1 /*
2  * Copyright (c) 2003, 2017, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.
8  *
9  * This code is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12  * version 2 for more details (a copy is included in the LICENSE file that
13  * accompanied this code).
14  *
15  * You should have received a copy of the GNU General Public License version
16  * 2 along with this work; if not, write to the Free Software Foundation,
17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20  * or visit www.oracle.com if you need additional information or have any
21  * questions.
22  */
23 
24 /*
25  * @test
26  * @library /test/lib
27  * @build jdk.test.lib.RandomFactory
28  * @run main ParseHexFloatingPoint
29  * @bug 4826774 8078672
30  * @summary Numerical tests for hexadecimal inputs to parse{Double, Float} (use -Dseed=X to set PRNG seed)
31  * @author Joseph D. Darcy
32  * @key randomness
33  */
34 package test.java.lang.Double;
35 
36 import java.util.Random;
37 
38 import org.testng.annotations.Test;
39 import org.testng.Assert;
40 
41 public class ParseHexFloatingPointTest {
ParseHexFloatingPointTest()42     private ParseHexFloatingPointTest(){}
43 
44     public static final double infinityD = Double.POSITIVE_INFINITY;
45     public static final double NaND = Double.NaN;
46 
test(String testName, String input, double result, double expected)47     static void test(String testName, String input,
48                     double result, double expected) {
49         Assert.assertEquals(Double.compare(result, expected), 0,
50             "Failure for " + testName +
51                                ": For input " + input +
52                                " expected " + expected +
53                                " got " + result + ".");
54 
55     }
56 
testCase(String input, double expected)57     static void testCase(String input, double expected) {
58         // Try different combination of letter components
59         input = input.toLowerCase(java.util.Locale.US);
60 
61         String [] suffices = {"", "f", "F", "d", "D"};
62         String [] signs = {"", "-", "+"};
63 
64         for(int i = 0; i < 2; i++) {
65             String s1 = input;
66             if(i == 1)
67                 s1 = s1.replace('x', 'X');
68 
69             for(int j = 0; j < 2; j++) {
70                 String s2 = s1;
71                 if(j == 1)
72                     s2 = s2.replace('p', 'P');
73 
74                 for(int k = 0; k < 2; k++) {
75                     String s3 = s2;
76                     if(k == 1)
77                         s3 = upperCaseHex(s3);
78 
79 
80                     for(int m = 0; m < suffices.length; m++) {
81                         String s4 = s3 + suffices[m];
82 
83                         for(int n = 0; n < signs.length; n++) {
84                             String s5 = signs[n] + s4;
85 
86                             double result = Double.parseDouble(s5);
87                             test("Double.parseDouble",
88                                              s5, result, (signs[n].equals("-") ?
89                                                           -expected:
90                                                           expected));
91                         }
92                     }
93                 }
94             }
95         }
96     }
97 
upperCaseHex(String s)98     static String upperCaseHex(String s) {
99         return s.replace('a', 'A').replace('b', 'B').replace('c', 'C').
100                  replace('d', 'D').replace('e','E').replace('f', 'F');
101     }
102 
103     /*
104      * Test easy and tricky double rounding cases.
105      */
106     @Test
testDouble()107     public void testDouble() {
108 
109         /*
110          * A String, double pair
111          */
112         class PairSD {
113             public String s;
114             public double d;
115             PairSD(String s, double d) {
116                 this.s = s;
117                 this.d = d;
118             }
119         }
120 
121         // Hex strings that convert to three; test basic functionality
122         // of significand and exponent shift adjusts along with the
123         // no-op of adding leading zeros.  These cases don't exercise
124         // the rounding code.
