1 /*
2  * Copyright © 2010 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27 
28 /** @file register_allocate.c
29  *
30  * Graph-coloring register allocator.
31  *
32  * The basic idea of graph coloring is to make a node in a graph for
33  * every thing that needs a register (color) number assigned, and make
34  * edges in the graph between nodes that interfere (can't be allocated
35  * to the same register at the same time).
36  *
37  * During the "simplify" process, any any node with fewer edges than
38  * there are registers means that that edge can get assigned a
39  * register regardless of what its neighbors choose, so that node is
40  * pushed on a stack and removed (with its edges) from the graph.
41  * That likely causes other nodes to become trivially colorable as well.
42  *
43  * Then during the "select" process, nodes are popped off of that
44  * stack, their edges restored, and assigned a color different from
45  * their neighbors.  Because they were pushed on the stack only when
46  * they were trivially colorable, any color chosen won't interfere
47  * with the registers to be popped later.
48  *
49  * The downside to most graph coloring is that real hardware often has
50  * limitations, like registers that need to be allocated to a node in
51  * pairs, or aligned on some boundary.  This implementation follows
52  * the paper "Retargetable Graph-Coloring Register Allocation for
53  * Irregular Architectures" by Johan Runeson and Sven-Olof Nyström.
54  *
55  * In this system, there are register classes each containing various
56  * registers, and registers may interfere with other registers.  For
57  * example, one might have a class of base registers, and a class of
58  * aligned register pairs that would each interfere with their pair of
59  * the base registers.  Each node has a register class it needs to be
60  * assigned to.  Define p(B) to be the size of register class B, and
61  * q(B,C) to be the number of registers in B that the worst choice
62  * register in C could conflict with.  Then, this system replaces the
63  * basic graph coloring test of "fewer edges from this node than there
64  * are registers" with "For this node of class B, the sum of q(B,C)
65  * for each neighbor node of class C is less than pB".
66  *
67  * A nice feature of the pq test is that q(B,C) can be computed once
68  * up front and stored in a 2-dimensional array, so that the cost of
69  * coloring a node is constant with the number of registers.  We do
70  * this during ra_set_finalize().
71  */
72 
73 #include <stdbool.h>
74 #include <stdlib.h>
75 
76 #include "blob.h"
77 #include "ralloc.h"
78 #include "util/bitset.h"
79 #include "util/u_dynarray.h"
80 #include "u_math.h"
81 #include "register_allocate.h"
82 #include "register_allocate_internal.h"
83 
84 /**
85  * Creates a set of registers for the allocator.
86  *
87  * mem_ctx is a ralloc context for the allocator.  The reg set may be freed
88  * using ralloc_free().
89  */
90 struct ra_regs *
ra_alloc_reg_set(void * mem_ctx,unsigned int count,bool need_conflict_lists)91 ra_alloc_reg_set(void *mem_ctx, unsigned int count, bool need_conflict_lists)
92 {
93    unsigned int i;
94    struct ra_regs *regs;
95 
96    regs = rzalloc(mem_ctx, struct ra_regs);
97    regs->count = count;
98    regs->regs = rzalloc_array(regs, struct ra_reg, count);
99 
100    for (i = 0; i < count; i++) {
101       regs->regs[i].conflicts = rzalloc_array(regs->regs, BITSET_WORD,
102                                               BITSET_WORDS(count));
103       BITSET_SET(regs->regs[i].conflicts, i);
104 
105       util_dynarray_init(&regs->regs[i].conflict_list,
106                          need_conflict_lists ? regs->regs : NULL);
107       if (need_conflict_lists)
108          util_dynarray_append(&regs->regs[i].conflict_list, unsigned int, i);
109    }
110 
111    return regs;
112 }
113 
114 /**
115  * The register allocator by default prefers to allocate low register numbers,
116  * since it was written for hardware (gen4/5 Intel) that is limited in its
117  * multithreadedness by the number of registers used in a given shader.
118  *
119  * However, for hardware without that restriction, densely packed register
120  * allocation can put serious constraints on instruction scheduling.  This
121  * function tells the allocator to rotate around the registers if possible as
122  * it allocates the nodes.
123  */
124 void
ra_set_allocate_round_robin(struct ra_regs * regs)125 ra_set_allocate_round_robin(struct ra_regs *regs)
126 {
127    regs->round_robin = true;
128 }
129 
130 static void
ra_add_conflict_list(struct ra_regs * regs,unsigned int r1,unsigned int r2)131 ra_add_conflict_list(struct ra_regs *regs, unsigned int r1, unsigned int r2)
132 {
133    struct ra_reg *reg1 = &regs->regs[r1];
134 
135    if (reg1->conflict_list.mem_ctx) {
136       util_dynarray_append(&reg1->conflict_list, unsigned int, r2);
137    }
138    BITSET_SET(reg1->conflicts, r2);
139 }
140 
141 void
ra_add_reg_conflict(struct ra_regs * regs,unsigned int r1,unsigned int r2)142 ra_add_reg_conflict(struct ra_regs *regs, unsigned int r1, unsigned int r2)
143 {
144    if (!BITSET_TEST(regs->regs[r1].conflicts, r2)) {
145       ra_add_conflict_list(regs, r1, r2);
146       ra_add_conflict_list(regs, r2, r1);
147    }
148 }
149 
150 /**
151  * Adds a conflict between base_reg and reg, and also between reg and
152  * anything that base_reg conflicts with.
153  *
154  * This can simplify code for setting up multiple register classes
155  * which are aggregates of some base hardware registers, compared to
156  * explicitly using ra_add_reg_conflict.
