1 /* 2 * Copyright (c) 1994, 2021, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. Oracle designates this 8 * particular file as subject to the "Classpath" exception as provided 9 * by Oracle in the LICENSE file that accompanied this code. 10 * 11 * This code is distributed in the hope that it will be useful, but WITHOUT 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 14 * version 2 for more details (a copy is included in the LICENSE file that 15 * accompanied this code). 16 * 17 * You should have received a copy of the GNU General Public License version 18 * 2 along with this work; if not, write to the Free Software Foundation, 19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 20 * 21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 22 * or visit www.oracle.com if you need additional information or have any 23 * questions. 24 */ 25 26 package java.lang; 27 28 import java.lang.invoke.MethodHandles; 29 import java.lang.constant.Constable; 30 import java.lang.constant.ConstantDesc; 31 import java.util.Optional; 32 33 import jdk.internal.math.FloatingDecimal; 34 import jdk.internal.vm.annotation.IntrinsicCandidate; 35 36 /** 37 * The {@code Float} class wraps a value of primitive type 38 * {@code float} in an object. An object of type 39 * {@code Float} contains a single field whose type is 40 * {@code float}. 41 * 42 * <p>In addition, this class provides several methods for converting a 43 * {@code float} to a {@code String} and a 44 * {@code String} to a {@code float}, as well as other 45 * constants and methods useful when dealing with a 46 * {@code float}. 47 * 48 * <!-- Android-removed: paragraph on ValueBased 49 * <p>This is a <a href="{@docRoot}/java.base/java/lang/doc-files/ValueBased.html">value-based</a> 50 * class; programmers should treat instances that are 51 * {@linkplain #equals(Object) equal} as interchangeable and should not 52 * use instances for synchronization, or unpredictable behavior may 53 * occur. For example, in a future release, synchronization may fail. 54 * --> 55 * 56 * <h2><a id=equivalenceRelation>Floating-point Equality, Equivalence, 57 * and Comparison</a></h2> 58 * 59 * The class {@code java.lang.Double} has a <a 60 * href="Double.html#equivalenceRelation">discussion of equality, 61 * equivalence, and comparison of floating-point values</a> that is 62 * equality applicable to {@code float} values. 63 * 64 * @author Lee Boynton 65 * @author Arthur van Hoff 66 * @author Joseph D. Darcy 67 * @since 1.0 68 */ 69 @jdk.internal.ValueBased 70 public final class Float extends Number 71 implements Comparable<Float>, Constable, ConstantDesc { 72 /** 73 * A constant holding the positive infinity of type 74 * {@code float}. It is equal to the value returned by 75 * {@code Float.intBitsToFloat(0x7f800000)}. 76 */ 77 public static final float POSITIVE_INFINITY = 1.0f / 0.0f; 78 79 /** 80 * A constant holding the negative infinity of type 81 * {@code float}. It is equal to the value returned by 82 * {@code Float.intBitsToFloat(0xff800000)}. 83 */ 84 public static final float NEGATIVE_INFINITY = -1.0f / 0.0f; 85 86 /** 87 * A constant holding a Not-a-Number (NaN) value of type 88 * {@code float}. It is equivalent to the value returned by 89 * {@code Float.intBitsToFloat(0x7fc00000)}. 90 */ 91 public static final float NaN = 0.0f / 0.0f; 92 93 /** 94 * A constant holding the largest positive finite value of type 95 * {@code float}, (2-2<sup>-23</sup>)·2<sup>127</sup>. 96 * It is equal to the hexadecimal floating-point literal 97 * {@code 0x1.fffffeP+127f} and also equal to 98 * {@code Float.intBitsToFloat(0x7f7fffff)}. 99 */ 100 public static final float MAX_VALUE = 0x1.fffffeP+127f; // 3.4028235e+38f 101 102 /** 103 * A constant holding the smallest positive normal value of type 104 * {@code float}, 2<sup>-126</sup>. It is equal to the 105 * hexadecimal floating-point literal {@code 0x1.0p-126f} and also 106 * equal to {@code Float.intBitsToFloat(0x00800000)}. 107 * 108 * @since 1.6 109 */ 110 public static final float MIN_NORMAL = 0x1.0p-126f; // 1.17549435E-38f 111 112 /** 113 * A constant holding the smallest positive nonzero value of type 114 * {@code float}, 2<sup>-149</sup>. It is equal to the 115 * hexadecimal floating-point literal {@code 0x0.000002P-126f} 116 * and also equal to {@code Float.intBitsToFloat(0x1)}. 117 */ 118 public static final float MIN_VALUE = 0x0.000002P-126f; // 1.4e-45f 119 120 /** 121 * Maximum exponent a finite {@code float} variable may have. It 122 * is equal to the value returned by {@code 123 * Math.getExponent(Float.MAX_VALUE)}. 124 * 125 * @since 1.6 126 */ 127 public static final int MAX_EXPONENT = 127; 128 129 /** 130 * Minimum exponent a normalized {@code float} variable may have. 131 * It is equal to the value returned by {@code 132 * Math.getExponent(Float.MIN_NORMAL)}. 133 * 134 * @since 1.6 135 */ 136 public static final int MIN_EXPONENT = -126; 137 138 /** 139 * The number of bits used to represent a {@code float} value. 