1 /**************************************************************************
2  *
3  * Copyright 2008 VMware, Inc.
4  * All Rights Reserved.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the
8  * "Software"), to deal in the Software without restriction, including
9  * without limitation the rights to use, copy, modify, merge, publish,
10  * distribute, sub license, and/or sell copies of the Software, and to
11  * permit persons to whom the Software is furnished to do so, subject to
12  * the following conditions:
13  *
14  * The above copyright notice and this permission notice (including the
15  * next paragraph) shall be included in all copies or substantial portions
16  * of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21  * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
22  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25  *
26  **************************************************************************/
27 
28 
29 #ifndef BITSCAN_H
30 #define BITSCAN_H
31 
32 #include <assert.h>
33 #include <stdint.h>
34 #include <stdbool.h>
35 #include <string.h>
36 
37 #if defined(_MSC_VER)
38 #include <intrin.h>
39 #endif
40 
41 #if defined(__POPCNT__)
42 #include <popcntintrin.h>
43 #endif
44 
45 #include "macros.h"
46 
47 #ifdef __cplusplus
48 extern "C" {
49 #endif
50 
51 
52 /**
53  * Find first bit set in word.  Least significant bit is 1.
54  * Return 0 if no bits set.
55  */
56 #ifdef HAVE___BUILTIN_FFS
57 #define ffs __builtin_ffs
58 #elif defined(_MSC_VER) && (_M_IX86 || _M_ARM || _M_AMD64 || _M_IA64)
59 static inline
60 int ffs(int i)
61 {
62    unsigned long index;
63    if (_BitScanForward(&index, i))
64       return index + 1;
65    else
66       return 0;
67 }
68 #else
69 extern
70 int ffs(int i);
71 #endif
72 
73 #ifdef HAVE___BUILTIN_FFSLL
74 #define ffsll __builtin_ffsll
75 #elif defined(_MSC_VER) && (_M_AMD64 || _M_ARM64 || _M_IA64)
76 static inline int
77 ffsll(long long int i)
78 {
79    unsigned long index;
80    if (_BitScanForward64(&index, i))
81       return index + 1;
82    else
83       return 0;
84 }
85 #else
86 extern int
87 ffsll(long long int val);
88 #endif
89 
90 
91 /* Destructively loop over all of the bits in a mask as in:
92  *
93  * while (mymask) {
94  *   int i = u_bit_scan(&mymask);
95  *   ... process element i
96  * }
97  *
98  */
99 static inline int
u_bit_scan(unsigned * mask)100 u_bit_scan(unsigned *mask)
101 {
102    const int i = ffs(*mask) - 1;
103    *mask ^= (1u << i);
104    return i;
105 }
106 
107 #define u_foreach_bit(b, dword)                          \
108    for (uint32_t __dword = (dword), b;                     \
109         ((b) = ffs(__dword) - 1, __dword);      \
110         __dword &= ~(1 << (b)))
111 
112 static inline int
u_bit_scan64(uint64_t * mask)113 u_bit_scan64(uint64_t *mask)
114 {
115    const int i = ffsll(*mask) - 1;
116    *mask ^= (((uint64_t)1) << i);
117    return i;
118 }
119 
120 #define u_foreach_bit64(b, dword)                          \
121    for (uint64_t __dword = (dword), b;                     \
122         ((b) = ffsll(__dword) - 1, __dword);      \
123         __dword &= ~(1ull << (b)))
124 
125 /* Determine if an uint32_t value is a power of two.
126  *
127  * \note
128  * Zero is treated as a power of two.
129  */
130 static inline bool
util_is_power_of_two_or_zero(uint32_t v)131 util_is_power_of_two_or_zero(uint32_t v)
132 {
133    return IS_POT(v);
134 }
135 
136 /* Determine if an uint64_t value is a power of two.
137  *
138  * \note
139  * Zero is treated as a power of two.
140  */
141 static inline bool
util_is_power_of_two_or_zero64(uint64_t v)142 util_is_power_of_two_or_zero64(uint64_t v)
143 {
144    return IS_POT(v);
145 }
146 
147 /* Determine if an uint32_t value is a power of two.
148  *
149  * \note
150  * Zero is \b not treated as a power of two.
