on intel gen 8+ or valleyview chipsets.
517 * On earlier platforms the is highly platforms specific and not useful for
518 * cross-driver sharing. It exists since on a given platform it does uniquely
519 * identify the layout in a simple way for i915-specific userspace, which
520 * facilitated conversion of userspace to modifiers. Additionally the exact
521 * format on some really old platforms is not known.
522 */
523 #define I915_FORMAT_MOD_Y_TILED fourcc_mod_code(INTEL, 2)
524
525 /*
526 * Intel Yf-tiling layout
527 *
528 * This is a tiled layout using 4Kb tiles in row-major layout.
529 * Within the tile pixels are laid out in 16 256 byte units / sub-tiles which
530 * are arranged in four groups (two wide, two high) with column-major layout.
531 * Each group therefore consits out of four 256 byte units, which are also laid
532 * out as 2x2 column-major.
533 * 256 byte units are made out of four 64 byte blocks of pixels, producing
534 * either a square block or a 2:1 unit.
535 * 64 byte blocks of pixels contain four pixel rows of 16 bytes, where the width
536 * in pixel depends on the pixel depth.
537 */
538 #define I915_FORMAT_MOD_Yf_TILED fourcc_mod_code(INTEL, 3)
539
540 /*
541 * Intel color control surface (CCS) for render compression
542 *
543 * The framebuffer format must be one of the 8:8:8:8 RGB formats.
544 * The main surface will be plane index 0 and must be Y/Yf-tiled,
545 * the CCS will be plane index 1.
546 *
547 * Each CCS tile matches a 1024x512 pixel area of the main surface.
548 * To match certain aspects of the 3D hardware the CCS is
549 * considered to be made up of normal 128Bx32 Y tiles, Thus
550 * the CCS pitch must be specified in multiples of 128 bytes.
551 *
552 * In reality the CCS tile appears to be a 64Bx64 Y tile, composed
553 * of QWORD (8 bytes) chunks instead of OWORD (16 bytes) chunks.
554 * But that fact is not relevant unless the memory is accessed
555 * directly.
556 */
557 #define I915_FORMAT_MOD_Y_TILED_CCS fourcc_mod_code(INTEL, 4)
558 #define I915_FORMAT_MOD_Yf_TILED_CCS fourcc_mod_code(INTEL, 5)
559
560 /*
561 * Intel color control surfaces (CCS) for Gen-12 render compression.
562 *
563 * The main surface is Y-tiled and at plane index 0, the CCS is linear and
564 * at index 1. A 64B CCS cache line corresponds to an area of 4x1 tiles in
565 * main surface. In other words, 4 bits in CCS map to a main surface cache
566 * line pair. The main surface pitch is required to be a multiple of four
567 * Y-tile widths.
568 */
569 #define I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS fourcc_mod_code(INTEL, 6)
570
571 /*
572 * Intel color control surfaces (CCS) for Gen-12 media compression
573 *
574 * The main surface is Y-tiled and at plane index 0, the CCS is linear and
575 * at index 1. A 64B CCS cache line corresponds to an area of 4x1 tiles in
576 * main surface. In other words, 4 bits in CCS map to a main surface cache
577 * line pair. The main surface pitch is required to be a multiple of four
578 * Y-tile widths. For semi-planar formats like NV12, CCS planes follow the
579 * Y and UV planes i.e., planes 0 and 1 are used for Y and UV surfaces,
580 * planes 2 and 3 for the respective CCS.
581 */
582 #define I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS fourcc_mod_code(INTEL, 7)
583
584 /*
585 * Intel Color Control Surface with Clear Color (CCS) for Gen-12 render
586 * compression.
587 *
588 * The main surface is Y-tiled and is at plane index 0 whereas CCS is linear
589 * and at index 1. The clear color is stored at index 2, and the pitch should
590 * be 64 bytes aligned. The clear color structure is 256 bits. The first 128 bits
591 * represents Raw Clear Color Red, Green, Blue and Alpha color each represented
592 * by 32 bits. The raw clear color is consumed by the 3d engine and generates
593 * the converted clear color of size 64 bits. The first 32 bits store the Lower
594 * Converted Clear Color value and the next 32 bits store the Higher Converted
595 * Clear Color value when applicable. The Converted Clear Color values are
596 * consumed by the DE. The last 64 bits are used to store Color Discard Enable
597 * and Depth Clear Value Valid which are ignored by the DE. A CCS cache line
598 * corresponds to an area of 4x1 tiles in the main surface. The main surface
599 * pitch is required to be a multiple of 4 tile widths.
600 */
601 #define I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS_CC fourcc_mod_code(INTEL, 8)
602
603 /*
604 * Intel Tile 4 layout
605 *
606 * This is a tiled layout using 4KB tiles in a row-major layout. It has the same
607 * shape as Tile Y at two granularities: 4KB (128B x 32) and 64B (16B x 4). It
608 * only differs from Tile Y at the 256B granularity in between. At this
609 * granularity, Tile Y has a shape of 16B x 32 rows, but this tiling has a shape
610 * of 64B x 8 rows.
611 */
612 #define I915_FORMAT_MOD_4_TILED fourcc_mod_code(INTEL, 9)
613
614 /*
615 * Intel color control surfaces (CCS) for DG2 render compression.
616 *
617 * The main surface is Tile 4 and at plane index 0. The CCS data is stored
618 * outside of the GEM object in a reserved memory area dedicated for the
619 * storage of the CCS data for all RC/RC_CC/MC compressible GEM objects. The
620 * main surface pitch is required to be a multiple of four Tile 4 widths.
621 */
622 #define I915_FORMAT_MOD_4_TILED_DG2_RC_CCS fourcc_mod_code(INTEL, 10)
623
624 /*
625 * Intel color control surfaces (CCS) for DG2 media compression.
626 *
627 * The main surface is Tile 4 and at plane index 0. For semi-planar formats
628 * like NV12, the Y and UV planes are Tile 4 and are located at plane indices
629 * 0 and 1, respectively. The CCS for all planes are stored outside of the
630 * GEM object in a reserved memory area dedicated for the storage of the
631 * CCS data for all RC/RC_CC/MC compressible GEM objects. The main surface
632 * pitch is required to be a multiple of four Tile 4 widths.