140 * 141 * @since 1.5 142 */ 143 public static final int SIZE = 32; 144 145 /** 146 * The number of bits in the significand of a {@code float} value. 147 * This is the parameter N in section {@jls 4.2.3} of 148 * <cite>The Java Language Specification</cite>. 149 * 150 * @since 19 151 */ 152 public static final int PRECISION = 24; 153 154 /** 155 * The number of bytes used to represent a {@code float} value. 156 * 157 * @since 1.8 158 */ 159 public static final int BYTES = SIZE / Byte.SIZE; 160 161 /** 162 * The {@code Class} instance representing the primitive type 163 * {@code float}. 164 * 165 * @since 1.1 166 */ 167 @SuppressWarnings("unchecked") 168 public static final Class<Float> TYPE = (Class<Float>) Class.getPrimitiveClass("float"); 169 170 /** 171 * Returns a string representation of the {@code float} 172 * argument. All characters mentioned below are ASCII characters. 173 * <ul> 174 * <li>If the argument is NaN, the result is the string 175 * "{@code NaN}". 176 * <li>Otherwise, the result is a string that represents the sign and 177 * magnitude (absolute value) of the argument. If the sign is 178 * negative, the first character of the result is 179 * '{@code -}' ({@code '\u005Cu002D'}); if the sign is 180 * positive, no sign character appears in the result. As for 181 * the magnitude <i>m</i>: 182 * <ul> 183 * <li>If <i>m</i> is infinity, it is represented by the characters 184 * {@code "Infinity"}; thus, positive infinity produces 185 * the result {@code "Infinity"} and negative infinity 186 * produces the result {@code "-Infinity"}. 187 * <li>If <i>m</i> is zero, it is represented by the characters 188 * {@code "0.0"}; thus, negative zero produces the result 189 * {@code "-0.0"} and positive zero produces the result 190 * {@code "0.0"}. 191 * <li> If <i>m</i> is greater than or equal to 10<sup>-3</sup> but 192 * less than 10<sup>7</sup>, then it is represented as the 193 * integer part of <i>m</i>, in decimal form with no leading 194 * zeroes, followed by '{@code .}' 195 * ({@code '\u005Cu002E'}), followed by one or more 196 * decimal digits representing the fractional part of 197 * <i>m</i>. 198 * <li> If <i>m</i> is less than 10<sup>-3</sup> or greater than or 199 * equal to 10<sup>7</sup>, then it is represented in 200 * so-called "computerized scientific notation." Let <i>n</i> 201 * be the unique integer such that 10<sup><i>n</i> </sup>≤ 202 * <i>m</i> {@literal <} 10<sup><i>n</i>+1</sup>; then let <i>a</i> 203 * be the mathematically exact quotient of <i>m</i> and 204 * 10<sup><i>n</i></sup> so that 1 ≤ <i>a</i> {@literal <} 10. 205 * The magnitude is then represented as the integer part of 206 * <i>a</i>, as a single decimal digit, followed by 207 * '{@code .}' ({@code '\u005Cu002E'}), followed by 208 * decimal digits representing the fractional part of 209 * <i>a</i>, followed by the letter '{@code E}' 210 * ({@code '\u005Cu0045'}), followed by a representation 211 * of <i>n</i> as a decimal integer, as produced by the 212 * method {@link java.lang.Integer#toString(int)}. 213 * 214 * </ul> 215 * </ul> 216 * How many digits must be printed for the fractional part of 217 * <i>m</i> or <i>a</i>? There must be at least one digit 218 * to represent the fractional part, and beyond that as many, but 219 * only as many, more digits as are needed to uniquely distinguish 220 * the argument value from adjacent values of type 221 * {@code float}. That is, suppose that <i>x</i> is the 222 * exact mathematical value represented by the decimal 223 * representation produced by this method for a finite nonzero 224 * argument <i>f</i>. Then <i>f</i> must be the {@code float} 225 * value nearest to <i>x</i>; or, if two {@code float} values are 226 * equally close to <i>x</i>, then <i>f</i> must be one of 227 * them and the least significant bit of the significand of 228 * <i>f</i> must be {@code 0}. 229 * 230 * <p>To create localized string representations of a floating-point 231 * value, use subclasses of {@link java.text.NumberFormat}. 232 * 233 * @param f the float to be converted. 234 * @return a string representation of the argument. 235 */ toString(float f)236 public static String toString(float f) { 237 return FloatingDecimal.toJavaFormatString(f); 238 } 239 240 /** 241 * Returns a hexadecimal string representation of the 242 * {@code float} argument. All characters mentioned below are 243 * ASCII characters. 244 * 245 * <ul> 246 * <li>If the argument is NaN, the result is the string 247 * "{@code NaN}". 248 * <li>Otherwise, the result is a string that represents the sign and 249 * magnitude (absolute value) of the argument. If the sign is negative, 250 * the first character of the result is '{@code -}' 251 * ({@code '\u005Cu002D'}); if the sign is positive, no sign character 252 * appears in the result. As for the magnitude <i>m</i>: 253 * 254 * <ul> 255 * <li>If <i>m</i> is infinity, it is represented by the string 256 * {@code "Infinity"}; thus, positive infinity produces the 257 * result {@code "Infinity"} and negative infinity produces 258 * the result {@code "-Infinity"}. 