1 /*
2  * Copyright (C) 2020 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "CommonUtils.h"
18 
19 #include <android-base/logging.h>
20 #include <nnapi/Result.h>
21 #include <nnapi/SharedMemory.h>
22 #include <nnapi/TypeUtils.h>
23 #include <nnapi/Types.h>
24 #include <nnapi/Validation.h>
25 
26 #include <algorithm>
27 #include <any>
28 #include <functional>
29 #include <optional>
30 #include <variant>
31 #include <vector>
32 
33 namespace android::hardware::neuralnetworks::utils {
34 
makeQuantized8PerformanceConsistentWithP(const nn::Capabilities::PerformanceInfo & float32Performance,const nn::Capabilities::PerformanceInfo & quantized8Performance)35 nn::Capabilities::OperandPerformanceTable makeQuantized8PerformanceConsistentWithP(
36         const nn::Capabilities::PerformanceInfo& float32Performance,
37         const nn::Capabilities::PerformanceInfo& quantized8Performance) {
38     // In Android P, most data types are treated as having the same performance as
39     // TENSOR_QUANT8_ASYMM. This collection must be in sorted order.
40     std::vector<nn::Capabilities::OperandPerformance> operandPerformances = {
41             {.type = nn::OperandType::FLOAT32, .info = float32Performance},
42             {.type = nn::OperandType::INT32, .info = quantized8Performance},
43             {.type = nn::OperandType::UINT32, .info = quantized8Performance},
44             {.type = nn::OperandType::TENSOR_FLOAT32, .info = float32Performance},
45             {.type = nn::OperandType::TENSOR_INT32, .info = quantized8Performance},
46             {.type = nn::OperandType::TENSOR_QUANT8_ASYMM, .info = quantized8Performance},
47             {.type = nn::OperandType::OEM, .info = quantized8Performance},
48             {.type = nn::OperandType::TENSOR_OEM_BYTE, .info = quantized8Performance},
49     };
50     return nn::Capabilities::OperandPerformanceTable::create(std::move(operandPerformances))
51             .value();
52 }
53 
54 }  // namespace android::hardware::neuralnetworks::utils
55