1 /*
2  * Copyright 2013 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 // TODO(b/129481165): remove the #pragma below and fix conversion issues
18 #pragma clang diagnostic push
19 #pragma clang diagnostic ignored "-Wconversion"
20 
21 #include "Daltonizer.h"
22 #include <math/mat4.h>
23 
24 namespace android {
25 
setType(ColorBlindnessType type)26 void Daltonizer::setType(ColorBlindnessType type) {
27     if (type != mType) {
28         mDirty = true;
29         mType = type;
30     }
31 }
32 
setMode(ColorBlindnessMode mode)33 void Daltonizer::setMode(ColorBlindnessMode mode) {
34     if (mode != mMode) {
35         mDirty = true;
36         mMode = mode;
37     }
38 }
39 
setLevel(int32_t level)40 void Daltonizer::setLevel(int32_t level) {
41     if (level < 0 || level > 10) {
42         return;
43     }
44 
45     float newLevel = level / 10.0f;
46     if (std::fabs(mLevel - newLevel) > 0.09f) {
47         mDirty = true;
48     }
49     mLevel = newLevel;
50 }
51 
operator ()()52 const mat4& Daltonizer::operator()() {
53     if (mDirty) {
54         mDirty = false;
55         update();
56     }
57     return mColorTransform;
58 }
59 
update()60 void Daltonizer::update() {
61     if (mType == ColorBlindnessType::None) {
62         mColorTransform = mat4();
63         return;
64     }
65 
66     // converts a linear RGB color to the XYZ space
67     const mat4 rgb2xyz( 0.4124, 0.2126, 0.0193, 0,
68                         0.3576, 0.7152, 0.1192, 0,
69                         0.1805, 0.0722, 0.9505, 0,
70                         0     , 0     , 0     , 1);
71 
72     // converts a XYZ color to the LMS space.
73     const mat4 xyz2lms( 0.7328,-0.7036, 0.0030, 0,
74                         0.4296, 1.6975, 0.0136, 0,
75                        -0.1624, 0.0061, 0.9834, 0,
76                         0     , 0     , 0     , 1);
77 
78     // Direct conversion from linear RGB to LMS
79     const mat4 rgb2lms(xyz2lms*rgb2xyz);
80 
81     // And back from LMS to linear RGB
82     const mat4 lms2rgb(inverse(rgb2lms));
83 
84     // To simulate color blindness we need to "remove" the data lost by the absence of
85     // a cone. This cannot be done by just zeroing out the corresponding LMS component
86     // because it would create a color outside of the RGB gammut.
87     // Instead we project the color along the axis of the missing component onto a plane
88     // within the RGB gammut:
89     //  - since the projection happens along the axis of the missing component, a
90     //    color blind viewer perceives the projected color the same.
91     //  - We use the plane defined by 3 points in LMS space: black, white and
92     //    blue and red for protanopia/deuteranopia and tritanopia respectively.
93 
94     // LMS space red
95     const vec3& lms_r(rgb2lms[0].rgb);
96     // LMS space blue
97     const vec3& lms_b(rgb2lms[2].rgb);
98     // LMS space white
99     const vec3 lms_w((rgb2lms * vec4(1)).rgb);
100 
101     // To find the planes we solve the a*L + b*M + c*S = 0 equation for the LMS values
102     // of the three known points. This equation is trivially solved, and has for
103     // solution the following cross-products:
104     const vec3 p0 = cross(lms_w, lms_b);    // protanopia/deuteranopia
105     const vec3 p1 = cross(lms_w, lms_r);    // tritanopia
106 
107     // The following 3 matrices perform the projection of a LMS color onto the given plane
108     // along the selected axis
109 
110     // projection for protanopia (L = 0)
111     const mat4 lms2lmsp(  0.0000, 0.0000, 0.0000, 0,
112                     -p0.y / p0.x, 1.0000, 0.0000, 0,
113                     -p0.z / p0.x, 0.0000, 1.0000, 0,
114                           0     , 0     , 0     , 1);
115 
116     // projection for deuteranopia (M = 0)
117     const mat4 lms2lmsd(  1.0000, -p0.x / p0.y, 0.0000, 0,
118                           0.0000,       0.0000, 0.0000, 0,
119                           0.0000, -p0.z / p0.y, 1.0000, 0,
120                           0     ,       0     , 0     , 1);
121 
122     // projection for tritanopia (S = 0)
123     const mat4 lms2lmst(  1.0000, 0.0000, -p1.x / p1.z, 0,
124                           0.0000, 1.0000, -p1.y / p1.z, 0,
125                           0.0000, 0.0000,       0.0000, 0,
126                           0     ,       0     , 0     , 1);
127 
128     // We will calculate the error between the color and the color viewed by
129     // a color blind user and "spread" this error onto the healthy cones.
130     // The matrices below perform this last step and have been chosen arbitrarily.
131 
132     // Scale 0 represents no change (mColorTransform is identical matrix).
133     // error spread for protanopia
134     const mat4 errp(1.0, mLevel, mLevel, 0.0,
135                     0.0,    1.0,    0.0, 0.0,
136                     0.0,    0.0,    1.0, 0.0,
137                     0.0,    0.0,    0.0, 1.0);
138 
139     // error spread for deuteranopia
140     const mat4 errd(   1.0, 0.0,    0.0, 0.0,
141                     mLevel, 1.0, mLevel, 0.0,
142                        0.0, 0.0,    1.0, 0.0,
143                        0.0, 0.0,    0.0, 1.0);
144 
145     // error spread for tritanopia
146     const mat4 errt(   1.0,    0.0, 0.0, 0.0,
147                        0.0,    1.0, 0.0, 0.0,
148                     mLevel, mLevel, 1.0, 0.0,
149                        0.0,    0.0, 0.0, 1.0);
150 
151     // And the magic happens here...
152     // We construct the matrix that will perform the whole correction.
153 
154     // simulation: type of color blindness to simulate:
155     // set to either lms2lmsp, lms2lmsd, lms2lmst
156     mat4 simulation;
157 
158     // correction: type of color blindness correction (should match the simulation above):
159     // set to identity, errp, errd, errt ([0] for simulation only)
160     mat4 correction(0);
161 
162     switch (mType) {
163         case ColorBlindnessType::Protanomaly:
164             simulation = lms2lmsp;
165             if (mMode == ColorBlindnessMode::Correction)
166                 correction = errp;
167             break;
168         case ColorBlindnessType::Deuteranomaly:
169             simulation = lms2lmsd;
170             if (mMode == ColorBlindnessMode::Correction)
171                 correction = errd;
172             break;
173         case ColorBlindnessType::Tritanomaly:
174             simulation = lms2lmst;
175             if (mMode == ColorBlindnessMode::Correction)
176                 correction = errt;
177             break;
178         case ColorBlindnessType::None:
179             // We already caught this at the beginning of the method, but the
180             // compiler doesn't know that
181             break;
182     }
183 
184     mColorTransform = lms2rgb *
185         (simulation * rgb2lms + correction * (rgb2lms - simulation * rgb2lms));
186 }
187 
188 } /* namespace android */
189 
190 // TODO(b/129481165): remove the #pragma below and fix conversion issues
191 #pragma clang diagnostic pop // ignored "-Wconversion"
192