633 */
634 #define I915_FORMAT_MOD_4_TILED_DG2_MC_CCS fourcc_mod_code(INTEL, 11)
635
636 /*
637 * Intel Color Control Surface with Clear Color (CCS) for DG2 render compression.
638 *
639 * The main surface is Tile 4 and at plane index 0. The CCS data is stored
640 * outside of the GEM object in a reserved memory area dedicated for the
641 * storage of the CCS data for all RC/RC_CC/MC compressible GEM objects. The
642 * main surface pitch is required to be a multiple of four Tile 4 widths. The
643 * clear color is stored at plane index 1 and the pitch should be 64 bytes
644 * aligned. The format of the 256 bits of clear color data matches the one used
645 * for the I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS_CC modifier, see its description
646 * for details.
647 */
648 #define I915_FORMAT_MOD_4_TILED_DG2_RC_CCS_CC fourcc_mod_code(INTEL, 12)
649
650 /*
651 * Tiled, NV12MT, grouped in 64 (pixels) x 32 (lines) -sized macroblocks
652 *
653 * Macroblocks are laid in a Z-shape, and each pixel data is following the
654 * standard NV12 style.
655 * As for NV12, an image is the result of two frame buffers: one for Y,
656 * one for the interleaved Cb/Cr components (1/2 the height of the Y buffer).
657 * Alignment requirements are (for each buffer):
658 * - multiple of 128 pixels for the width
659 * - multiple of 32 pixels for the height
660 *
661 * For more information: see https://linuxtv.org/downloads/v4l-dvb-apis/re32.html
662 */
663 #define DRM_FORMAT_MOD_SAMSUNG_64_32_TILE fourcc_mod_code(SAMSUNG, 1)
664
665 /*
666 * Tiled, 16 (pixels) x 16 (lines) - sized macroblocks
667 *
668 * This is a simple tiled layout using tiles of 16x16 pixels in a row-major
669 * layout. For YCbCr formats Cb/Cr components are taken in such a way that
670 * they correspond to their 16x16 luma block.
671 */
672 #define DRM_FORMAT_MOD_SAMSUNG_16_16_TILE fourcc_mod_code(SAMSUNG, 2)
673
674 /*
675 * Qualcomm Compressed Format
676 *
677 * Refers to a compressed variant of the base format that is compressed.
678 * Implementation may be platform and base-format specific.
679 *
680 * Each macrotile consists of m x n (mostly 4 x 4) tiles.
681 * Pixel data pitch/stride is aligned with macrotile width.
682 * Pixel data height is aligned with macrotile height.
683 * Entire pixel data buffer is aligned with 4k(bytes).
684 */
685 #define DRM_FORMAT_MOD_QCOM_COMPRESSED fourcc_mod_code(QCOM, 1)
686
687 /*
688 * Qualcomm Tiled Format
689 *
690 * Similar to DRM_FORMAT_MOD_QCOM_COMPRESSED but not compressed.
691 * Implementation may be platform and base-format specific.
692 *
693 * Each macrotile consists of m x n (mostly 4 x 4) tiles.
694 * Pixel data pitch/stride is aligned with macrotile width.
695 * Pixel data height is aligned with macrotile height.
696 * Entire pixel data buffer is aligned with 4k(bytes).
697 */
698 #define DRM_FORMAT_MOD_QCOM_TILED3 fourcc_mod_code(QCOM, 3)
699
700 /*
701 * Qualcomm Alternate Tiled Format
702 *
703 * Alternate tiled format typically only used within GMEM.
704 * Implementation may be platform and base-format specific.
705 */
706 #define DRM_FORMAT_MOD_QCOM_TILED2 fourcc_mod_code(QCOM, 2)
707
708
709 /* Vivante framebuffer modifiers */
710
711 /*
712 * Vivante 4x4 tiling layout
713 *
714 * This is a simple tiled layout using tiles of 4x4 pixels in a row-major
715 * layout.
716 */
717 #define DRM_FORMAT_MOD_VIVANTE_TILED fourcc_mod_code(VIVANTE, 1)
718
719 /*
720 * Vivante 64x64 super-tiling layout
721 *
722 * This is a tiled layout using 64x64 pixel super-tiles, where each super-tile
723 * contains 8x4 groups of 2x4 tiles of 4x4 pixels (like above) each, all in row-
724 * major layout.
725 *
726 * For more information: see
727 * https://github.com/etnaviv/etna_viv/blob/master/doc/hardware.md#texture-tiling
728 */
729 #define DRM_FORMAT_MOD_VIVANTE_SUPER_TILED fourcc_mod_code(VIVANTE, 2)
730
731 /*
732 * Vivante 4x4 tiling layout for dual-pipe
733 *
734 * Same as the 4x4 tiling layout, except every second 4x4 pixel tile starts at a
735 * different base address. Offsets from the base addresses are therefore halved
736 * compared to the non-split tiled layout.
737 */
738 #define DRM_FORMAT_MOD_VIVANTE_SPLIT_TILED fourcc_mod_code(VIVANTE, 3)
739
740 /*
741 * Vivante 64x64 super-tiling layout for dual-pipe
742 *
743 * Same as the 64x64 super-tiling layout, except every second 4x4 pixel tile
744 * starts at a different base address. Offsets from the base addresses are
745 * therefore halved compared to the non-split super-tiled layout.
746 */
747 #define DRM_FORMAT_MOD_VIVANTE_SPLIT_SUPER_TILED fourcc_mod_code(VIVANTE, 4)
748
749 /* NVIDIA frame buffer modifiers */
750
751 /*
752 * Tegra Tiled Layout, used by Tegra 2, 3 and 4.
753 *
754 * Pixels are arranged in simple tiles of 16 x 16 bytes.
755 */
756 #define DRM_FORMAT_MOD_NVIDIA_TEGRA_TILED fourcc_mod_code(NVIDIA, 1)
757
758 /*
759 * Generalized Block Linear layout, used by desktop GPUs starting with NV50/G80,
760 * and Tegra GPUs starting with Tegra K1.