157  */
158 void
ra_add_transitive_reg_conflict(struct ra_regs * regs,unsigned int base_reg,unsigned int reg)159 ra_add_transitive_reg_conflict(struct ra_regs *regs,
160                                unsigned int base_reg, unsigned int reg)
161 {
162    ra_add_reg_conflict(regs, reg, base_reg);
163 
164    util_dynarray_foreach(&regs->regs[base_reg].conflict_list, unsigned int,
165                          r2p) {
166       ra_add_reg_conflict(regs, reg, *r2p);
167    }
168 }
169 
170 /**
171  * Set up conflicts between base_reg and it's two half registers reg0 and
172  * reg1, but take care to not add conflicts between reg0 and reg1.
173  *
174  * This is useful for architectures where full size registers are aliased by
175  * two half size registers (eg 32 bit float and 16 bit float registers).
176  */
177 void
ra_add_transitive_reg_pair_conflict(struct ra_regs * regs,unsigned int base_reg,unsigned int reg0,unsigned int reg1)178 ra_add_transitive_reg_pair_conflict(struct ra_regs *regs,
179                                     unsigned int base_reg, unsigned int reg0, unsigned int reg1)
180 {
181    ra_add_reg_conflict(regs, reg0, base_reg);
182    ra_add_reg_conflict(regs, reg1, base_reg);
183 
184    util_dynarray_foreach(&regs->regs[base_reg].conflict_list, unsigned int, i) {
185       unsigned int conflict = *i;
186       if (conflict != reg1)
187          ra_add_reg_conflict(regs, reg0, conflict);
188       if (conflict != reg0)
189          ra_add_reg_conflict(regs, reg1, conflict);
190    }
191 }
192 
193 /**
194  * Makes every conflict on the given register transitive.  In other words,
195  * every register that conflicts with r will now conflict with every other
196  * register conflicting with r.
197  *
198  * This can simplify code for setting up multiple register classes
199  * which are aggregates of some base hardware registers, compared to
200  * explicitly using ra_add_reg_conflict.
201  */
202 void
ra_make_reg_conflicts_transitive(struct ra_regs * regs,unsigned int r)203 ra_make_reg_conflicts_transitive(struct ra_regs *regs, unsigned int r)
204 {
205    struct ra_reg *reg = &regs->regs[r];
206    int c;
207 
208    BITSET_FOREACH_SET(c, reg->conflicts, regs->count) {
209       struct ra_reg *other = &regs->regs[c];
210       unsigned i;
211       for (i = 0; i < BITSET_WORDS(regs->count); i++)
212          other->conflicts[i] |= reg->conflicts[i];
213    }
214 }
215 
216 struct ra_class *
ra_alloc_reg_class(struct ra_regs * regs)217 ra_alloc_reg_class(struct ra_regs *regs)
218 {
219    struct ra_class *class;
220 
221    regs->classes = reralloc(regs->regs, regs->classes, struct ra_class *,
222                             regs->class_count + 1);
223 
224    class = rzalloc(regs, struct ra_class);
225    class->regset = regs;
226 
227    /* Users may rely on the class index being allocated in order starting from 0. */
228    class->index = regs->class_count++;
229    regs->classes[class->index] = class;
230 
231    class->regs = rzalloc_array(class, BITSET_WORD, BITSET_WORDS(regs->count));
232 
233    return class;
234 }
235 
236 /**
237  * Creates a register class for contiguous register groups of a base register
238  * set.
239  *
240  * A reg set using this type of register class must use only this type of
241  * register class.
242  */
243 struct ra_class *
ra_alloc_contig_reg_class(struct ra_regs * regs,int contig_len)244 ra_alloc_contig_reg_class(struct ra_regs *regs, int contig_len)
245 {
246    struct ra_class *c = ra_alloc_reg_class(regs);
247 
248    assert(contig_len != 0);
249    c->contig_len = contig_len;
250 
251    return c;
252 }
253 
254 struct ra_class *
ra_get_class_from_index(struct ra_regs * regs,unsigned int class)255 ra_get_class_from_index(struct ra_regs *regs, unsigned int class)
256 {
257    return regs->classes[class];
258 }
259 
260 unsigned int
ra_class_index(struct ra_class * c)261 ra_class_index(struct ra_class *c)
262 {
263    return c->index;
264 }
265 
266 void
ra_class_add_reg(struct ra_class * class,unsigned int r)267 ra_class_add_reg(struct ra_class *class, unsigned int r)
268 {
269    assert(r < class->regset->count);
270    assert(r + class->contig_len <= class->regset->count);
271 
272    BITSET_SET(class->regs, r);
273    class->p++;
274 }
275 
276 /**
277  * Returns true if the register belongs to the given class.
278  */
279 static bool
reg_belongs_to_class(unsigned int r,struct ra_class * c)280 reg_belongs_to_class(unsigned int r, struct ra_class *c)
281 {
282    return BITSET_TEST(c->regs, r);
283 }
284 
285 /**
286  * Must be called after all conflicts and register classes have been
287  * set up and before the register set is used for allocation.
288  * To avoid costly q value computation, use the q_values paramater
289  * to pass precomputed q values to this function.