151  */
152 static inline bool
util_is_power_of_two_nonzero(uint32_t v)153 util_is_power_of_two_nonzero(uint32_t v)
154 {
155    /* __POPCNT__ is different from HAVE___BUILTIN_POPCOUNT.  The latter
156     * indicates the existence of the __builtin_popcount function.  The former
157     * indicates that _mm_popcnt_u32 exists and is a native instruction.
158     *
159     * The other alternative is to use SSE 4.2 compile-time flags.  This has
160     * two drawbacks.  First, there is currently no build infrastructure for
161     * SSE 4.2 (only 4.1), so that would have to be added.  Second, some AMD
162     * CPUs support POPCNT but not SSE 4.2 (e.g., Barcelona).
163     */
164 #ifdef __POPCNT__
165    return _mm_popcnt_u32(v) == 1;
166 #else
167    return v != 0 && IS_POT(v);
168 #endif
169 }
170 
171 /* Determine if an uint64_t value is a power of two.
172  *
173  * \note
174  * Zero is \b not treated as a power of two.
175  */
176 static inline bool
util_is_power_of_two_nonzero64(uint64_t v)177 util_is_power_of_two_nonzero64(uint64_t v)
178 {
179    return v != 0 && IS_POT(v);
180 }
181 
182 /* For looping over a bitmask when you want to loop over consecutive bits
183  * manually, for example:
184  *
185  * while (mask) {
186  *    int start, count, i;
187  *
188  *    u_bit_scan_consecutive_range(&mask, &start, &count);
189  *
190  *    for (i = 0; i < count; i++)
191  *       ... process element (start+i)
192  * }
193  */
194 static inline void
u_bit_scan_consecutive_range(unsigned * mask,int * start,int * count)195 u_bit_scan_consecutive_range(unsigned *mask, int *start, int *count)
196 {
197    if (*mask == 0xffffffff) {
198       *start = 0;
199       *count = 32;
200       *mask = 0;
201       return;
202    }
203    *start = ffs(*mask) - 1;
204    *count = ffs(~(*mask >> *start)) - 1;
205    *mask &= ~(((1u << *count) - 1) << *start);
206 }
207 
208 static inline void
u_bit_scan_consecutive_range64(uint64_t * mask,int * start,int * count)209 u_bit_scan_consecutive_range64(uint64_t *mask, int *start, int *count)
210 {
211    if (*mask == ~0ull) {
212       *start = 0;
213       *count = 64;
214       *mask = 0;
215       return;
216    }
217    *start = ffsll(*mask) - 1;
218    *count = ffsll(~(*mask >> *start)) - 1;
219    *mask &= ~(((((uint64_t)1) << *count) - 1) << *start);
220 }
221 
222 
223 /**
224  * Find last bit set in a word.  The least significant bit is 1.
225  * Return 0 if no bits are set.
226  * Essentially ffs() in the reverse direction.
227  */
228 static inline unsigned
util_last_bit(unsigned u)229 util_last_bit(unsigned u)
230 {
231 #if defined(HAVE___BUILTIN_CLZ)
232    return u == 0 ? 0 : 32 - __builtin_clz(u);
233 #elif defined(_MSC_VER) && (_M_IX86 || _M_ARM || _M_AMD64 || _M_IA64)
234    unsigned long index;
235    if (_BitScanReverse(&index, u))
236       return index + 1;
237    else
238       return 0;
239 #else
240    unsigned r = 0;
241    while (u) {
242       r++;
243       u >>= 1;
244    }
245    return r;
246 #endif
247 }
248 
249 /**
250  * Find last bit set in a word.  The least significant bit is 1.
251  * Return 0 if no bits are set.
252  * Essentially ffsll() in the reverse direction.
253  */
254 static inline unsigned
util_last_bit64(uint64_t u)255 util_last_bit64(uint64_t u)
256 {
257 #if defined(HAVE___BUILTIN_CLZLL)
258    return u == 0 ? 0 : 64 - __builtin_clzll(u);
259 #elif defined(_MSC_VER) && (_M_AMD64 || _M_ARM64 || _M_IA64)
260    unsigned long index;
261    if (_BitScanReverse64(&index, u))
262       return index + 1;
263    else
264       return 0;
265 #else
266    unsigned r = 0;
267    while (u) {
268       r++;
269       u >>= 1;
270    }
271    return r;
272 #endif
273 }
274 
275 /**
276  * Find last bit in a word that does not match the sign bit. The least
277  * significant bit is 1.