259 * 260 * <li>If <i>m</i> is zero, it is represented by the string 261 * {@code "0x0.0p0"}; thus, negative zero produces the result 262 * {@code "-0x0.0p0"} and positive zero produces the result 263 * {@code "0x0.0p0"}. 264 * 265 * <li>If <i>m</i> is a {@code float} value with a 266 * normalized representation, substrings are used to represent the 267 * significand and exponent fields. The significand is 268 * represented by the characters {@code "0x1."} 269 * followed by a lowercase hexadecimal representation of the rest 270 * of the significand as a fraction. Trailing zeros in the 271 * hexadecimal representation are removed unless all the digits 272 * are zero, in which case a single zero is used. Next, the 273 * exponent is represented by {@code "p"} followed 274 * by a decimal string of the unbiased exponent as if produced by 275 * a call to {@link Integer#toString(int) Integer.toString} on the 276 * exponent value. 277 * 278 * <li>If <i>m</i> is a {@code float} value with a subnormal 279 * representation, the significand is represented by the 280 * characters {@code "0x0."} followed by a 281 * hexadecimal representation of the rest of the significand as a 282 * fraction. Trailing zeros in the hexadecimal representation are 283 * removed. Next, the exponent is represented by 284 * {@code "p-126"}. Note that there must be at 285 * least one nonzero digit in a subnormal significand. 286 * 287 * </ul> 288 * 289 * </ul> 290 * 291 * <table class="striped"> 292 * <caption>Examples</caption> 293 * <thead> 294 * <tr><th scope="col">Floating-point Value</th><th scope="col">Hexadecimal String</th> 295 * </thead> 296 * <tbody> 297 * <tr><th scope="row">{@code 1.0}</th> <td>{@code 0x1.0p0}</td> 298 * <tr><th scope="row">{@code -1.0}</th> <td>{@code -0x1.0p0}</td> 299 * <tr><th scope="row">{@code 2.0}</th> <td>{@code 0x1.0p1}</td> 300 * <tr><th scope="row">{@code 3.0}</th> <td>{@code 0x1.8p1}</td> 301 * <tr><th scope="row">{@code 0.5}</th> <td>{@code 0x1.0p-1}</td> 302 * <tr><th scope="row">{@code 0.25}</th> <td>{@code 0x1.0p-2}</td> 303 * <tr><th scope="row">{@code Float.MAX_VALUE}</th> 304 * <td>{@code 0x1.fffffep127}</td> 305 * <tr><th scope="row">{@code Minimum Normal Value}</th> 306 * <td>{@code 0x1.0p-126}</td> 307 * <tr><th scope="row">{@code Maximum Subnormal Value}</th> 308 * <td>{@code 0x0.fffffep-126}</td> 309 * <tr><th scope="row">{@code Float.MIN_VALUE}</th> 310 * <td>{@code 0x0.000002p-126}</td> 311 * </tbody> 312 * </table> 313 * @param f the {@code float} to be converted. 314 * @return a hex string representation of the argument. 315 * @since 1.5 316 * @author Joseph D. Darcy 317 */ toHexString(float f)318 public static String toHexString(float f) { 319 if (Math.abs(f) < Float.MIN_NORMAL 320 && f != 0.0f ) {// float subnormal 321 // Adjust exponent to create subnormal double, then 322 // replace subnormal double exponent with subnormal float 323 // exponent 324 String s = Double.toHexString(Math.scalb((double)f, 325 /* -1022+126 */ 326 Double.MIN_EXPONENT- 327 Float.MIN_EXPONENT)); 328 return s.replaceFirst("p-1022$", "p-126"); 329 } 330 else // double string will be the same as float string 331 return Double.toHexString(f); 332 } 333 334 /** 335 * Returns a {@code Float} object holding the 336 * {@code float} value represented by the argument string 337 * {@code s}. 338 * 339 * <p>If {@code s} is {@code null}, then a 340 * {@code NullPointerException} is thrown. 341 * 342 * <p>Leading and trailing whitespace characters in {@code s} 343 * are ignored. Whitespace is removed as if by the {@link 344 * String#trim} method; that is, both ASCII space and control 345 * characters are removed. The rest of {@code s} should 346 * constitute a <i>FloatValue</i> as described by the lexical 347 * syntax rules: 348 * 349 * <blockquote> 350 * <dl> 351 * <dt><i>FloatValue:</i> 352 * <dd><i>Sign<sub>opt</sub></i> {@code NaN} 353 * <dd><i>Sign<sub>opt</sub></i> {@code Infinity} 354 * <dd><i>Sign<sub>opt</sub> FloatingPointLiteral</i> 355 * <dd><i>Sign<sub>opt</sub> HexFloatingPointLiteral</i> 356 * <dd><i>SignedInteger</i> 357 * </dl> 358 * 359 * <dl> 360 * <dt><i>HexFloatingPointLiteral</i>: 361 * <dd> <i>HexSignificand BinaryExponent FloatTypeSuffix<sub>opt</sub></i> 362 * </dl> 363 * 364 * <dl> 365 * <dt><i>HexSignificand:</i> 366 * <dd><i>HexNumeral</i> 367 * <dd><i>HexNumeral</i> {@code .} 368 * <dd>{@code 0x} <i>HexDigits<sub>opt</sub> 369 * </i>{@code .}<i> HexDigits</i> 370 * <dd>{@code 0X}<i> HexDigits<sub>opt</sub> 371 * </i>{@code .