290  */
291 void
ra_set_finalize(struct ra_regs * regs,unsigned int ** q_values)292 ra_set_finalize(struct ra_regs *regs, unsigned int **q_values)
293 {
294    unsigned int b, c;
295 
296    for (b = 0; b < regs->class_count; b++) {
297       regs->classes[b]->q = ralloc_array(regs, unsigned int, regs->class_count);
298    }
299 
300    if (q_values) {
301       for (b = 0; b < regs->class_count; b++) {
302          for (c = 0; c < regs->class_count; c++) {
303             regs->classes[b]->q[c] = q_values[b][c];
304          }
305       }
306    } else {
307       /* Compute, for each class B and C, how many regs of B an
308        * allocation to C could conflict with.
309        */
310       for (b = 0; b < regs->class_count; b++) {
311          for (c = 0; c < regs->class_count; c++) {
312             struct ra_class *class_b = regs->classes[b];
313             struct ra_class *class_c = regs->classes[c];
314 
315             if (class_b->contig_len && class_c->contig_len) {
316                if (class_b->contig_len == 1 && class_c->contig_len == 1) {
317                   /* If both classes are single registers, then they only
318                    * conflict if there are any regs shared between them.  This
319                    * is a cheap test for a common case.
320                    */
321                   class_b->q[c] = 0;
322                   for (int i = 0; i < BITSET_WORDS(regs->count); i++) {
323                      if (class_b->regs[i] & class_c->regs[i]) {
324                         class_b->q[c] = 1;
325                         break;
326                      }
327                   }
328                } else {
329                   int max_possible_conflicts = class_b->contig_len + class_c->contig_len - 1;
330 
331                   unsigned int max_conflicts = 0;
332                   unsigned int rc;
333                   BITSET_FOREACH_SET(rc, regs->classes[c]->regs, regs->count) {
334                      int start = MAX2(0, (int)rc - class_b->contig_len + 1);
335                      int end = MIN2(regs->count, rc + class_c->contig_len);
336                      unsigned int conflicts = 0;
337                      for (int i = start; i < end; i++) {
338                         if (BITSET_TEST(class_b->regs, i))
339                            conflicts++;
340                      }
341                      max_conflicts = MAX2(max_conflicts, conflicts);
342                      /* Unless a class has some restriction like the register
343                       * bases are all aligned, then we should quickly find this
344                       * limit and exit the loop.
345                       */
346                      if (max_conflicts == max_possible_conflicts)
347                         break;
348                   }
349                   class_b->q[c] = max_conflicts;
350                }
351             } else {
352                /* If you're doing contiguous classes, you have to be all in
353                 * because I don't want to deal with it.
354                 */
355                assert(!class_b->contig_len && !class_c->contig_len);
356 
357                unsigned int rc;
358                int max_conflicts = 0;
359 
360                BITSET_FOREACH_SET(rc, regs->classes[c]->regs, regs->count) {
361                   int conflicts = 0;
362 
363                   util_dynarray_foreach(&regs->regs[rc].conflict_list,
364                                        unsigned int, rbp) {
365                      unsigned int rb = *rbp;
366                      if (reg_belongs_to_class(rb, regs->classes[b]))
367                         conflicts++;
368                   }
369                   max_conflicts = MAX2(max_conflicts, conflicts);
370                }
371                regs->classes[b]->q[c] = max_conflicts;
372             }
373          }
374       }
375    }
376 
377    for (b = 0; b < regs->count; b++) {
378       util_dynarray_fini(&regs->regs[b].conflict_list);
379    }
380 
381    bool all_contig = true;
382    for (int c = 0; c < regs->class_count; c++)
383       all_contig &= regs->classes[c]->contig_len != 0;
384    if (all_contig) {
385       /* In this case, we never need the conflicts lists (and it would probably
386        * be a mistake to look at conflicts when doing contiguous classes!), so
387        * free them.  TODO: Avoid the allocation in the first place.
388        */
389       for (int i = 0; i < regs->count; i++) {
390          ralloc_free(regs->regs[i].conflicts);
391          regs->regs[i].conflicts = NULL;
392       }
393    }
394 }
395 
396 void
ra_set_serialize(const struct ra_regs * regs,struct blob * blob)397 ra_set_serialize(const struct ra_regs *regs, struct blob *blob)
398 {
399    blob_write_uint32(blob, regs->count);
400    blob_write_uint32(blob, regs->class_count);
401 
402    bool is_contig = regs->classes[0]->contig_len != 0;
403    blob_write_uint8(blob, is_contig);
404 
405    if (!is_contig) {
406       for (unsigned int r = 0; r < regs->count; r++) {
407          struct ra_reg *reg = &regs->regs[r];
408          blob_write_bytes(blob, reg->conflicts, BITSET_WORDS(regs->count) *