761 *
762 * Pixels are arranged in Groups of Bytes (GOBs). GOB size and layout varies
763 * based on the architecture generation. GOBs themselves are then arranged in
764 * 3D blocks, with the block dimensions (in terms of GOBs) always being a power
765 * of two, and hence expressible as their log2 equivalent (E.g., "2" represents
766 * a block depth or height of "4").
767 *
768 * Chapter 20 "Pixel Memory Formats" of the Tegra X1 TRM describes this format
769 * in full detail.
770 *
771 * Macro
772 * Bits Param Description
773 * ---- ----- -----------------------------------------------------------------
774 *
775 * 3:0 h log2(height) of each block, in GOBs. Placed here for
776 * compatibility with the existing
777 * DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK()-based modifiers.
778 *
779 * 4:4 - Must be 1, to indicate block-linear layout. Necessary for
780 * compatibility with the existing
781 * DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK()-based modifiers.
782 *
783 * 8:5 - Reserved (To support 3D-surfaces with variable log2(depth) block
784 * size). Must be zero.
785 *
786 * Note there is no log2(width) parameter. Some portions of the
787 * hardware support a block width of two gobs, but it is impractical
788 * to use due to lack of support elsewhere, and has no known
789 * benefits.
790 *
791 * 11:9 - Reserved (To support 2D-array textures with variable array stride
792 * in blocks, specified via log2(tile width in blocks)). Must be
793 * zero.
794 *
795 * 19:12 k Page Kind. This value directly maps to a field in the page
796 * tables of all GPUs >= NV50. It affects the exact layout of bits
797 * in memory and can be derived from the tuple
798 *
799 * (format, GPU model, compression type, samples per pixel)
800 *
801 * Where compression type is defined below. If GPU model were
802 * implied by the format modifier, format, or memory buffer, page
803 * kind would not need to be included in the modifier itself, but
804 * since the modifier should define the layout of the associated
805 * memory buffer independent from any device or other context, it
806 * must be included here.
807 *
808 * 21:20 g GOB Height and Page Kind Generation. The height of a GOB changed
809 * starting with Fermi GPUs. Additionally, the mapping between page
810 * kind and bit layout has changed at various points.
811 *
812 * 0 = Gob Height 8, Fermi - Volta, Tegra K1+ Page Kind mapping
813 * 1 = Gob Height 4, G80 - GT2XX Page Kind mapping
814 * 2 = Gob Height 8, Turing+ Page Kind mapping
815 * 3 = Reserved for future use.
816 *
817 * 22:22 s Sector layout. On Tegra GPUs prior to Xavier, there is a further
818 * bit remapping step that occurs at an even lower level than the
819 * page kind and block linear swizzles. This causes the layout of
820 * surfaces mapped in those SOC's GPUs to be incompatible with the
821 * equivalent mapping on other GPUs in the same system.
822 *
823 * 0 = Tegra K1 - Tegra Parker/TX2 Layout.
824 * 1 = Desktop GPU and Tegra Xavier+ Layout
825 *
826 * 25:23 c Lossless Framebuffer Compression type.
827 *
828 * 0 = none
829 * 1 = ROP/3D, layout 1, exact compression format implied by Page
830 * Kind field
831 * 2 = ROP/3D, layout 2, exact compression format implied by Page
832 * Kind field
833 * 3 = CDE horizontal
834 * 4 = CDE vertical
835 * 5 = Reserved for future use
836 * 6 = Reserved for future use
837 * 7 = Reserved for future use
838 *
839 * 55:25 - Reserved for future use. Must be zero.
840 */
841 #define DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(c, s, g, k, h) \
842 fourcc_mod_code(NVIDIA, (0x10 | \
843 ((h) & 0xf) | \
844 (((k) & 0xff) << 12) | \
845 (((g) & 0x3) << 20) | \
846 (((s) & 0x1) << 22) | \
847 (((c) & 0x7) << 23)))
848
849 /* To grandfather in prior block linear format modifiers to the above layout,
850 * the page kind "0", which corresponds to "pitch/linear" and hence is unusable
851 * with block-linear layouts, is remapped within drivers to the value 0xfe,
852 * which corresponds to the "generic" kind used for simple single-sample
853 * uncompressed color formats on Fermi - Volta GPUs.
854 */
855 static __inline__ __u64
drm_fourcc_canonicalize_nvidia_format_mod(__u64 modifier)856 drm_fourcc_canonicalize_nvidia_format_mod(__u64 modifier)
857 {
858 if (!(modifier & 0x10) || (modifier & (0xff << 12)))
859 return modifier;
860 else
861 return modifier | (0xfe << 12);
862 }
863
864 /*
865 * 16Bx2 Block Linear layout, used by Tegra K1 and later
866 *
867 * Pixels are arranged in 64x8 Groups Of Bytes (GOBs). GOBs are then stacked
868 * vertically by a power of 2 (1 to 32 GOBs) to form a block.
869 *
870 * Within a GOB, data is ordered as 16B x 2 lines sectors laid in Z-shape.
871 *
872 * Parameter 'v' is the log2 encoding of the number of GOBs stacked vertically.
873 * Valid values are:
874 *
875 * 0 == ONE_GOB
876 * 1 == TWO_GOBS
877 * 2 == FOUR_GOBS
878 * 3 == EIGHT_GOBS
879 * 4 == SIXTEEN_GOBS
880 * 5 == THIRTYTWO_GOBS
881 *
882 * Chapter 20 "Pixel Memory Formats" of the Tegra X1 TRM describes this format
883 * in full detail.
884 */
885 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(v) \
886 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 0, 0, 0, (v))
887
888 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_ONE_GOB \
889 DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(0)
890 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_TWO_GOB \
891 DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(1)
892 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_FOUR_GOB \
893 DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(2)
894 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_EIGHT_GOB \
895 DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(3)
896 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_SIXTEEN_GOB \
897 DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(4)
898 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_THIRTYTWO_GOB \
899 DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(5)
900
901 /*
902 * Some Broadcom modifiers take parameters, for example the number of
903 * vertical lines in the image. Reserve the lower 32 bits for modifier
904 * type, and the next 24 bits for parameters. Top 8 bits are the
905 * vendor code.