125         String leadingZeros = "0x0000000000000000000";
126         String [] threeTests = {
127             "0x.003p12",
128             "0x.006p11",
129             "0x.00cp10",
130             "0x.018p9",
131 
132             "0x.3p4",
133             "0x.6p3",
134             "0x.cp2",
135             "0x1.8p1",
136 
137             "0x3p0",
138             "0x6.0p-1",
139             "0xc.0p-2",
140             "0x18.0p-3",
141 
142             "0x3000000p-24",
143             "0x3.0p0",
144             "0x3.000000p0",
145         };
146         for(int i=0; i < threeTests.length; i++) {
147             String input = threeTests[i];
148             testCase(input, 3.0);
149 
150             input.replaceFirst("^0x", leadingZeros);
151             testCase(input, 3.0);
152         }
153 
154         long bigExponents [] = {
155             2*Double.MAX_EXPONENT,
156             2*Double.MIN_EXPONENT,
157 
158             (long)Integer.MAX_VALUE-1,
159             (long)Integer.MAX_VALUE,
160             (long)Integer.MAX_VALUE+1,
161 
162             (long)Integer.MIN_VALUE-1,
163             (long)Integer.MIN_VALUE,
164             (long)Integer.MIN_VALUE+1,
165 
166             Long.MAX_VALUE-1,
167             Long.MAX_VALUE,
168 
169             Long.MIN_VALUE+1,
170             Long.MIN_VALUE,
171         };
172 
173         // Test zero significand with large exponents.
174         for(int i = 0; i < bigExponents.length; i++) {
175             testCase("0x0.0p"+Long.toString(bigExponents[i]) , 0.0);
176         }
177 
178         // Test nonzero significand with large exponents.
179         for(int i = 0; i < bigExponents.length; i++) {
180             long exponent = bigExponents[i];
181             testCase("0x10000.0p"+Long.toString(exponent) ,
182                                  (exponent <0?0.0:infinityD));
183         }
184 
185         // Test significands with different lengths and bit patterns.
186         {
187             long signif = 0;
188                 for(int i = 1; i <= 0xe; i++) {
189                     signif = (signif <<4) | (long)i;
190                     testCase("0x"+Long.toHexString(signif)+"p0", signif);
191                 }
192         }
193 
194         PairSD [] testCases = {
195             new PairSD("0x0.0p0",               0.0/16.0),
196             new PairSD("0x0.1p0",               1.0/16.0),
197             new PairSD("0x0.2p0",               2.0/16.0),
198             new PairSD("0x0.3p0",               3.0/16.0),
199             new PairSD("0x0.4p0",               4.0/16.0),
200             new PairSD("0x0.5p0",               5.0/16.0),
201             new PairSD("0x0.6p0",               6.0/16.0),
202             new PairSD("0x0.7p0",               7.0/16.0),
203             new PairSD("0x0.8p0",               8.0/16.0),
204             new PairSD("0x0.9p0",               9.0/16.0),
205             new PairSD("0x0.ap0",               10.0/16.0),
206             new PairSD("0x0.bp0",               11.0/16.0),
207             new PairSD("0x0.cp0",               12.0/16.0),
208             new PairSD("0x0.dp0",               13.0/16.0),
209             new PairSD("0x0.ep0",               14.0/16.0),
210             new PairSD("0x0.fp0",               15.0/16.0),
211 
212             // Half-way case between zero and MIN_VALUE rounds down to
213             // zero
214             new PairSD("0x1.0p-1075",           0.0),
215 
216             // Slighly more than half-way case between zero and
217             // MIN_VALUES rounds up to zero.