} <i>HexDigits</i> 372 * </dl> 373 * 374 * <dl> 375 * <dt><i>BinaryExponent:</i> 376 * <dd><i>BinaryExponentIndicator SignedInteger</i> 377 * </dl> 378 * 379 * <dl> 380 * <dt><i>BinaryExponentIndicator:</i> 381 * <dd>{@code p} 382 * <dd>{@code P} 383 * </dl> 384 * 385 * </blockquote> 386 * 387 * where <i>Sign</i>, <i>FloatingPointLiteral</i>, 388 * <i>HexNumeral</i>, <i>HexDigits</i>, <i>SignedInteger</i> and 389 * <i>FloatTypeSuffix</i> are as defined in the lexical structure 390 * sections of 391 * <cite>The Java Language Specification</cite>, 392 * except that underscores are not accepted between digits. 393 * If {@code s} does not have the form of 394 * a <i>FloatValue</i>, then a {@code NumberFormatException} 395 * is thrown. Otherwise, {@code s} is regarded as 396 * representing an exact decimal value in the usual 397 * "computerized scientific notation" or as an exact 398 * hexadecimal value; this exact numerical value is then 399 * conceptually converted to an "infinitely precise" 400 * binary value that is then rounded to type {@code float} 401 * by the usual round-to-nearest rule of IEEE 754 floating-point 402 * arithmetic, which includes preserving the sign of a zero 403 * value. 404 * 405 * Note that the round-to-nearest rule also implies overflow and 406 * underflow behaviour; if the exact value of {@code s} is large 407 * enough in magnitude (greater than or equal to ({@link 408 * #MAX_VALUE} + {@link Math#ulp(float) ulp(MAX_VALUE)}/2), 409 * rounding to {@code float} will result in an infinity and if the 410 * exact value of {@code s} is small enough in magnitude (less 411 * than or equal to {@link #MIN_VALUE}/2), rounding to float will 412 * result in a zero. 413 * 414 * Finally, after rounding a {@code Float} object representing 415 * this {@code float} value is returned. 416 * 417 * <p>To interpret localized string representations of a 418 * floating-point value, use subclasses of {@link 419 * java.text.NumberFormat}. 420 * 421 * <p>Note that trailing format specifiers, specifiers that 422 * determine the type of a floating-point literal 423 * ({@code 1.0f} is a {@code float} value; 424 * {@code 1.0d} is a {@code double} value), do 425 * <em>not</em> influence the results of this method. In other 426 * words, the numerical value of the input string is converted 427 * directly to the target floating-point type. In general, the 428 * two-step sequence of conversions, string to {@code double} 429 * followed by {@code double} to {@code float}, is 430 * <em>not</em> equivalent to converting a string directly to 431 * {@code float}. For example, if first converted to an 432 * intermediate {@code double} and then to 433 * {@code float}, the string<br> 434 * {@code "1.00000017881393421514957253748434595763683319091796875001d"}<br> 435 * results in the {@code float} value 436 * {@code 1.0000002f}; if the string is converted directly to 437 * {@code float}, <code>1.000000<b>1</b>f</code> results. 438 * 439 * <p>To avoid calling this method on an invalid string and having 440 * a {@code NumberFormatException} be thrown, the documentation 441 * for {@link Double#valueOf Double.valueOf} lists a regular 442 * expression which can be used to screen the input. 443 * 444 * @param s the string to be parsed. 445 * @return a {@code Float} object holding the value 446 * represented by the {@code String} argument. 447 * @throws NumberFormatException if the string does not contain a 448 * parsable number. 449 */ valueOf(String s)450 public static Float valueOf(String s) throws NumberFormatException { 451 return new Float(parseFloat(s)); 452 } 453 454 /** 455 * Returns a {@code Float} instance representing the specified 456 * {@code float} value. 457 * If a new {@code Float} instance is not required, this method 458 * should generally be used in preference to the constructor 459 * {@link #Float(float)}, as this method is likely to yield 460 * significantly better space and time performance by caching 461 * frequently requested values. 462 * 463 * @param f a float value. 464 * @return a {@code Float} instance representing {@code f}. 465 * @since 1.5 466 */ 467 @IntrinsicCandidate valueOf(float f)468 public static Float valueOf(float f) { 469 return new Float(f); 470 } 471 472 /** 473 * Returns a new {@code float} initialized to the value 474 * represented by the specified {@code String}, as performed 475 * by the {@code valueOf} method of class {@code Float}. 476 * 477 * @param s the string to be parsed. 478 * @return the {@code float} value represented by the string 479 * argument. 480 * @throws NullPointerException if the string is null 481 * @throws NumberFormatException if the string does not contain a 482 * parsable {@code float}. 483 * @see java.lang.Float#valueOf(String) 484 * @since 1.2 485 */ parseFloat(String s)486 public static float parseFloat(String s) throws NumberFormatException { 487 return FloatingDecimal.parseFloat(s); 488 } 489 490 /** 491 * Returns {@code true} if the specified number is a 492 * Not-a-Number (NaN) value, {@code false} otherwise. 493 * 494 * @param v the value to be tested. 495 * @return {@code true} if the argument is NaN; 496 * {@code false} otherwise. 