1 /* 2 * Copyright 2022 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17 #pragma once 18 19 #include "FrontEnd/LayerCreationArgs.h" 20 #include "FrontEnd/LayerLifecycleManager.h" 21 #include "RequestedLayerState.h" 22 #include "ftl/small_vector.h" 23 24 namespace android::surfaceflinger::frontend { 25 class LayerHierarchyBuilder; 26 27 // LayerHierarchy allows us to navigate the layer hierarchy in z-order, or depth first traversal. 28 // The hierarchy is created from a set of RequestedLayerStates. The hierarchy itself does not 29 // contain additional states. Instead, it is a representation of RequestedLayerStates as a graph. 30 // 31 // Each node in the hierarchy can be visited by multiple parents (making this a graph). While 32 // traversing the hierarchy, a new concept called Variant can be used to understand the 33 // relationship of the layer to its parent. The following variants are possible: 34 // Attached - child of the parent 35 // Detached - child of the parent but currently relative parented to another layer 36 // Relative - relative child of the parent 37 // Mirror - mirrored from another layer 38 // Detached_Mirror - mirrored from another layer, ignoring local transform 39 // 40 // By representing the hierarchy as a graph, we can represent mirrored layer hierarchies without 41 // cloning the layer requested state. The mirrored hierarchy and its corresponding 42 // RequestedLayerStates are kept in sync because the mirrored hierarchy does not clone any 43 // states. 44 class LayerHierarchy { 45 public: 46 enum Variant : uint32_t { 47 Attached, // child of the parent 48 Detached, // child of the parent but currently relative parented to another layer 49 Relative, // relative child of the parent 50 Mirror, // mirrored from another layer 51 Detached_Mirror, // mirrored from another layer, ignoring local transform 52 ftl_first = Attached, 53 ftl_last = Detached_Mirror, 54 }; isMirror(Variant variant)55 static inline bool isMirror(Variant variant) { 56 return ((variant == Mirror) || (variant == Detached_Mirror)); 57 } 58 59 // Represents a unique path to a node. 60 // The layer hierarchy is represented as a graph. Each node can be visited by multiple parents. 61 // This allows us to represent mirroring in an efficient way. See the example below: 62 // root 63 // ├─ A {Traversal path id = 1} 64 // ├─ B {Traversal path id = 2} 65 // │ ├─ C {Traversal path id = 3} 66 // │ ├─ D {Traversal path id = 4} 67 // │ └─ E (Mirrors C) {Traversal path id = 5} 68 // └─ F (Mirrors B) {Traversal path id = 6} 69 // 70 // C can be traversed via B or E or F and or via F then E. 71 // Depending on how the node is reached, its properties such as geometry or visibility might be 72 // different. And we can uniquely identify the node by keeping track of the nodes leading up to 73 // it. But to be more efficient we only need to track the nodes id and the top mirror root path. 74 // So C for example, would have the following unique traversal paths: 75 // - {Traversal path id = 3} 76 // - {Traversal path id = 3, mirrorRootIds = 5} 77 // - {Traversal path id = 3, mirrorRootIds = 6} 78 // - {Traversal path id = 3, mirrorRootIds = 6, 5} 79 80 struct TraversalPath { 81 uint32_t id; 82 LayerHierarchy::Variant variant; 83 // Mirrored layers can have a different geometry than their parents so we need to track 84 // the mirror roots in the traversal. 85 ftl::SmallVector<uint32_t, 5> mirrorRootIds; 86 // Relative layers can be visited twice, once by their parent and then once again by 87 // their relative parent. We keep track of the roots here to detect any loops in the 88 // hierarchy. If a relative root already exists in the list while building the 89 // TraversalPath, it means that somewhere in the hierarchy two layers are relatively 90 // parented to each other. 91 ftl::SmallVector<uint32_t, 5> relativeRootIds; 92 // First duplicate relative root id found. If this is a valid layer id that means we are 93 // in a loop. 94 uint32_t invalidRelativeRootId = UNASSIGNED_LAYER_ID; 95 // See isAttached() 96 bool detached = false; hasRelZLoopTraversalPath97 bool hasRelZLoop() const { return invalidRelativeRootId != UNASSIGNED_LAYER_ID; } 98 // Returns true if this node is reached via one or more relative parents. isRelativeTraversalPath99 bool isRelative() const { return !relativeRootIds.empty(); } 100 // Returns true if the node or its parents are not Detached. isAttachedTraversalPath101 bool isAttached() const { return !detached; } 102 // Returns true if the node is a clone. isCloneTraversalPath103 bool isClone() const { return !mirrorRootIds.empty(); } 104 105 bool operator==(const TraversalPath& other) const { 106 return id == other.id && mirrorRootIds == other.mirrorRootIds; 107 } 108 std::string toString() const; 109 110 static const TraversalPath ROOT; 111 }; 112 113 struct TraversalPathHash { operatorTraversalPathHash114 std::size_t operator()(const LayerHierarchy::TraversalPath& key) const { 115 uint32_t hashCode = key.id * 31; 116 for (uint32_t mirrorRootId : key.mirrorRootIds) { 117 hashCode += mirrorRootId * 31; 118 } 119 return std::hash<size_t>{}(hashCode); 120 } 121 }; 122 123 // Helper class to add nodes to an existing traversal id and removes the 124 // node when it goes out of scope. 