409                                                 sizeof(BITSET_WORD));
410          assert(util_dynarray_num_elements(&reg->conflict_list, unsigned int) == 0);
411       }
412    }
413 
414    for (unsigned int c = 0; c < regs->class_count; c++) {
415       struct ra_class *class = regs->classes[c];
416       blob_write_bytes(blob, class->regs, BITSET_WORDS(regs->count) *
417                                           sizeof(BITSET_WORD));
418       blob_write_uint32(blob, class->contig_len);
419       blob_write_uint32(blob, class->p);
420       blob_write_bytes(blob, class->q, regs->class_count * sizeof(*class->q));
421    }
422 
423    blob_write_uint32(blob, regs->round_robin);
424 }
425 
426 struct ra_regs *
ra_set_deserialize(void * mem_ctx,struct blob_reader * blob)427 ra_set_deserialize(void *mem_ctx, struct blob_reader *blob)
428 {
429    unsigned int reg_count = blob_read_uint32(blob);
430    unsigned int class_count = blob_read_uint32(blob);
431    bool is_contig = blob_read_uint8(blob);
432 
433    struct ra_regs *regs = ra_alloc_reg_set(mem_ctx, reg_count, false);
434    assert(regs->count == reg_count);
435 
436    if (is_contig) {
437       for (int i = 0; i < regs->count; i++) {
438          ralloc_free(regs->regs[i].conflicts);
439          regs->regs[i].conflicts = NULL;
440       }
441    } else {
442       for (unsigned int r = 0; r < reg_count; r++) {
443          struct ra_reg *reg = &regs->regs[r];
444          blob_copy_bytes(blob, reg->conflicts, BITSET_WORDS(reg_count) *
445                                              sizeof(BITSET_WORD));
446       }
447    }
448 
449    assert(regs->classes == NULL);
450    regs->classes = ralloc_array(regs->regs, struct ra_class *, class_count);
451    regs->class_count = class_count;
452 
453    for (unsigned int c = 0; c < class_count; c++) {
454       struct ra_class *class = rzalloc(regs, struct ra_class);
455       regs->classes[c] = class;
456       class->regset = regs;
457       class->index = c;
458 
459       class->regs = ralloc_array(class, BITSET_WORD, BITSET_WORDS(reg_count));
460       blob_copy_bytes(blob, class->regs, BITSET_WORDS(reg_count) *
461                                          sizeof(BITSET_WORD));
462 
463       class->contig_len = blob_read_uint32(blob);
464       class->p = blob_read_uint32(blob);
465 
466       class->q = ralloc_array(regs->classes[c], unsigned int, class_count);
467       blob_copy_bytes(blob, class->q, class_count * sizeof(*class->q));
468    }
469 
470    regs->round_robin = blob_read_uint32(blob);
471 
472    return regs;
473 }
474 
475 static uint64_t
ra_get_num_adjacency_bits(uint64_t n)476 ra_get_num_adjacency_bits(uint64_t n)
477 {
478    return (n * (n - 1)) / 2;
479 }
480 
481 static uint64_t
ra_get_adjacency_bit_index(unsigned n1,unsigned n2)482 ra_get_adjacency_bit_index(unsigned n1, unsigned n2)
483 {
484    assert(n1 != n2);
485    unsigned k1 = MAX2(n1, n2);
486    unsigned k2 = MIN2(n1, n2);
487    return ra_get_num_adjacency_bits(k1) + k2;
488 }
489 
490 static bool
ra_test_adjacency_bit(struct ra_graph * g,unsigned n1,unsigned n2)491 ra_test_adjacency_bit(struct ra_graph *g, unsigned n1, unsigned n2)
492 {
493    uint64_t index = ra_get_adjacency_bit_index(n1, n2);
494    return BITSET_TEST(g->adjacency, index);
495 }
496 
497 static void
ra_set_adjacency_bit(struct ra_graph * g,unsigned n1,unsigned n2)498 ra_set_adjacency_bit(struct ra_graph *g, unsigned n1, unsigned n2)
499 {
500    unsigned index = ra_get_adjacency_bit_index(n1, n2);
501    BITSET_SET(g->adjacency, index);
502 }
503 
504 static void
ra_clear_adjacency_bit(struct ra_graph * g,unsigned n1,unsigned n2)505 ra_clear_adjacency_bit(struct ra_graph *g, unsigned n1, unsigned n2)
506 {
507    unsigned index = ra_get_adjacency_bit_index(n1, n2);
508    BITSET_CLEAR(g->adjacency, index);
509 }
510 
511 static void
ra_add_node_adjacency(struct ra_graph * g,unsigned int n1,unsigned int n2)512 ra_add_node_adjacency(struct ra_graph *g, unsigned int n1, unsigned int n2)
513 {
514    assert(n1 != n2);
515 
516    int n1_class = g->nodes[n1].class;
517    int n2_class = g->nodes[n2].class;
518    g->nodes[n1].q_total += g->regs->classes[n1_class]->q[n2_class];
519 
520    util_dynarray_append(&g->nodes[n1].adjacency_list, unsigned int, n2);
521 }
522 
523 static void
ra_node_remove_adjacency(struct ra_graph * g,unsigned int n1,unsigned int n2)524 ra_node_remove_adjacency(struct ra_graph *g, unsigned int n1, unsigned int n2)
525 {
526    assert(n1 != n2);
527    ra_clear_adjacency_bit(g, n1, n2);
528 
529    int n1_class = g->nodes[n1].class;
530    int n2_class = g->nodes[n2].class;
531    g->nodes[n1].q_total -= g->regs->classes[n1_class]->q[n2_class];
532 
533    util_dynarray_delete_unordered(&g->nodes[n1].adjacency_list, unsigned int,
534                                   n2);
535 }
536 
537 static void
ra_realloc_interference_graph(struct ra_graph * g,unsigned int alloc)538 ra_realloc_interference_graph(struct ra_graph *g, unsigned int alloc)
539 {
540    if (alloc <= g->alloc)
541       return;
542 
543    /* If we always have a whole number of BITSET_WORDs, it makes it much
544     * easier to memset the top of the growing bitsets.