497 */ isNaN(float v)498 public static boolean isNaN(float v) { 499 return (v != v); 500 } 501 502 /** 503 * Returns {@code true} if the specified number is infinitely 504 * large in magnitude, {@code false} otherwise. 505 * 506 * @param v the value to be tested. 507 * @return {@code true} if the argument is positive infinity or 508 * negative infinity; {@code false} otherwise. 509 */ isInfinite(float v)510 public static boolean isInfinite(float v) { 511 return (v == POSITIVE_INFINITY) || (v == NEGATIVE_INFINITY); 512 } 513 514 515 /** 516 * Returns {@code true} if the argument is a finite floating-point 517 * value; returns {@code false} otherwise (for NaN and infinity 518 * arguments). 519 * 520 * @param f the {@code float} value to be tested 521 * @return {@code true} if the argument is a finite 522 * floating-point value, {@code false} otherwise. 523 * @since 1.8 524 */ isFinite(float f)525 public static boolean isFinite(float f) { 526 return Math.abs(f) <= Float.MAX_VALUE; 527 } 528 529 /** 530 * The value of the Float. 531 * 532 * @serial 533 */ 534 private final float value; 535 536 /** 537 * Constructs a newly allocated {@code Float} object that 538 * represents the primitive {@code float} argument. 539 * 540 * @param value the value to be represented by the {@code Float}. 541 * 542 * @deprecated 543 * It is rarely appropriate to use this constructor. The static factory 544 * {@link #valueOf(float)} is generally a better choice, as it is 545 * likely to yield significantly better space and time performance. 546 */ 547 // Android-changed: not yet forRemoval on Android. 548 @Deprecated(since="9"/*, forRemoval = true*/) Float(float value)549 public Float(float value) { 550 this.value = value; 551 } 552 553 /** 554 * Constructs a newly allocated {@code Float} object that 555 * represents the argument converted to type {@code float}. 556 * 557 * @param value the value to be represented by the {@code Float}. 558 * 559 * @deprecated 560 * It is rarely appropriate to use this constructor. Instead, use the 561 * static factory method {@link #valueOf(float)} method as follows: 562 * {@code Float.valueOf((float)value)}. 563 */ 564 // Android-changed: not yet forRemoval on Android. 565 @Deprecated(since="9"/*, forRemoval = true*/) Float(double value)566 public Float(double value) { 567 this.value = (float)value; 568 } 569 570 /** 571 * Constructs a newly allocated {@code Float} object that 572 * represents the floating-point value of type {@code float} 573 * represented by the string. The string is converted to a 574 * {@code float} value as if by the {@code valueOf} method. 575 * 576 * @param s a string to be converted to a {@code Float}. 577 * @throws NumberFormatException if the string does not contain a 578 * parsable number. 579 * 580 * @deprecated 581 * It is rarely appropriate to use this constructor. 582 * Use {@link #parseFloat(String)} to convert a string to a 583 * {@code float} primitive, or use {@link #valueOf(String)} 584 * to convert a string to a {@code Float} object. 585 */ 586 // Android-changed: not yet forRemoval on Android. 587 @Deprecated(since="9"/*, forRemoval = true*/) Float(String s)588 public Float(String s) throws NumberFormatException { 589 value = parseFloat(s); 590 } 591 592 /** 593 * Returns {@code true} if this {@code Float} value is a 594 * Not-a-Number (NaN), {@code false} otherwise. 595 * 596 * @return {@code true} if the value represented by this object is 597 * NaN; {@code false} otherwise. 598 */ isNaN()599 public boolean isNaN() { 600 return isNaN(value); 601 } 602 603 /** 604 * Returns {@code true} if this {@code Float} value is 605 * infinitely large in magnitude, {@code false} otherwise. 606 * 607 * @return {@code true} if the value represented by this object is 608 * positive infinity or negative infinity; 609 * {@code false} otherwise. 610 */ isInfinite()611 public boolean isInfinite() { 612 return isInfinite(value); 613 } 614 615 /** 616 * Returns a string representation of this {@code Float} object. 617 * The primitive {@code float} value represented by this object 618 * is converted to a {@code String} exactly as if by the method 619 * {@code toString} of one argument. 620 * 621 * @return a {@code String} representation of this object. 622 * @see java.lang.Float#toString(float) 623 */ toString()624 public String toString() { 625 return Float.toString(value); 626 } 627 628 /** 629 * Returns the value of this {@code Float} as a {@code byte} after 630 * a narrowing primitive conversion. 631 * 632 * @return the {@code float} value represented by this object 633 * converted to type {@code byte} 634 * @jls 5.1.3 Narrowing Primitive Conversion 635 */ byteValue()636 public byte byteValue() { 637 return (byte)value; 638 } 639 640 /** 641 * Returns the value of this {@code Float} as a {@code short} 642 * after a narrowing primitive conversion. 