906 */
907 #define __fourcc_mod_broadcom_param_shift 8
908 #define __fourcc_mod_broadcom_param_bits 48
909 #define fourcc_mod_broadcom_code(val, params) \
910 fourcc_mod_code(BROADCOM, ((((__u64)params) << __fourcc_mod_broadcom_param_shift) | val))
911 #define fourcc_mod_broadcom_param(m) \
912 ((int)(((m) >> __fourcc_mod_broadcom_param_shift) & \
913 ((1ULL << __fourcc_mod_broadcom_param_bits) - 1)))
914 #define fourcc_mod_broadcom_mod(m) \
915 ((m) & ~(((1ULL << __fourcc_mod_broadcom_param_bits) - 1) << \
916 __fourcc_mod_broadcom_param_shift))
917
918 /*
919 * Broadcom VC4 "T" format
920 *
921 * This is the primary layout that the V3D GPU can texture from (it
922 * can't do linear). The T format has:
923 *
924 * - 64b utiles of pixels in a raster-order grid according to cpp. It's 4x4
925 * pixels at 32 bit depth.
926 *
927 * - 1k subtiles made of a 4x4 raster-order grid of 64b utiles (so usually
928 * 16x16 pixels).
929 *
930 * - 4k tiles made of a 2x2 grid of 1k subtiles (so usually 32x32 pixels). On
931 * even 4k tile rows, they're arranged as (BL, TL, TR, BR), and on odd rows
932 * they're (TR, BR, BL, TL), where bottom left is start of memory.
933 *
934 * - an image made of 4k tiles in rows either left-to-right (even rows of 4k
935 * tiles) or right-to-left (odd rows of 4k tiles).
936 */
937 #define DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED fourcc_mod_code(BROADCOM, 1)
938
939 /*
940 * Broadcom SAND format
941 *
942 * This is the native format that the H.264 codec block uses. For VC4
943 * HVS, it is only valid for H.264 (NV12/21) and RGBA modes.
944 *
945 * The image can be considered to be split into columns, and the
946 * columns are placed consecutively into memory. The width of those
947 * columns can be either 32, 64, 128, or 256 pixels, but in practice
948 * only 128 pixel columns are used.
949 *
950 * The pitch between the start of each column is set to optimally
951 * switch between SDRAM banks. This is passed as the number of lines
952 * of column width in the modifier (we can't use the stride value due
953 * to various core checks that look at it , so you should set the
954 * stride to width*cpp).
955 *
956 * Note that the column height for this format modifier is the same
957 * for all of the planes, assuming that each column contains both Y
958 * and UV. Some SAND-using hardware stores UV in a separate tiled
959 * image from Y to reduce the column height, which is not supported
960 * with these modifiers.
961 *
962 * The DRM_FORMAT_MOD_BROADCOM_SAND128_COL_HEIGHT modifier is also
963 * supported for DRM_FORMAT_P030 where the columns remain as 128 bytes
964 * wide, but as this is a 10 bpp format that translates to 96 pixels.
965 */
966
967 #define DRM_FORMAT_MOD_BROADCOM_SAND32_COL_HEIGHT(v) \
968 fourcc_mod_broadcom_code(2, v)
969 #define DRM_FORMAT_MOD_BROADCOM_SAND64_COL_HEIGHT(v) \
970 fourcc_mod_broadcom_code(3, v)
971 #define DRM_FORMAT_MOD_BROADCOM_SAND128_COL_HEIGHT(v) \
972 fourcc_mod_broadcom_code(4, v)
973 #define DRM_FORMAT_MOD_BROADCOM_SAND256_COL_HEIGHT(v) \
974 fourcc_mod_broadcom_code(5, v)
975
976 #define DRM_FORMAT_MOD_BROADCOM_SAND32 \
977 DRM_FORMAT_MOD_BROADCOM_SAND32_COL_HEIGHT(0)
978 #define DRM_FORMAT_MOD_BROADCOM_SAND64 \
979 DRM_FORMAT_MOD_BROADCOM_SAND64_COL_HEIGHT(0)
980 #define DRM_FORMAT_MOD_BROADCOM_SAND128 \
981 DRM_FORMAT_MOD_BROADCOM_SAND128_COL_HEIGHT(0)
982 #define DRM_FORMAT_MOD_BROADCOM_SAND256 \
983 DRM_FORMAT_MOD_BROADCOM_SAND256_COL_HEIGHT(0)
984
985 /* Broadcom UIF format
986 *
987 * This is the common format for the current Broadcom multimedia
988 * blocks, including V3D 3.x and newer, newer video codecs, and
989 * displays.
990 *
991 * The image consists of utiles (64b blocks), UIF blocks (2x2 utiles),
992 * and macroblocks (4x4 UIF blocks). Those 4x4 UIF block groups are
993 * stored in columns, with padding between the columns to ensure that
994 * moving from one column to the next doesn't hit the same SDRAM page
995 * bank.
996 *
997 * To calculate the padding, it is assumed that each hardware block
998 * and the software driving it knows the platform's SDRAM page size,
999 * number of banks, and XOR address, and that it's identical between
1000 * all blocks using the format. This tiling modifier will use XOR as
1001 * necessary to reduce the padding. If a hardware block can't do XOR,
1002 * the assumption is that a no-XOR tiling modifier will be created.
1003 */
1004 #define DRM_FORMAT_MOD_BROADCOM_UIF fourcc_mod_code(BROADCOM, 6)
1005
1006 /*
1007 * Arm Framebuffer Compression (AFBC) modifiers
1008 *
1009 * AFBC is a proprietary lossless image compression protocol and format.
1010 * It provides fine-grained random access and minimizes the amount of data
1011 * transferred between IP blocks.
1012 *
1013 * AFBC has several features which may be supported and/or used, which are
1014 * represented using bits in the modifier. Not all combinations are valid,
1015 * and different devices or use-cases may support different combinations.