545     */
546    assert(g->alloc % BITSET_WORDBITS == 0);
547    alloc = align(alloc, BITSET_WORDBITS);
548    g->nodes = rerzalloc(g, g->nodes, struct ra_node, g->alloc, alloc);
549    g->adjacency = rerzalloc(g, g->adjacency, BITSET_WORD,
550                             BITSET_WORDS(ra_get_num_adjacency_bits(g->alloc)),
551                             BITSET_WORDS(ra_get_num_adjacency_bits(alloc)));
552 
553    /* Initialize new nodes. */
554    for (unsigned i = g->alloc; i < alloc; i++) {
555       struct ra_node* node = g->nodes + i;
556       util_dynarray_init(&node->adjacency_list, g);
557       node->q_total = 0;
558       node->forced_reg = NO_REG;
559       node->reg = NO_REG;
560    }
561 
562    /* These are scratch values and don't need to be zeroed.  We'll clear them
563     * as part of ra_select() setup.
564     */
565    unsigned bitset_count = BITSET_WORDS(alloc);
566    g->tmp.stack = reralloc(g, g->tmp.stack, unsigned int, alloc);
567    g->tmp.in_stack = reralloc(g, g->tmp.in_stack, BITSET_WORD, bitset_count);
568 
569    g->tmp.reg_assigned = reralloc(g, g->tmp.reg_assigned, BITSET_WORD,
570                                   bitset_count);
571    g->tmp.pq_test = reralloc(g, g->tmp.pq_test, BITSET_WORD, bitset_count);
572    g->tmp.min_q_total = reralloc(g, g->tmp.min_q_total, unsigned int,
573                                  bitset_count);
574    g->tmp.min_q_node = reralloc(g, g->tmp.min_q_node, unsigned int,
575                                 bitset_count);
576 
577    g->alloc = alloc;
578 }
579 
580 struct ra_graph *
ra_alloc_interference_graph(struct ra_regs * regs,unsigned int count)581 ra_alloc_interference_graph(struct ra_regs *regs, unsigned int count)
582 {
583    struct ra_graph *g;
584 
585    g = rzalloc(NULL, struct ra_graph);
586    g->regs = regs;
587    g->count = count;
588    ra_realloc_interference_graph(g, count);
589 
590    return g;
591 }
592 
593 void
ra_resize_interference_graph(struct ra_graph * g,unsigned int count)594 ra_resize_interference_graph(struct ra_graph *g, unsigned int count)
595 {
596    g->count = count;
597    if (count > g->alloc)
598       ra_realloc_interference_graph(g, g->alloc * 2);
599 }
600 
ra_set_select_reg_callback(struct ra_graph * g,ra_select_reg_callback callback,void * data)601 void ra_set_select_reg_callback(struct ra_graph *g,
602                                 ra_select_reg_callback callback,
603                                 void *data)
604 {
605    g->select_reg_callback = callback;
606    g->select_reg_callback_data = data;
607 }
608 
609 void
ra_set_node_class(struct ra_graph * g,unsigned int n,struct ra_class * class)610 ra_set_node_class(struct ra_graph *g,
611                   unsigned int n, struct ra_class *class)
612 {
613    g->nodes[n].class = class->index;
614 }
615 
616 struct ra_class *
ra_get_node_class(struct ra_graph * g,unsigned int n)617 ra_get_node_class(struct ra_graph *g,
618                   unsigned int n)
619 {
620    return g->regs->classes[g->nodes[n].class];
621 }
622 
623 unsigned int
ra_add_node(struct ra_graph * g,struct ra_class * class)624 ra_add_node(struct ra_graph *g, struct ra_class *class)
625 {
626    unsigned int n = g->count;
627    ra_resize_interference_graph(g, g->count + 1);
628 
629    ra_set_node_class(g, n, class);
630 
631    return n;
632 }
633 
634 void
ra_add_node_interference(struct ra_graph * g,unsigned int n1,unsigned int n2)635 ra_add_node_interference(struct ra_graph *g,
636                          unsigned int n1, unsigned int n2)
637 {
638    assert(n1 < g->count && n2 < g->count);
639    if (n1 != n2 && !ra_test_adjacency_bit(g, n1, n2)) {
640       ra_set_adjacency_bit(g, n1, n2);
641       ra_add_node_adjacency(g, n1, n2);
642       ra_add_node_adjacency(g, n2, n1);
643    }
644 }
645 
646 void
ra_reset_node_interference(struct ra_graph * g,unsigned int n)647 ra_reset_node_interference(struct ra_graph *g, unsigned int n)
648 {
649    util_dynarray_foreach(&g->nodes[n].adjacency_list, unsigned int, n2p) {
650       ra_node_remove_adjacency(g, *n2p, n);
651    }
652 
653    util_dynarray_clear(&g->nodes[n].adjacency_list);
654 }
655 
656 static void
update_pq_info(struct ra_graph * g,unsigned int n)657 update_pq_info(struct ra_graph *g, unsigned int n)
658 {
659    int i = n / BITSET_WORDBITS;
660    int n_class = g->nodes[n].class;
661    if (g->nodes[n].tmp.q_total < g->regs->classes[n_class]->p) {
662       BITSET_SET(g->tmp.pq_test, n);
663    } else if (g->tmp.min_q_total[i] != UINT_MAX) {
664       /* Only update min_q_total and min_q_node if min_q_total != UINT_MAX so
665        * that we don't update while we have stale data and accidentally mark
666        * it as non-stale.  Also, in order to remain consistent with the old
667        * naive implementation of the algorithm, we do a lexicographical sort
668        * to ensure that we always choose the node with the highest node index.