278  * Return 0 if no bits are set.
279  */
280 static inline unsigned
util_last_bit_signed(int i)281 util_last_bit_signed(int i)
282 {
283    if (i >= 0)
284       return util_last_bit(i);
285    else
286       return util_last_bit(~(unsigned)i);
287 }
288 
289 /* Returns a bitfield in which the first count bits starting at start are
290  * set.
291  */
292 static inline unsigned
u_bit_consecutive(unsigned start,unsigned count)293 u_bit_consecutive(unsigned start, unsigned count)
294 {
295    assert(start + count <= 32);
296    if (count == 32)
297       return ~0;
298    return ((1u << count) - 1) << start;
299 }
300 
301 static inline uint64_t
u_bit_consecutive64(unsigned start,unsigned count)302 u_bit_consecutive64(unsigned start, unsigned count)
303 {
304    assert(start + count <= 64);
305    if (count == 64)
306       return ~(uint64_t)0;
307    return (((uint64_t)1 << count) - 1) << start;
308 }
309 
310 /**
311  * Return number of bits set in n.
312  */
313 static inline unsigned
util_bitcount(unsigned n)314 util_bitcount(unsigned n)
315 {
316 #if defined(HAVE___BUILTIN_POPCOUNT)
317    return __builtin_popcount(n);
318 #else
319    /* K&R classic bitcount.
320     *
321     * For each iteration, clear the LSB from the bitfield.
322     * Requires only one iteration per set bit, instead of
323     * one iteration per bit less than highest set bit.
324     */
325    unsigned bits;
326    for (bits = 0; n; bits++) {
327       n &= n - 1;
328    }
329    return bits;
330 #endif
331 }
332 
333 /**
334  * Return the number of bits set in n using the native popcnt instruction.
335  * The caller is responsible for ensuring that popcnt is supported by the CPU.
336  *
337  * gcc doesn't use it if -mpopcnt or -march= that has popcnt is missing.
338  *
339  */
340 static inline unsigned
util_popcnt_inline_asm(unsigned n)341 util_popcnt_inline_asm(unsigned n)
342 {
343 #if defined(USE_X86_64_ASM) || defined(USE_X86_ASM)
344    uint32_t out;
345    __asm volatile("popcnt %1, %0" : "=r"(out) : "r"(n));
346    return out;
347 #else
348    /* We should never get here by accident, but I'm sure it'll happen. */
349    return util_bitcount(n);
350 #endif
351 }
352 
353 static inline unsigned
util_bitcount64(uint64_t n)354 util_bitcount64(uint64_t n)
355 {
356 #ifdef HAVE___BUILTIN_POPCOUNTLL
357    return __builtin_popcountll(n);
358 #else
359    return util_bitcount(n) + util_bitcount(n >> 32);
360 #endif
361 }
362 
363 /**
364  * Widens the given bit mask by a multiplier, meaning that it will
365  * replicate each bit by that amount.
366  *
367  * For example:
368  * 0b101 widened by 2 will become: 0b110011
369  *
370  * This is typically used in shader I/O to transform a 64-bit
371  * writemask to a 32-bit writemask.
372  */
373 static inline uint32_t
util_widen_mask(uint32_t mask,unsigned multiplier)374 util_widen_mask(uint32_t mask, unsigned multiplier)
375 {
376    uint32_t new_mask = 0;
377    u_foreach_bit(i, mask)
378       new_mask |= ((1u << multiplier) - 1u) << (i * multiplier);
379    return new_mask;
380 }
381 
382 #ifdef __cplusplus
383 }
384 
385 /* util_bitcount has large measurable overhead (~2%), so it's recommended to
386  * use the POPCNT instruction via inline assembly if the CPU supports it.
387  */
388 enum util_popcnt {
389    POPCNT_NO,
390    POPCNT_YES,
391 };
392 
393 /* Convenient function to select popcnt through a C++ template argument.
394  * This should be used as part of larger functions that are optimized
395  * as a whole.
396  */
397 template<util_popcnt POPCNT> inline unsigned
util_bitcount_fast(unsigned n)398 util_bitcount_fast(unsigned n)
399 {
400    if (POPCNT == POPCNT_YES)
401       return util_popcnt_inline_asm(n);
402    else
403       return util_bitcount(n);
404 }
405 
406 #endif /* __cplusplus */
407 
408 #endif /* BITSCAN_H */
409