1016 *
1017 * Further information on the use of AFBC modifiers can be found in
1018 * Documentation/gpu/afbc.rst
1019 */
1020
1021 /*
1022 * The top 4 bits (out of the 56 bits alloted for specifying vendor specific
1023 * modifiers) denote the category for modifiers. Currently we have three
1024 * categories of modifiers ie AFBC, MISC and AFRC. We can have a maximum of
1025 * sixteen different categories.
1026 */
1027 #define DRM_FORMAT_MOD_ARM_CODE(__type, __val) \
1028 fourcc_mod_code(ARM, ((__u64)(__type) << 52) | ((__val) & 0x000fffffffffffffULL))
1029
1030 #define DRM_FORMAT_MOD_ARM_TYPE_AFBC 0x00
1031 #define DRM_FORMAT_MOD_ARM_TYPE_MISC 0x01
1032
1033 #define DRM_FORMAT_MOD_ARM_AFBC(__afbc_mode) \
1034 DRM_FORMAT_MOD_ARM_CODE(DRM_FORMAT_MOD_ARM_TYPE_AFBC, __afbc_mode)
1035
1036 /*
1037 * AFBC superblock size
1038 *
1039 * Indicates the superblock size(s) used for the AFBC buffer. The buffer
1040 * size (in pixels) must be aligned to a multiple of the superblock size.
1041 * Four lowest significant bits(LSBs) are reserved for block size.
1042 *
1043 * Where one superblock size is specified, it applies to all planes of the
1044 * buffer (e.g. 16x16, 32x8). When multiple superblock sizes are specified,
1045 * the first applies to the Luma plane and the second applies to the Chroma
1046 * plane(s). e.g. (32x8_64x4 means 32x8 Luma, with 64x4 Chroma).
1047 * Multiple superblock sizes are only valid for multi-plane YCbCr formats.
1048 */
1049 #define AFBC_FORMAT_MOD_BLOCK_SIZE_MASK 0xf
1050 #define AFBC_FORMAT_MOD_BLOCK_SIZE_16x16 (1ULL)
1051 #define AFBC_FORMAT_MOD_BLOCK_SIZE_32x8 (2ULL)
1052 #define AFBC_FORMAT_MOD_BLOCK_SIZE_64x4 (3ULL)
1053 #define AFBC_FORMAT_MOD_BLOCK_SIZE_32x8_64x4 (4ULL)
1054
1055 /*
1056 * AFBC lossless colorspace transform
1057 *
1058 * Indicates that the buffer makes use of the AFBC lossless colorspace
1059 * transform.
1060 */
1061 #define AFBC_FORMAT_MOD_YTR (1ULL << 4)
1062
1063 /*
1064 * AFBC block-split
1065 *
1066 * Indicates that the payload of each superblock is split. The second
1067 * half of the payload is positioned at a predefined offset from the start
1068 * of the superblock payload.
1069 */
1070 #define AFBC_FORMAT_MOD_SPLIT (1ULL << 5)
1071
1072 /*
1073 * AFBC sparse layout
1074 *
1075 * This flag indicates that the payload of each superblock must be stored at a
1076 * predefined position relative to the other superblocks in the same AFBC
1077 * buffer. This order is the same order used by the header buffer. In this mode
1078 * each superblock is given the same amount of space as an uncompressed
1079 * superblock of the particular format would require, rounding up to the next
1080 * multiple of 128 bytes in size.
1081 */
1082 #define AFBC_FORMAT_MOD_SPARSE (1ULL << 6)
1083
1084 /*
1085 * AFBC copy-block restrict
1086 *
1087 * Buffers with this flag must obey the copy-block restriction. The restriction
1088 * is such that there are no copy-blocks referring across the border of 8x8
1089 * blocks. For the subsampled data the 8x8 limitation is also subsampled.
1090 */
1091 #define AFBC_FORMAT_MOD_CBR (1ULL << 7)
1092
1093 /*
1094 * AFBC tiled layout
1095 *
1096 * The tiled layout groups superblocks in 8x8 or 4x4 tiles, where all
1097 * superblocks inside a tile are stored together in memory. 8x8 tiles are used
1098 * for pixel formats up to and including 32 bpp while 4x4 tiles are used for
1099 * larger bpp formats. The order between the tiles is scan line.
1100 * When the tiled layout is used, the buffer size (in pixels) must be aligned
1101 * to the tile size.
1102 */
1103 #define AFBC_FORMAT_MOD_TILED (1ULL << 8)
1104
1105 /*
1106 * AFBC solid color blocks
1107 *
1108 * Indicates that the buffer makes use of solid-color blocks, whereby bandwidth
1109 * can be reduced if a whole superblock is a single color.
1110 */
1111 #define AFBC_FORMAT_MOD_SC (1ULL << 9)
1112
1113 /*
1114 * AFBC double-buffer
1115 *
1116 * Indicates that the buffer is allocated in a layout safe for front-buffer
1117 * rendering.
1118 */
1119 #define AFBC_FORMAT_MOD_DB (1ULL << 10)
1120
1121 /*
1122 * AFBC buffer content hints
1123 *
1124 * Indicates that the buffer includes per-superblock content hints.
1125 */
1126 #define AFBC_FORMAT_MOD_BCH (1ULL << 11)
1127
1128 /* AFBC uncompressed storage mode
1129 *
1130 * Indicates that the buffer is using AFBC uncompressed storage mode.
1131 * In this mode all superblock payloads in the buffer use the uncompressed
1132 * storage mode, which is usually only used for data which cannot be compressed.
1133 * The buffer layout is the same as for AFBC buffers without USM set, this only
1134 * affects the storage mode of the individual superblocks. Note that even a
1135 * buffer without USM set may use uncompressed storage mode for some or all
1136 * superblocks, USM just guarantees it for all.
1137 */
1138 #define AFBC_FORMAT_MOD_USM (1ULL << 12)
1139
1140 /*
1141 * Arm Fixed-Rate Compression (AFRC) modifiers
1142 *
1143 * AFRC is a proprietary fixed rate image compression protocol and format,
1144 * designed to provide guaranteed bandwidth and memory footprint
1145 * reductions in graphics and media use-cases.
1146 *
1147 * AFRC buffers consist of one or more planes, with the same components
1148 * and meaning as an uncompressed buffer using the same pixel format.