669        */
670       if (g->nodes[n].tmp.q_total < g->tmp.min_q_total[i] ||
671           (g->nodes[n].tmp.q_total == g->tmp.min_q_total[i] &&
672            n > g->tmp.min_q_node[i])) {
673          g->tmp.min_q_total[i] = g->nodes[n].tmp.q_total;
674          g->tmp.min_q_node[i] = n;
675       }
676    }
677 }
678 
679 static void
add_node_to_stack(struct ra_graph * g,unsigned int n)680 add_node_to_stack(struct ra_graph *g, unsigned int n)
681 {
682    int n_class = g->nodes[n].class;
683 
684    assert(!BITSET_TEST(g->tmp.in_stack, n));
685 
686    util_dynarray_foreach(&g->nodes[n].adjacency_list, unsigned int, n2p) {
687       unsigned int n2 = *n2p;
688       unsigned int n2_class = g->nodes[n2].class;
689 
690       if (!BITSET_TEST(g->tmp.in_stack, n2) &&
691           !BITSET_TEST(g->tmp.reg_assigned, n2)) {
692          assert(g->nodes[n2].tmp.q_total >= g->regs->classes[n2_class]->q[n_class]);
693          g->nodes[n2].tmp.q_total -= g->regs->classes[n2_class]->q[n_class];
694          update_pq_info(g, n2);
695       }
696    }
697 
698    g->tmp.stack[g->tmp.stack_count] = n;
699    g->tmp.stack_count++;
700    BITSET_SET(g->tmp.in_stack, n);
701 
702    /* Flag the min_q_total for n's block as dirty so it gets recalculated */
703    g->tmp.min_q_total[n / BITSET_WORDBITS] = UINT_MAX;
704 }
705 
706 /**
707  * Simplifies the interference graph by pushing all
708  * trivially-colorable nodes into a stack of nodes to be colored,
709  * removing them from the graph, and rinsing and repeating.
710  *
711  * If we encounter a case where we can't push any nodes on the stack, then
712  * we optimistically choose a node and push it on the stack. We heuristically
713  * push the node with the lowest total q value, since it has the fewest
714  * neighbors and therefore is most likely to be allocated.
715  */
716 static void
ra_simplify(struct ra_graph * g)717 ra_simplify(struct ra_graph *g)
718 {
719    bool progress = true;
720    unsigned int stack_optimistic_start = UINT_MAX;
721 
722    /* Figure out the high bit and bit mask for the first iteration of a loop
723     * over BITSET_WORDs.
724     */
725    const unsigned int top_word_high_bit = (g->count - 1) % BITSET_WORDBITS;
726 
727    /* Do a quick pre-pass to set things up */
728    g->tmp.stack_count = 0;
729    for (int i = BITSET_WORDS(g->count) - 1, high_bit = top_word_high_bit;
730         i >= 0; i--, high_bit = BITSET_WORDBITS - 1) {
731       g->tmp.in_stack[i] = 0;
732       g->tmp.reg_assigned[i] = 0;
733       g->tmp.pq_test[i] = 0;
734       g->tmp.min_q_total[i] = UINT_MAX;
735       g->tmp.min_q_node[i] = UINT_MAX;
736       for (int j = high_bit; j >= 0; j--) {
737          unsigned int n = i * BITSET_WORDBITS + j;
738          g->nodes[n].reg = g->nodes[n].forced_reg;
739          g->nodes[n].tmp.q_total = g->nodes[n].q_total;
740          if (g->nodes[n].reg != NO_REG)
741             g->tmp.reg_assigned[i] |= BITSET_BIT(j);
742          update_pq_info(g, n);
743       }
744    }
745 
746    while (progress) {
747       unsigned int min_q_total = UINT_MAX;
748       unsigned int min_q_node = UINT_MAX;
749 
750       progress = false;
751 
752       for (int i = BITSET_WORDS(g->count) - 1, high_bit = top_word_high_bit;
753            i >= 0; i--, high_bit = BITSET_WORDBITS - 1) {
754          BITSET_WORD mask = ~(BITSET_WORD)0 >> (31 - high_bit);
755 
756          BITSET_WORD skip = g->tmp.in_stack[i] | g->tmp.reg_assigned[i];
757          if (skip == mask)
758             continue;
759 
760          BITSET_WORD pq = g->tmp.pq_test[i] & ~skip;
761          if (pq) {
762             /* In this case, we have stuff we can immediately take off the
763              * stack.  This also means that we're guaranteed to make progress
764              * and we don't need to bother updating lowest_q_total because we
765              * know we're going to loop again before attempting to do anything
766              * optimistic.
767              */
768             for (int j = high_bit; j >= 0; j--) {
769                if (pq & BITSET_BIT(j)) {
770                   unsigned int n = i * BITSET_WORDBITS + j;
771                   assert(n < g->count);
772                   add_node_to_stack(g, n);
773                   /* add_node_to_stack() may update pq_test for this word so
774                    * we need to update our local copy.
775                    */
776                   pq = g->tmp.pq_test[i] & ~skip;
777                   progress = true;
778                }
779             }
780          } else if (!progress) {
781             if (g->tmp.min_q_total[i] == UINT_MAX) {
782                /* The min_q_total and min_q_node are dirty because we added
783                 * one of these nodes to the stack.  It needs to be
784                 * recalculated.