218             new PairSD("0x1.1p-1075",                   Double.MIN_VALUE),
219             new PairSD("0x1.000000000001p-1075",        Double.MIN_VALUE),
220             new PairSD("0x1.000000000000001p-1075",     Double.MIN_VALUE),
221 
222             // More subnormal rounding tests
223             new PairSD("0x0.fffffffffffff7fffffp-1022", Math.nextDown(Double.MIN_NORMAL)),
224             new PairSD("0x0.fffffffffffff8p-1022",      Double.MIN_NORMAL),
225             new PairSD("0x0.fffffffffffff800000001p-1022",Double.MIN_NORMAL),
226             new PairSD("0x0.fffffffffffff80000000000000001p-1022",Double.MIN_NORMAL),
227             new PairSD("0x1.0p-1022",                   Double.MIN_NORMAL),
228 
229 
230             // Large value and overflow rounding tests
231             new PairSD("0x1.fffffffffffffp1023",        Double.MAX_VALUE),
232             new PairSD("0x1.fffffffffffff0000000p1023", Double.MAX_VALUE),
233             new PairSD("0x1.fffffffffffff4p1023",       Double.MAX_VALUE),
234             new PairSD("0x1.fffffffffffff7fffffp1023",  Double.MAX_VALUE),
235             new PairSD("0x1.fffffffffffff8p1023",       infinityD),
236             new PairSD("0x1.fffffffffffff8000001p1023", infinityD),
237 
238             new PairSD("0x1.ffffffffffffep1023",        Math.nextDown(Double.MAX_VALUE)),
239             new PairSD("0x1.ffffffffffffe0000p1023",    Math.nextDown(Double.MAX_VALUE)),
240             new PairSD("0x1.ffffffffffffe8p1023",       Math.nextDown(Double.MAX_VALUE)),
241             new PairSD("0x1.ffffffffffffe7p1023",       Math.nextDown(Double.MAX_VALUE)),
242             new PairSD("0x1.ffffffffffffeffffffp1023",  Double.MAX_VALUE),
243             new PairSD("0x1.ffffffffffffe8000001p1023", Double.MAX_VALUE),
244         };
245 
246         for (int i = 0; i < testCases.length; i++) {
247             testCase(testCases[i].s,testCases[i].d);
248         }
249     }
250 
251     @Test
testRandomDoubles()252     public void testRandomDoubles() {
253         java.util.Random rand = new Random();
254         // Consistency check; double => hexadecimal => double
255         // preserves the original value.
256         for(int i = 0; i < 1000; i++) {
257             double d = rand.nextDouble();
258             testCase(Double.toHexString(d), d);
259         }
260     }
261 
262     /*
263      * Verify rounding works the same regardless of how the
264      * significand is aligned on input.  A useful extension could be
265      * to have this sort of test for strings near the overflow
266      * threshold.
267      */
268     @Test
significandAlignmentTests()269     public static void significandAlignmentTests() {
270         // baseSignif * 2^baseExp = nextDown(2.0)
271         long [] baseSignifs = {
272             0x1ffffffffffffe00L,
273             0x1fffffffffffff00L
274         };
275 
276         double [] answers = {
277             Math.nextDown(Math.nextDown(2.0)),
278             Math.nextDown(2.0),
279             2.0
280         };
281 
282         int baseExp = -60;
283         int count = 0;
284         for(int i = 0; i < 2; i++) {
285             for(long j = 0; j <= 0xfL; j++) {
286                 for(long k = 0; k <= 8; k+= 4) { // k = {0, 4, 8}
287                     long base = baseSignifs[i];
288                     long testValue = base | (j<<4) | k;
289 
290                     int offset = 0;
291                     // Calculate when significand should be incremented
292                     // see table 4.7 in Koren book
293 
294                     if ((base & 0x100L) == 0L ) { // lsb is 0
295                         if ( (j >= 8L) &&         // round is 1
296                              ((j & 0x7L) != 0 || k != 0 ) ) // sticky is 1
297                             offset = 1;
298                     }
299                     else {                        // lsb is 1
300                         if (j >= 8L)              // round is 1
301                             offset = 1;
302                     }
303 
304                     double expected = answers[i+offset];
305 
306                     for(int m = -2; m <= 3; m++) {
307                         count ++;
308 
309                         // Form equal value string and evaluate it
310                         String s = "0x" +
311                             Long.toHexString((m >=0) ?(testValue<<m):(testValue>>(-m))) +
312                             "p" + (baseExp - m);
313 
314                         testCase(s, expected);
315                     }
316                 }
317             }
318         }
319     }
320 
321 
322     /*
323      * Test tricky float rounding cases.  The code which
324      * reads in a hex string converts the string to a double value.