1149 *
1150 * Within each plane, the pixel/luma/chroma values are grouped into
1151 * "coding unit" blocks which are individually compressed to a
1152 * fixed size (in bytes). All coding units within a given plane of a buffer
1153 * store the same number of values, and have the same compressed size.
1154 *
1155 * The coding unit size is configurable, allowing different rates of compression.
1156 *
1157 * The start of each AFRC buffer plane must be aligned to an alignment granule which
1158 * depends on the coding unit size.
1159 *
1160 * Coding Unit Size Plane Alignment
1161 * ---------------- ---------------
1162 * 16 bytes 1024 bytes
1163 * 24 bytes 512 bytes
1164 * 32 bytes 2048 bytes
1165 *
1166 * Coding units are grouped into paging tiles. AFRC buffer dimensions must be aligned
1167 * to a multiple of the paging tile dimensions.
1168 * The dimensions of each paging tile depend on whether the buffer is optimised for
1169 * scanline (SCAN layout) or rotated (ROT layout) access.
1170 *
1171 * Layout Paging Tile Width Paging Tile Height
1172 * ------ ----------------- ------------------
1173 * SCAN 16 coding units 4 coding units
1174 * ROT 8 coding units 8 coding units
1175 *
1176 * The dimensions of each coding unit depend on the number of components
1177 * in the compressed plane and whether the buffer is optimised for
1178 * scanline (SCAN layout) or rotated (ROT layout) access.
1179 *
1180 * Number of Components in Plane Layout Coding Unit Width Coding Unit Height
1181 * ----------------------------- --------- ----------------- ------------------
1182 * 1 SCAN 16 samples 4 samples
1183 * Example: 16x4 luma samples in a 'Y' plane
1184 * 16x4 chroma 'V' values, in the 'V' plane of a fully-planar YUV buffer
1185 * ----------------------------- --------- ----------------- ------------------
1186 * 1 ROT 8 samples 8 samples
1187 * Example: 8x8 luma samples in a 'Y' plane
1188 * 8x8 chroma 'V' values, in the 'V' plane of a fully-planar YUV buffer
1189 * ----------------------------- --------- ----------------- ------------------
1190 * 2 DONT CARE 8 samples 4 samples
1191 * Example: 8x4 chroma pairs in the 'UV' plane of a semi-planar YUV buffer
1192 * ----------------------------- --------- ----------------- ------------------
1193 * 3 DONT CARE 4 samples 4 samples
1194 * Example: 4x4 pixels in an RGB buffer without alpha
1195 * ----------------------------- --------- ----------------- ------------------
1196 * 4 DONT CARE 4 samples 4 samples
1197 * Example: 4x4 pixels in an RGB buffer with alpha
1198 */
1199
1200 #define DRM_FORMAT_MOD_ARM_TYPE_AFRC 0x02
1201
1202 #define DRM_FORMAT_MOD_ARM_AFRC(__afrc_mode) \
1203 DRM_FORMAT_MOD_ARM_CODE(DRM_FORMAT_MOD_ARM_TYPE_AFRC, __afrc_mode)
1204
1205 /*
1206 * AFRC coding unit size modifier.
1207 *
1208 * Indicates the number of bytes used to store each compressed coding unit for
1209 * one or more planes in an AFRC encoded buffer. The coding unit size for chrominance
1210 * is the same for both Cb and Cr, which may be stored in separate planes.
1211 *
1212 * AFRC_FORMAT_MOD_CU_SIZE_P0 indicates the number of bytes used to store
1213 * each compressed coding unit in the first plane of the buffer. For RGBA buffers
1214 * this is the only plane, while for semi-planar and fully-planar YUV buffers,
1215 * this corresponds to the luma plane.
1216 *
1217 * AFRC_FORMAT_MOD_CU_SIZE_P12 indicates the number of bytes used to store
1218 * each compressed coding unit in the second and third planes in the buffer.
1219 * For semi-planar and fully-planar YUV buffers, this corresponds to the chroma plane(s).
1220 *
1221 * For single-plane buffers, AFRC_FORMAT_MOD_CU_SIZE_P0 must be specified
1222 * and AFRC_FORMAT_MOD_CU_SIZE_P12 must be zero.
1223 * For semi-planar and fully-planar buffers, both AFRC_FORMAT_MOD_CU_SIZE_P0 and
1224 * AFRC_FORMAT_MOD_CU_SIZE_P12 must be specified.
1225 */
1226 #define AFRC_FORMAT_MOD_CU_SIZE_MASK 0xf
1227 #define AFRC_FORMAT_MOD_CU_SIZE_16 (1ULL)
1228 #define AFRC_FORMAT_MOD_CU_SIZE_24 (2ULL)
1229 #define AFRC_FORMAT_MOD_CU_SIZE_32 (3ULL)
1230
1231 #define AFRC_FORMAT_MOD_CU_SIZE_P0(__afrc_cu_size) (__afrc_cu_size)
1232 #define AFRC_FORMAT_MOD_CU_SIZE_P12(__afrc_cu_size) ((__afrc_cu_size) << 4)
1233
1234 /*
1235 * AFRC scanline memory layout.
1236 *
1237 * Indicates if the buffer uses the scanline-optimised layout
1238 * for an AFRC encoded buffer, otherwise, it uses the rotation-optimised layout.
1239 * The memory layout is the same for all planes.
1240 */
1241 #define AFRC_FORMAT_MOD_LAYOUT_SCAN (1ULL << 8)
1242
1243 /*
1244 * Arm 16x16 Block U-Interleaved modifier
1245 *
1246 * This is used by Arm Mali Utgard and Midgard GPUs. It divides the image
1247 * into 16x16 pixel blocks. Blocks are stored linearly in order, but pixels
1248 * in the block are reordered.
1249 */
1250 #define DRM_FORMAT_MOD_ARM_16X16_BLOCK_U_INTERLEAVED \
1251 DRM_FORMAT_MOD_ARM_CODE(DRM_FORMAT_MOD_ARM_TYPE_MISC, 1ULL)
1252
1253 /*
1254 * Allwinner tiled modifier
1255 *
1256 * This tiling mode is implemented by the VPU found on all Allwinner platforms,
1257 * codenamed sunxi. It is associated with a YUV format that uses either 2 or 3
1258 * planes.