125 class ScopedAddToTraversalPath { 126 public: 127 ScopedAddToTraversalPath(TraversalPath& traversalPath, uint32_t layerId, 128 LayerHierarchy::Variant variantArg); 129 ~ScopedAddToTraversalPath(); 130 131 private: 132 TraversalPath& mTraversalPath; 133 TraversalPath mParentPath; 134 }; 135 LayerHierarchy(RequestedLayerState* layer); 136 137 // Visitor function that provides the hierarchy node and a traversal id which uniquely 138 // identifies how was visited. The hierarchy contains a pointer to the RequestedLayerState. 139 // Return false to stop traversing down the hierarchy. 140 typedef std::function<bool(const LayerHierarchy& hierarchy, 141 const LayerHierarchy::TraversalPath& traversalPath)> 142 Visitor; 143 144 // Traverse the hierarchy and visit all child variants. traverse(const Visitor & visitor)145 void traverse(const Visitor& visitor) const { 146 TraversalPath root = TraversalPath::ROOT; 147 if (mLayer) { 148 root.id = mLayer->id; 149 } 150 traverse(visitor, root, /*depth=*/0); 151 } 152 153 // Traverse the hierarchy in z-order, skipping children that have relative parents. traverseInZOrder(const Visitor & visitor)154 void traverseInZOrder(const Visitor& visitor) const { 155 TraversalPath root = TraversalPath::ROOT; 156 if (mLayer) { 157 root.id = mLayer->id; 158 } 159 traverseInZOrder(visitor, root); 160 } 161 162 const RequestedLayerState* getLayer() const; 163 const LayerHierarchy* getRelativeParent() const; 164 const LayerHierarchy* getParent() const; 165 friend std::ostream& operator<<(std::ostream& os, const LayerHierarchy& obj) { 166 std::string prefix = " "; 167 obj.dump(os, prefix, LayerHierarchy::Variant::Attached, /*isLastChild=*/false, 168 /*includeMirroredHierarchy*/ false); 169 return os; 170 } dump()171 std::string dump() const { 172 std::string prefix = " "; 173 std::ostringstream os; 174 dump(os, prefix, LayerHierarchy::Variant::Attached, /*isLastChild=*/false, 175 /*includeMirroredHierarchy*/ true); 176 return os.str(); 177 } 178 179 std::string getDebugStringShort() const; 180 // Traverse the hierarchy and return true if loops are found. The outInvalidRelativeRoot 181 // will contain the first relative root that was visited twice in a traversal. 182 bool hasRelZLoop(uint32_t& outInvalidRelativeRoot) const; 183 std::vector<std::pair<LayerHierarchy*, Variant>> mChildren; 184 185 private: 186 friend LayerHierarchyBuilder; 187 LayerHierarchy(const LayerHierarchy& hierarchy, bool childrenOnly); 188 void addChild(LayerHierarchy*, LayerHierarchy::Variant); 189 void removeChild(LayerHierarchy*); 190 void sortChildrenByZOrder(); 191 void updateChild(LayerHierarchy*, LayerHierarchy::Variant); 192 void traverseInZOrder(const Visitor& visitor, LayerHierarchy::TraversalPath& parent) const; 193 void traverse(const Visitor& visitor, LayerHierarchy::TraversalPath& parent, 194 uint32_t depth = 0) const; 195 void dump(std::ostream& out, const std::string& prefix, LayerHierarchy::Variant variant, 196 bool isLastChild, bool includeMirroredHierarchy) const; 197 198 const RequestedLayerState* mLayer; 199 LayerHierarchy* mParent = nullptr; 200 LayerHierarchy* mRelativeParent = nullptr; 201 }; 202 203 // Given a list of RequestedLayerState, this class will build a root hierarchy and an 204 // offscreen hierarchy. The builder also has an update method which can update an existing 205 // hierarchy from a list of RequestedLayerState and associated change flags. 206 class LayerHierarchyBuilder { 207 public: 208 LayerHierarchyBuilder() = default; 209 void update(LayerLifecycleManager& layerLifecycleManager); 210 LayerHierarchy getPartialHierarchy(uint32_t, bool childrenOnly) const; 211 const LayerHierarchy& getHierarchy() const; 212 const LayerHierarchy& getOffscreenHierarchy() const; 213 std::string getDebugString(uint32_t layerId, uint32_t depth = 0) const; 214 215 private: 216 void onLayerAdded(RequestedLayerState* layer); 217 void attachToParent(LayerHierarchy*); 218 void detachFromParent(LayerHierarchy*); 219 void attachToRelativeParent(LayerHierarchy*); 220 void detachFromRelativeParent(LayerHierarchy*); 221 std::vector<LayerHierarchy*> getDescendants(LayerHierarchy*); 222 void attachHierarchyToRelativeParent(LayerHierarchy*); 223 void detachHierarchyFromRelativeParent(LayerHierarchy*); 224 void init(const std::vector<std::unique_ptr<RequestedLayerState>>&); 225 void doUpdate(const std::vector<std::unique_ptr<RequestedLayerState>>& layers, 226 const std::vector<std::unique_ptr<RequestedLayerState>>& destroyedLayers); 227 void onLayerDestroyed(RequestedLayerState* layer); 228 void updateMirrorLayer(RequestedLayerState* layer); 229 LayerHierarchy* getHierarchyFromId(uint32_t layerId, bool crashOnFailure = true); 230 231 std::unordered_map<uint32_t, LayerHierarchy*> mLayerIdToHierarchy; 232 std::vector<std::unique_ptr<LayerHierarchy>> mHierarchies; 233 LayerHierarchy mRoot{nullptr}; 234 LayerHierarchy mOffscreenRoot{nullptr}; 235 bool mInitialized = false; 236 }; 237 238 } // namespace android::surfaceflinger::frontend 239