643 * 644 * @return the {@code float} value represented by this object 645 * converted to type {@code short} 646 * @jls 5.1.3 Narrowing Primitive Conversion 647 * @since 1.1 648 */ shortValue()649 public short shortValue() { 650 return (short)value; 651 } 652 653 /** 654 * Returns the value of this {@code Float} as an {@code int} after 655 * a narrowing primitive conversion. 656 * 657 * @return the {@code float} value represented by this object 658 * converted to type {@code int} 659 * @jls 5.1.3 Narrowing Primitive Conversion 660 */ intValue()661 public int intValue() { 662 return (int)value; 663 } 664 665 /** 666 * Returns value of this {@code Float} as a {@code long} after a 667 * narrowing primitive conversion. 668 * 669 * @return the {@code float} value represented by this object 670 * converted to type {@code long} 671 * @jls 5.1.3 Narrowing Primitive Conversion 672 */ longValue()673 public long longValue() { 674 return (long)value; 675 } 676 677 /** 678 * Returns the {@code float} value of this {@code Float} object. 679 * 680 * @return the {@code float} value represented by this object 681 */ 682 @IntrinsicCandidate floatValue()683 public float floatValue() { 684 return value; 685 } 686 687 /** 688 * Returns the value of this {@code Float} as a {@code double} 689 * after a widening primitive conversion. 690 * 691 * @return the {@code float} value represented by this 692 * object converted to type {@code double} 693 * @jls 5.1.2 Widening Primitive Conversion 694 */ doubleValue()695 public double doubleValue() { 696 return (double)value; 697 } 698 699 /** 700 * Returns a hash code for this {@code Float} object. The 701 * result is the integer bit representation, exactly as produced 702 * by the method {@link #floatToIntBits(float)}, of the primitive 703 * {@code float} value represented by this {@code Float} 704 * object. 705 * 706 * @return a hash code value for this object. 707 */ 708 @Override hashCode()709 public int hashCode() { 710 return Float.hashCode(value); 711 } 712 713 /** 714 * Returns a hash code for a {@code float} value; compatible with 715 * {@code Float.hashCode()}. 716 * 717 * @param value the value to hash 718 * @return a hash code value for a {@code float} value. 719 * @since 1.8 720 */ hashCode(float value)721 public static int hashCode(float value) { 722 return floatToIntBits(value); 723 } 724 725 /** 726 * Compares this object against the specified object. The result 727 * is {@code true} if and only if the argument is not 728 * {@code null} and is a {@code Float} object that 729 * represents a {@code float} with the same value as the 730 * {@code float} represented by this object. For this 731 * purpose, two {@code float} values are considered to be the 732 * same if and only if the method {@link #floatToIntBits(float)} 733 * returns the identical {@code int} value when applied to 734 * each. 735 * 736 * @apiNote 737 * This method is defined in terms of {@link 738 * #floatToIntBits(float)} rather than the {@code ==} operator on 739 * {@code float} values since the {@code ==} operator does 740 * <em>not</em> define an equivalence relation and to satisfy the 741 * {@linkplain Object#equals equals contract} an equivalence 742 * relation must be implemented; see <a 743 * href="Double.html#equivalenceRelation">this discussion</a> for 744 * details of floating-point equality and equivalence. 745 * 746 * @param obj the object to be compared 747 * @return {@code true} if the objects are the same; 748 * {@code false} otherwise. 749 * @see java.lang.Float#floatToIntBits(float) 750 * @jls 15.21.1 Numerical Equality Operators == and != 751 */ equals(Object obj)752 public boolean equals(Object obj) { 753 return (obj instanceof Float) 754 && (floatToIntBits(((Float)obj).value) == floatToIntBits(value)); 755 } 756 757 /** 758 * Returns a representation of the specified floating-point value 759 * according to the IEEE 754 floating-point "single format" bit 760 * layout. 761 * 762 * <p>Bit 31 (the bit that is selected by the mask 763 * {@code 0x80000000}) represents the sign of the floating-point 764 * number. 765 * Bits 30-23 (the bits that are selected by the mask 766 * {@code 0x7f800000}) represent the exponent. 767 * Bits 22-0 (the bits that are selected by the mask 768 * {@code 0x007fffff}) represent the significand (sometimes called 769 * the mantissa) of the floating-point number. 770 * 771 * <p>If the argument is positive infinity, the result is 772 * {@code 0x7f800000}. 773 * 774 * <p>If the argument is negative infinity, the result is 775 * {@code 0xff800000}. 776 * 777 * <p>If the argument is NaN, the result is {@code 0x7fc00000}. 778 * 779 * <p>In all cases, the result is an integer that, when given to the 780 * {@link #intBitsToFloat(int)} method, will produce a floating-point 781 * value the same as the argument to {@code floatToIntBits} 782 * (except all NaN values are collapsed to a single 783 * "canonical" NaN value). 784 * 785 * @param value a floating-point number. 786 * @return the bits that represent the floating-point number. 