1259 *
1260 * With this tiling, the luminance samples are disposed in tiles representing
1261 * 32x32 pixels and the chrominance samples in tiles representing 32x64 pixels.
1262 * The pixel order in each tile is linear and the tiles are disposed linearly,
1263 * both in row-major order.
1264 */
1265 #define DRM_FORMAT_MOD_ALLWINNER_TILED fourcc_mod_code(ALLWINNER, 1)
1266
1267 /*
1268 * Amlogic Video Framebuffer Compression modifiers
1269 *
1270 * Amlogic uses a proprietary lossless image compression protocol and format
1271 * for their hardware video codec accelerators, either video decoders or
1272 * video input encoders.
1273 *
1274 * It considerably reduces memory bandwidth while writing and reading
1275 * frames in memory.
1276 *
1277 * The underlying storage is considered to be 3 components, 8bit or 10-bit
1278 * per component YCbCr 420, single plane :
1279 * - DRM_FORMAT_YUV420_8BIT
1280 * - DRM_FORMAT_YUV420_10BIT
1281 *
1282 * The first 8 bits of the mode defines the layout, then the following 8 bits
1283 * defines the options changing the layout.
1284 *
1285 * Not all combinations are valid, and different SoCs may support different
1286 * combinations of layout and options.
1287 */
1288 #define __fourcc_mod_amlogic_layout_mask 0xff
1289 #define __fourcc_mod_amlogic_options_shift 8
1290 #define __fourcc_mod_amlogic_options_mask 0xff
1291
1292 #define DRM_FORMAT_MOD_AMLOGIC_FBC(__layout, __options) \
1293 fourcc_mod_code(AMLOGIC, \
1294 ((__layout) & __fourcc_mod_amlogic_layout_mask) | \
1295 (((__options) & __fourcc_mod_amlogic_options_mask) \
1296 << __fourcc_mod_amlogic_options_shift))
1297
1298 /* Amlogic FBC Layouts */
1299
1300 /*
1301 * Amlogic FBC Basic Layout
1302 *
1303 * The basic layout is composed of:
1304 * - a body content organized in 64x32 superblocks with 4096 bytes per
1305 * superblock in default mode.
1306 * - a 32 bytes per 128x64 header block
1307 *
1308 * This layout is transferrable between Amlogic SoCs supporting this modifier.
1309 */
1310 #define AMLOGIC_FBC_LAYOUT_BASIC (1ULL)
1311
1312 /*
1313 * Amlogic FBC Scatter Memory layout
1314 *
1315 * Indicates the header contains IOMMU references to the compressed
1316 * frames content to optimize memory access and layout.
1317 *
1318 * In this mode, only the header memory address is needed, thus the
1319 * content memory organization is tied to the current producer
1320 * execution and cannot be saved/dumped neither transferrable between
1321 * Amlogic SoCs supporting this modifier.
1322 *
1323 * Due to the nature of the layout, these buffers are not expected to
1324 * be accessible by the user-space clients, but only accessible by the
1325 * hardware producers and consumers.
1326 *
1327 * The user-space clients should expect a failure while trying to mmap
1328 * the DMA-BUF handle returned by the producer.
1329 */
1330 #define AMLOGIC_FBC_LAYOUT_SCATTER (2ULL)
1331
1332 /* Amlogic FBC Layout Options Bit Mask */
1333
1334 /*
1335 * Amlogic FBC Memory Saving mode
1336 *
1337 * Indicates the storage is packed when pixel size is multiple of word
1338 * boudaries, i.e. 8bit should be stored in this mode to save allocation
1339 * memory.
1340 *
1341 * This mode reduces body layout to 3072 bytes per 64x32 superblock with
1342 * the basic layout and 3200 bytes per 64x32 superblock combined with
1343 * the scatter layout.
1344 */
1345 #define AMLOGIC_FBC_OPTION_MEM_SAVING (1ULL << 0)
1346
1347 /*
1348 * AMD modifiers
1349 *
1350 * Memory layout:
1351 *
1352 * without DCC:
1353 * - main surface
1354 *
1355 * with DCC & without DCC_RETILE:
1356 * - main surface in plane 0
1357 * - DCC surface in plane 1 (RB-aligned, pipe-aligned if DCC_PIPE_ALIGN is set)
1358 *
1359 * with DCC & DCC_RETILE:
1360 * - main surface in plane 0
1361 * - displayable DCC surface in plane 1 (not RB-aligned & not pipe-aligned)
1362 * - pipe-aligned DCC surface in plane 2 (RB-aligned & pipe-aligned)
1363 *
1364 * For multi-plane formats the above surfaces get merged into one plane for
1365 * each format plane, based on the required alignment only.
1366 *
1367 * Bits Parameter Notes
1368 * ----- ------------------------ ---------------------------------------------
1369 *
1370 * 7:0 TILE_VERSION Values are AMD_FMT_MOD_TILE_VER_*
1371 * 12:8 TILE Values are AMD_FMT_MOD_TILE_<version>_*
1372 * 13 DCC
1373 * 14 DCC_RETILE
1374 * 15 DCC_PIPE_ALIGN
1375 * 16 DCC_INDEPENDENT_64B
1376 * 17 DCC_INDEPENDENT_128B
1377 * 19:18 DCC_MAX_COMPRESSED_BLOCK Values are AMD_FMT_MOD_DCC_BLOCK_*
1378 * 20 DCC_CONSTANT_ENCODE
1379 * 23:21 PIPE_XOR_BITS Only for some chips
1380 * 26:24 BANK_XOR_BITS Only for some chips
1381 * 29:27 PACKERS Only for some chips
1382 * 32:30 RB Only for some chips
1383 * 35:33 PIPE Only for some chips
1384 * 55:36 - Reserved for future use, must be zero
1385 */
1386 #define AMD_FMT_MOD fourcc_mod_code(AMD, 0)
1387
1388 #define IS_AMD_FMT_MOD(val) (((val) >> 56) == DRM_FORMAT_MOD_VENDOR_AMD)
1389
1390 /* Reserve 0 for GFX8 and older */
1391 #define AMD_FMT_MOD_TILE_VER_GFX9 1
1392 #define AMD_FMT_MOD_TILE_VER_GFX10 2
1393 #define AMD_FMT_MOD_TILE_VER_GFX10_RBPLUS 3
1394 #define AMD_FMT_MOD_TILE_VER_GFX11 4
1395
1396 /*
1397 * 64K_S is the same for GFX9/GFX10/GFX10_RBPLUS and hence has GFX9 as canonical
1398 * version.