785                 */
786                for (int j = high_bit; j >= 0; j--) {
787                   if (skip & BITSET_BIT(j))
788                      continue;
789 
790                   unsigned int n = i * BITSET_WORDBITS + j;
791                   assert(n < g->count);
792                   if (g->nodes[n].tmp.q_total < g->tmp.min_q_total[i]) {
793                      g->tmp.min_q_total[i] = g->nodes[n].tmp.q_total;
794                      g->tmp.min_q_node[i] = n;
795                   }
796                }
797             }
798             if (g->tmp.min_q_total[i] < min_q_total) {
799                min_q_node = g->tmp.min_q_node[i];
800                min_q_total = g->tmp.min_q_total[i];
801             }
802          }
803       }
804 
805       if (!progress && min_q_total != UINT_MAX) {
806          if (stack_optimistic_start == UINT_MAX)
807             stack_optimistic_start = g->tmp.stack_count;
808 
809          add_node_to_stack(g, min_q_node);
810          progress = true;
811       }
812    }
813 
814    g->tmp.stack_optimistic_start = stack_optimistic_start;
815 }
816 
817 bool
ra_class_allocations_conflict(struct ra_class * c1,unsigned int r1,struct ra_class * c2,unsigned int r2)818 ra_class_allocations_conflict(struct ra_class *c1, unsigned int r1,
819                               struct ra_class *c2, unsigned int r2)
820 {
821    if (c1->contig_len) {
822       assert(c2->contig_len);
823 
824       int r1_end = r1 + c1->contig_len;
825       int r2_end = r2 + c2->contig_len;
826       return !(r2 >= r1_end || r1 >= r2_end);
827    } else {
828       return BITSET_TEST(c1->regset->regs[r1].conflicts, r2);
829    }
830 }
831 
832 static struct ra_node *
ra_find_conflicting_neighbor(struct ra_graph * g,unsigned int n,unsigned int r)833 ra_find_conflicting_neighbor(struct ra_graph *g, unsigned int n, unsigned int r)
834 {
835    util_dynarray_foreach(&g->nodes[n].adjacency_list, unsigned int, n2p) {
836       unsigned int n2 = *n2p;
837 
838       /* If our adjacent node is in the stack, it's not allocated yet. */
839       if (!BITSET_TEST(g->tmp.in_stack, n2) &&
840           ra_class_allocations_conflict(g->regs->classes[g->nodes[n].class], r,
841                                         g->regs->classes[g->nodes[n2].class], g->nodes[n2].reg)) {
842          return &g->nodes[n2];
843       }
844    }
845 
846    return NULL;
847 }
848 
849 /* Computes a bitfield of what regs are available for a given register
850  * selection.
851  *
852  * This lets drivers implement a more complicated policy than our simple first
853  * or round robin policies (which don't require knowing the whole bitset)
854  */
855 static bool
ra_compute_available_regs(struct ra_graph * g,unsigned int n,BITSET_WORD * regs)856 ra_compute_available_regs(struct ra_graph *g, unsigned int n, BITSET_WORD *regs)
857 {
858    struct ra_class *c = g->regs->classes[g->nodes[n].class];
859 
860    /* Populate with the set of regs that are in the node's class. */
861    memcpy(regs, c->regs, BITSET_WORDS(g->regs->count) * sizeof(BITSET_WORD));
862 
863    /* Remove any regs that conflict with nodes that we're adjacent to and have
864     * already colored.
865     */
866    util_dynarray_foreach(&g->nodes[n].adjacency_list, unsigned int, n2p) {
867       struct ra_node *n2 = &g->nodes[*n2p];
868       struct ra_class *n2c = g->regs->classes[n2->class];
869 
870       if (!BITSET_TEST(g->tmp.in_stack, *n2p)) {
871          if (c->contig_len) {
872             int start = MAX2(0, (int)n2->reg - c->contig_len + 1);
873             int end = MIN2(g->regs->count, n2->reg + n2c->contig_len);
874             for (unsigned i = start; i < end; i++)
875                BITSET_CLEAR(regs, i);
876          } else {
877             for (int j = 0; j < BITSET_WORDS(g->regs->count); j++)
878                regs[j] &= ~g->regs->regs[n2->reg].conflicts[j];
879          }
880       }
881    }
882 
883    for (int i = 0; i < BITSET_WORDS(g->regs->count); i++) {
884       if (regs[i])
885          return true;
886    }
887 
888    return false;
889 }
890 
891 /**
892  * Pops nodes from the stack back into the graph, coloring them with
893  * registers as they go.
894  *
895  * If all nodes were trivially colorable, then this must succeed.  If
896  * not (optimistic coloring), then it may return false;
897  */
898 static bool
ra_select(struct ra_graph * g)899 ra_select(struct ra_graph *g)
900 {
901    int start_search_reg = 0;
902    BITSET_WORD *select_regs = NULL;
903 
904    if (g->select_reg_callback)
905       select_regs = malloc(BITSET_WORDS(g->regs->count) * sizeof(BITSET_WORD));
906 
907    while (g->tmp.stack_count != 0) {
908       unsigned int ri;
909       unsigned int r = -1;
910       int n = g->tmp.stack[g->tmp.stack_count - 1];
911       struct ra_class *c = g->regs->classes[g->nodes[n].class];
912 
913       /* set this to false even if we return here so that
914        * ra_get_best_spill_node() considers this node later.
915        */
916       BITSET_CLEAR(g->tmp.in_stack, n);
917 
918       if (g->select_reg_callback) {
919          if (!ra_compute_available_regs(g, n, select_regs)) {
920             free(select_regs);
921             return false;
922          }
923 
924          r = g->select_reg_callback(n, select_regs, g->select_reg_callback_data);
925          assert(r < g->regs->count);
926       } else {
927          /* Find the lowest-numbered reg which is not used by a member
928           * of the graph adjacent to us.