325      * If a float value is needed, the double value is cast to float.
326      * However, the cast be itself not always guaranteed to return the
327      * right result since:
328      *
329      * 1. hex string => double can discard a sticky bit which would
330      * influence a direct hex string => float conversion.
331      *
332      * 2. hex string => double => float can have a rounding to double
333      * precision which results in a larger float value while a direct
334      * hex string => float conversion would not round up.
335      *
336      * This method includes tests of the latter two possibilities.
337      */
338     @Test
testFloat()339     public void testFloat() {
340         /*
341          * A String, float pair
342          */
343         class PairSD {
344             public String s;
345             public float f;
346             PairSD(String s, float f) {
347                 this.s = s;
348                 this.f = f;
349             }
350         }
351 
352         String [][] roundingTestCases = {
353             // Target float value       hard rounding version
354 
355             {"0x1.000000p0",    "0x1.0000000000001p0"},
356 
357             // Try some values that should round up to nextUp(1.0f)
358             {"0x1.000002p0",    "0x1.0000010000001p0"},
359             {"0x1.000002p0",    "0x1.00000100000008p0"},
360             {"0x1.000002p0",    "0x1.0000010000000fp0"},
361             {"0x1.000002p0",    "0x1.00000100000001p0"},
362             {"0x1.000002p0",    "0x1.00000100000000000000000000000000000000001p0"},
363             {"0x1.000002p0",    "0x1.0000010000000fp0"},
364 
365             // Potential double rounding cases
366             {"0x1.000002p0",    "0x1.000002fffffffp0"},
367             {"0x1.000002p0",    "0x1.000002fffffff8p0"},
368             {"0x1.000002p0",    "0x1.000002ffffffffp0"},
369 
370             {"0x1.000002p0",    "0x1.000002ffff0ffp0"},
371             {"0x1.000002p0",    "0x1.000002ffff0ff8p0"},
372             {"0x1.000002p0",    "0x1.000002ffff0fffp0"},
373 
374 
375             {"0x1.000000p0",    "0x1.000000fffffffp0"},
376             {"0x1.000000p0",    "0x1.000000fffffff8p0"},
377             {"0x1.000000p0",    "0x1.000000ffffffffp0"},
378 
379             {"0x1.000000p0",    "0x1.000000ffffffep0"},
380             {"0x1.000000p0",    "0x1.000000ffffffe8p0"},
381             {"0x1.000000p0",    "0x1.000000ffffffefp0"},
382 
383             // Float subnormal cases
384             {"0x0.000002p-126", "0x0.0000010000001p-126"},
385             {"0x0.000002p-126", "0x0.00000100000000000001p-126"},
386 
387             {"0x0.000006p-126", "0x0.0000050000001p-126"},
388             {"0x0.000006p-126", "0x0.00000500000000000001p-126"},
389 
390             {"0x0.0p-149",      "0x0.7ffffffffffffffp-149"},
391             {"0x1.0p-148",      "0x1.3ffffffffffffffp-148"},
392             {"0x1.cp-147",      "0x1.bffffffffffffffp-147"},
393 
394             {"0x1.fffffcp-127", "0x1.fffffdffffffffp-127"},
395         };
396 
397         String [] signs = {"", "-"};
398 
399         for(int i = 0; i < roundingTestCases.length; i++) {
400             for(int j = 0; j < signs.length; j++) {
401                 String expectedIn = signs[j]+roundingTestCases[i][0];
402                 String resultIn   = signs[j]+roundingTestCases[i][1];
403 
404                 float expected =  Float.parseFloat(expectedIn);
405                 float result   =  Float.parseFloat(resultIn);
406 
407                 Assert.assertEquals(Float.compare(expected, result), 0,
408                     "Expected = " + Float.toHexString(expected) +
409                     "Rounded  = " + Float.toHexString(result) +
410                      "Double   = " + Double.toHexString(Double.parseDouble(resultIn)) +
411                     "Input    = " + resultIn);
412             }
413         }
414     }
415 }
416