1399 */
1400 #define AMD_FMT_MOD_TILE_GFX9_64K_S 9
1401
1402 /*
1403 * 64K_D for non-32 bpp is the same for GFX9/GFX10/GFX10_RBPLUS and hence has
1404 * GFX9 as canonical version.
1405 */
1406 #define AMD_FMT_MOD_TILE_GFX9_64K_D 10
1407 #define AMD_FMT_MOD_TILE_GFX9_64K_S_X 25
1408 #define AMD_FMT_MOD_TILE_GFX9_64K_D_X 26
1409 #define AMD_FMT_MOD_TILE_GFX9_64K_R_X 27
1410 #define AMD_FMT_MOD_TILE_GFX11_256K_R_X 31
1411
1412 #define AMD_FMT_MOD_DCC_BLOCK_64B 0
1413 #define AMD_FMT_MOD_DCC_BLOCK_128B 1
1414 #define AMD_FMT_MOD_DCC_BLOCK_256B 2
1415
1416 #define AMD_FMT_MOD_TILE_VERSION_SHIFT 0
1417 #define AMD_FMT_MOD_TILE_VERSION_MASK 0xFF
1418 #define AMD_FMT_MOD_TILE_SHIFT 8
1419 #define AMD_FMT_MOD_TILE_MASK 0x1F
1420
1421 /* Whether DCC compression is enabled. */
1422 #define AMD_FMT_MOD_DCC_SHIFT 13
1423 #define AMD_FMT_MOD_DCC_MASK 0x1
1424
1425 /*
1426 * Whether to include two DCC surfaces, one which is rb & pipe aligned, and
1427 * one which is not-aligned.
1428 */
1429 #define AMD_FMT_MOD_DCC_RETILE_SHIFT 14
1430 #define AMD_FMT_MOD_DCC_RETILE_MASK 0x1
1431
1432 /* Only set if DCC_RETILE = false */
1433 #define AMD_FMT_MOD_DCC_PIPE_ALIGN_SHIFT 15
1434 #define AMD_FMT_MOD_DCC_PIPE_ALIGN_MASK 0x1
1435
1436 #define AMD_FMT_MOD_DCC_INDEPENDENT_64B_SHIFT 16
1437 #define AMD_FMT_MOD_DCC_INDEPENDENT_64B_MASK 0x1
1438 #define AMD_FMT_MOD_DCC_INDEPENDENT_128B_SHIFT 17
1439 #define AMD_FMT_MOD_DCC_INDEPENDENT_128B_MASK 0x1
1440 #define AMD_FMT_MOD_DCC_MAX_COMPRESSED_BLOCK_SHIFT 18
1441 #define AMD_FMT_MOD_DCC_MAX_COMPRESSED_BLOCK_MASK 0x3
1442
1443 /*
1444 * DCC supports embedding some clear colors directly in the DCC surface.
1445 * However, on older GPUs the rendering HW ignores the embedded clear color
1446 * and prefers the driver provided color. This necessitates doing a fastclear
1447 * eliminate operation before a process transfers control.
1448 *
1449 * If this bit is set that means the fastclear eliminate is not needed for these
1450 * embeddable colors.
1451 */
1452 #define AMD_FMT_MOD_DCC_CONSTANT_ENCODE_SHIFT 20
1453 #define AMD_FMT_MOD_DCC_CONSTANT_ENCODE_MASK 0x1
1454
1455 /*
1456 * The below fields are for accounting for per GPU differences. These are only
1457 * relevant for GFX9 and later and if the tile field is *_X/_T.
1458 *
1459 * PIPE_XOR_BITS = always needed
1460 * BANK_XOR_BITS = only for TILE_VER_GFX9
1461 * PACKERS = only for TILE_VER_GFX10_RBPLUS
1462 * RB = only for TILE_VER_GFX9 & DCC
1463 * PIPE = only for TILE_VER_GFX9 & DCC & (DCC_RETILE | DCC_PIPE_ALIGN)
1464 */
1465 #define AMD_FMT_MOD_PIPE_XOR_BITS_SHIFT 21
1466 #define AMD_FMT_MOD_PIPE_XOR_BITS_MASK 0x7
1467 #define AMD_FMT_MOD_BANK_XOR_BITS_SHIFT 24
1468 #define AMD_FMT_MOD_BANK_XOR_BITS_MASK 0x7
1469 #define AMD_FMT_MOD_PACKERS_SHIFT 27
1470 #define AMD_FMT_MOD_PACKERS_MASK 0x7
1471 #define AMD_FMT_MOD_RB_SHIFT 30
1472 #define AMD_FMT_MOD_RB_MASK 0x7
1473 #define AMD_FMT_MOD_PIPE_SHIFT 33
1474 #define AMD_FMT_MOD_PIPE_MASK 0x7
1475
1476 #define AMD_FMT_MOD_SET(field, value) \
1477 ((__u64)(value) << AMD_FMT_MOD_##field##_SHIFT)
1478 #define AMD_FMT_MOD_GET(field, value) \
1479 (((value) >> AMD_FMT_MOD_##field##_SHIFT) & AMD_FMT_MOD_##field##_MASK)
1480 #define AMD_FMT_MOD_CLEAR(field) \
1481 (~((__u64)AMD_FMT_MOD_##field##_MASK << AMD_FMT_MOD_##field##_SHIFT))
1482
1483 #if defined(__cplusplus)
1484 }
1485 #endif
1486
1487 #endif /* DRM_FOURCC_H */
1488