929           */
930          for (ri = 0; ri < g->regs->count; ri++) {
931             r = (start_search_reg + ri) % g->regs->count;
932             if (!reg_belongs_to_class(r, c))
933                continue;
934 
935             struct ra_node *conflicting = ra_find_conflicting_neighbor(g, n, r);
936             if (!conflicting) {
937                /* Found a reg! */
938                break;
939             }
940             if (g->regs->classes[conflicting->class]->contig_len) {
941                /* Skip to point at the last base reg of the conflicting reg
942                 * allocation -- the loop will increment us to check the next reg
943                 * after the conflicting allocaiton.
944                 */
945                unsigned conflicting_end = (conflicting->reg +
946                                            g->regs->classes[conflicting->class]->contig_len - 1);
947                assert(conflicting_end >= r);
948                ri += conflicting_end - r;
949             }
950          }
951 
952          if (ri >= g->regs->count)
953             return false;
954       }
955 
956       g->nodes[n].reg = r;
957       g->tmp.stack_count--;
958 
959       /* Rotate the starting point except for any nodes above the lowest
960        * optimistically colorable node.  The likelihood that we will succeed
961        * at allocating optimistically colorable nodes is highly dependent on
962        * the way that the previous nodes popped off the stack are laid out.
963        * The round-robin strategy increases the fragmentation of the register
964        * file and decreases the number of nearby nodes assigned to the same
965        * color, what increases the likelihood of spilling with respect to the
966        * dense packing strategy.
967        */
968       if (g->regs->round_robin &&
969           g->tmp.stack_count - 1 <= g->tmp.stack_optimistic_start)
970          start_search_reg = r + 1;
971    }
972 
973    free(select_regs);
974 
975    return true;
976 }
977 
978 bool
ra_allocate(struct ra_graph * g)979 ra_allocate(struct ra_graph *g)
980 {
981    ra_simplify(g);
982    return ra_select(g);
983 }
984 
985 unsigned int
ra_get_node_reg(struct ra_graph * g,unsigned int n)986 ra_get_node_reg(struct ra_graph *g, unsigned int n)
987 {
988    if (g->nodes[n].forced_reg != NO_REG)
989       return g->nodes[n].forced_reg;
990    else
991       return g->nodes[n].reg;
992 }
993 
994 /**
995  * Forces a node to a specific register.  This can be used to avoid
996  * creating a register class containing one node when handling data
997  * that must live in a fixed location and is known to not conflict
998  * with other forced register assignment (as is common with shader
999  * input data).  These nodes do not end up in the stack during
1000  * ra_simplify(), and thus at ra_select() time it is as if they were
1001  * the first popped off the stack and assigned their fixed locations.
1002  * Nodes that use this function do not need to be assigned a register
1003  * class.
1004  *
1005  * Must be called before ra_simplify().
1006  */
1007 void
ra_set_node_reg(struct ra_graph * g,unsigned int n,unsigned int reg)1008 ra_set_node_reg(struct ra_graph *g, unsigned int n, unsigned int reg)
1009 {
1010    g->nodes[n].forced_reg = reg;
1011 }
1012 
1013 static float
ra_get_spill_benefit(struct ra_graph * g,unsigned int n)1014 ra_get_spill_benefit(struct ra_graph *g, unsigned int n)
1015 {
1016    float benefit = 0;
1017    int n_class = g->nodes[n].class;
1018 
1019    /* Define the benefit of eliminating an interference between n, n2
1020     * through spilling as q(C, B) / p(C).  This is similar to the
1021     * "count number of edges" approach of traditional graph coloring,
1022     * but takes classes into account.
1023     */
1024    util_dynarray_foreach(&g->nodes[n].adjacency_list, unsigned int, n2p) {
1025       unsigned int n2 = *n2p;
1026       unsigned int n2_class = g->nodes[n2].class;
1027       benefit += ((float)g->regs->classes[n_class]->q[n2_class] /
1028                   g->regs->classes[n_class]->p);
1029    }
1030 
1031    return benefit;
1032 }
1033 
1034 /**
1035  * Returns a node number to be spilled according to the cost/benefit using
1036  * the pq test, or -1 if there are no spillable nodes.
1037  */
1038 int
ra_get_best_spill_node(struct ra_graph * g)1039 ra_get_best_spill_node(struct ra_graph *g)
1040 {
1041    unsigned int best_node = -1;
1042    float best_benefit = 0.0;
1043    unsigned int n;
1044 
1045    /* Consider any nodes that we colored successfully or the node we failed to
1046     * color for spilling. When we failed to color a node in ra_select(), we
1047     * only considered these nodes, so spilling any other ones would not result
1048     * in us making progress.
1049     */
1050    for (n = 0; n < g->count; n++) {
1051       float cost = g->nodes[n].spill_cost;
1052       float benefit;
1053 
1054       if (cost <= 0.0f)
1055          continue;
1056 
1057       if (BITSET_TEST(g->tmp.in_stack, n))
1058          continue;
1059 
1060       benefit = ra_get_spill_benefit(g, n);
1061 
1062       if (benefit / cost > best_benefit) {
1063          best_benefit = benefit / cost;
1064          best_node = n;
1065       }
1066    }
1067 
1068    return best_node;
1069 }
1070 
1071 /**
1072  * Only nodes with a spill cost set (cost != 0.0) will be considered
1073  * for register spilling.
1074  */
1075 void
ra_set_node_spill_cost(struct ra_graph * g,unsigned int n,float cost)1076 ra_set_node_spill_cost(struct ra_graph *g, unsigned int n, float cost)
1077 {
1078    g->nodes[n].spill_cost = cost;
1079 }
1080