787 */ 788 @IntrinsicCandidate floatToIntBits(float value)789 public static int floatToIntBits(float value) { 790 if (!isNaN(value)) { 791 return floatToRawIntBits(value); 792 } 793 return 0x7fc00000; 794 } 795 796 /** 797 * Returns a representation of the specified floating-point value 798 * according to the IEEE 754 floating-point "single format" bit 799 * layout, preserving Not-a-Number (NaN) values. 800 * 801 * <p>Bit 31 (the bit that is selected by the mask 802 * {@code 0x80000000}) represents the sign of the floating-point 803 * number. 804 * Bits 30-23 (the bits that are selected by the mask 805 * {@code 0x7f800000}) represent the exponent. 806 * Bits 22-0 (the bits that are selected by the mask 807 * {@code 0x007fffff}) represent the significand (sometimes called 808 * the mantissa) of the floating-point number. 809 * 810 * <p>If the argument is positive infinity, the result is 811 * {@code 0x7f800000}. 812 * 813 * <p>If the argument is negative infinity, the result is 814 * {@code 0xff800000}. 815 * 816 * <p>If the argument is NaN, the result is the integer representing 817 * the actual NaN value. Unlike the {@code floatToIntBits} 818 * method, {@code floatToRawIntBits} does not collapse all the 819 * bit patterns encoding a NaN to a single "canonical" 820 * NaN value. 821 * 822 * <p>In all cases, the result is an integer that, when given to the 823 * {@link #intBitsToFloat(int)} method, will produce a 824 * floating-point value the same as the argument to 825 * {@code floatToRawIntBits}. 826 * 827 * @param value a floating-point number. 828 * @return the bits that represent the floating-point number. 829 * @since 1.3 830 */ 831 @IntrinsicCandidate floatToRawIntBits(float value)832 public static native int floatToRawIntBits(float value); 833 834 /** 835 * Returns the {@code float} value corresponding to a given 836 * bit representation. 837 * The argument is considered to be a representation of a 838 * floating-point value according to the IEEE 754 floating-point 839 * "single format" bit layout. 840 * 841 * <p>If the argument is {@code 0x7f800000}, the result is positive 842 * infinity. 843 * 844 * <p>If the argument is {@code 0xff800000}, the result is negative 845 * infinity. 846 * 847 * <p>If the argument is any value in the range 848 * {@code 0x7f800001} through {@code 0x7fffffff} or in 849 * the range {@code 0xff800001} through 850 * {@code 0xffffffff}, the result is a NaN. No IEEE 754 851 * floating-point operation provided by Java can distinguish 852 * between two NaN values of the same type with different bit 853 * patterns. Distinct values of NaN are only distinguishable by 854 * use of the {@code Float.floatToRawIntBits} method. 855 * 856 * <p>In all other cases, let <i>s</i>, <i>e</i>, and <i>m</i> be three 857 * values that can be computed from the argument: 858 * 859 * <blockquote><pre>{@code 860 * int s = ((bits >> 31) == 0) ? 1 : -1; 861 * int e = ((bits >> 23) & 0xff); 862 * int m = (e == 0) ? 863 * (bits & 0x7fffff) << 1 : 864 * (bits & 0x7fffff) | 0x800000; 865 * }</pre></blockquote> 866 * 867 * Then the floating-point result equals the value of the mathematical 868 * expression <i>s</i>·<i>m</i>·2<sup><i>e</i>-150</sup>. 869 * 870 * <p>Note that this method may not be able to return a 871 * {@code float} NaN with exactly same bit pattern as the 872 * {@code int} argument. IEEE 754 distinguishes between two 873 * kinds of NaNs, quiet NaNs and <i>signaling NaNs</i>. The 874 * differences between the two kinds of NaN are generally not 875 * visible in Java. Arithmetic operations on signaling NaNs turn 876 * them into quiet NaNs with a different, but often similar, bit 877 * pattern. However, on some processors merely copying a 878 * signaling NaN also performs that conversion. In particular, 879 * copying a signaling NaN to return it to the calling method may 880 * perform this conversion. So {@code intBitsToFloat} may 881 * not be able to return a {@code float} with a signaling NaN 882 * bit pattern. Consequently, for some {@code int} values, 883 * {@code floatToRawIntBits(intBitsToFloat(start))} may 884 * <i>not</i> equal {@code start}. Moreover, which 885 * particular bit patterns represent signaling NaNs is platform 886 * dependent; although all NaN bit patterns, quiet or signaling, 887 * must be in the NaN range identified above. 888 * 889 * @param bits an integer. 890 * @return the {@code float} floating-point value with the same bit 891 * pattern. 892 */ 893 @IntrinsicCandidate intBitsToFloat(int bits)894 public static native float intBitsToFloat(int bits); 895 896 /** 897 * Compares two {@code Float} objects numerically. 898 * 899 * This method imposes a total order on {@code Float} objects 900 * with two differences compared to the incomplete order defined by 901 * the Java language numerical comparison operators ({@code <, <=, 902 * ==, >=, >}) on {@code float} values. 903 * 904 * <ul><li> A NaN is <em>unordered</em> with respect to other 905 * values and unequal to itself under the comparison 906 * operators. This method chooses to define {@code 907 * Float.NaN} to be equal to itself and greater than all 908 * other {@code double} values (including {@code 909 * Float.POSITIVE_INFINITY}). 910 * 911 * <li> Positive zero and negative zero compare equal 912 * numerically, but are distinct and distinguishable values. 913 * This method chooses to define positive zero ({@code +0.0f}), 914 * to be greater than negative zero ({@code -0.0f}). 915 * </ul> 916 * 917 * This ensures that the <i>natural ordering</i> of {@code Float} 918 * objects imposed by this method is <i>consistent with 919 * equals</i>; see <a href="Double.html#equivalenceRelation">this 920 * discussion</a> for details of floating-point comparison and 921 * ordering. 922 * 923 * 924 * @param anotherFloat the {@code Float} to be compared. 925 * @return the value {@code 0} if {@code anotherFloat} is 926 * numerically equal to this {@code Float}; a value 927 * less than {@code 0} if this {@code Float} 928 * is numerically less than {@code anotherFloat}; 929 * and a value greater than {@code 0} if this 930 * {@code Float} is numerically greater than 931 * {@code anotherFloat}. 932 * 933 * @jls 15.20.1 Numerical Comparison Operators {@code <}, {@code <=}, {@code >}, and {@code >=} 934 * @since 1.2 935 */ compareTo(Float anotherFloat)936 public int compareTo(Float anotherFloat) { 937 return Float.compare(value, anotherFloat.value); 938 } 939 940 /** 941 * Compares the two specified {@code float} values. The sign 942 * of the integer value returned is the same as that of the 943 * integer that would be returned by the call: 944 * <pre> 945 * new Float(f1).compareTo(new Float(f2)) 946 * </pre> 947 * 948 * @param f1 the first {@code float} to compare. 949 * @param f2 the second {@code float} to compare. 950 * @return the value {@code 0} if {@code f1} is 951 * numerically equal to {@code f2}; a value less than 952 * {@code 0} if {@code f1} is numerically less than 953 * {@code f2}; and a value greater than {@code 0} 954 * if {@code f1} is numerically greater than 955 * {@code f2}. 956 * @since 1.4 957 */ compare(float f1, float f2)958 public static int compare(float f1, float f2) { 959 if (f1 < f2) 960 return -1; // Neither val is NaN, thisVal is smaller 961 if (f1 > f2) 962 return 1; // Neither val is NaN, thisVal is larger 963 964 // Cannot use floatToRawIntBits because of possibility of NaNs. 965 int thisBits = Float.floatToIntBits(f1); 966 int anotherBits = Float.floatToIntBits(f2); 967 968 return (thisBits == anotherBits ? 0 : // Values are equal 969 (thisBits < anotherBits ? -1 : // (-0.0, 0.0) or (!NaN, NaN) 970 1)); // (0.0, -0.0) or (NaN, !NaN) 971 } 972 973 /** 974 * Adds two {@code float} values together as per the + operator. 975 * 976 * @param a the first operand 977 * @param b the second operand 978 * @return the sum of {@code a} and {@code b} 979 * @jls 4.2.4 Floating-Point Operations 980 * @see java.util.function.BinaryOperator 981 * @since 1.8 982 */ sum(float a, float b)983 public static float sum(float a, float b) { 984 return a + b; 985 } 986 987 /** 988 * Returns the greater of two {@code float} values 989 * as if by calling {@link Math#max(float, float) Math.max}. 990 * 991 * @param a the first operand 992 * @param b the second operand 993 * @return the greater of {@code a} and {@code b} 994 * @see java.util.function.BinaryOperator 995 * @since 1.8 996 */ max(float a, float b)997 public static float max(float a, float b) { 998 return Math.max(a, b); 999 } 1000 1001 /** 1002 * Returns the smaller of two {@code float} values 1003 * as if by calling {@link Math#min(float, float) Math.min}. 1004 * 1005 * @param a the first operand 1006 * @param b the second operand 1007 * @return the smaller of {@code a} and {@code b} 1008 * @see java.util.function.BinaryOperator 1009 * @since 1.8 1010 */ min(float a, float b)1011 public static float min(float a, float b) { 1012 return Math.min(a, b); 1013 } 1014 1015 /** 1016 * Returns an {@link Optional} containing the nominal descriptor for this 1017 * instance, which is the instance itself. 1018 * 1019 * @return an {@link Optional} describing the {@linkplain Float} instance 1020 * @since 12 1021 * @hide 1022 */ 1023 @Override describeConstable()1024 public Optional<Float> describeConstable() { 1025 return Optional.of(this); 1026 } 1027 1028 /** 1029 * Resolves this instance as a {@link ConstantDesc}, the result of which is 1030 * the instance itself. 1031 * 1032 * @param lookup ignored 1033 * @return the {@linkplain Float} instance 1034 * @since 12 1035 * @hide 1036 */ 1037 @Override resolveConstantDesc(MethodHandles.Lookup lookup)1038 public Float resolveConstantDesc(MethodHandles.Lookup lookup) { 1039 return this; 1040 } 1041 1042 /** use serialVersionUID from JDK 1.0.2 for interoperability */ 1043 @java.io.Serial 1044 private static final long serialVersionUID = -2671257302660747028L; 1045 } 1046