1 /*
2  * Copyright (c) 2003, 2017, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.
8  *
9  * This code is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12  * version 2 for more details (a copy is included in the LICENSE file that
13  * accompanied this code).
14  *
15  * You should have received a copy of the GNU General Public License version
16  * 2 along with this work; if not, write to the Free Software Foundation,
17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20  * or visit www.oracle.com if you need additional information or have any
21  * questions.
22  */
23 
24 /*
25  * @test
26  * @library /test/lib
27  * @build jdk.test.lib.RandomFactory
28  * @run main CubeRootTests
29  * @bug 4347132 4939441 8078672
30  * @summary Tests for {Math, StrictMath}.cbrt (use -Dseed=X to set PRNG seed)
31  * @author Joseph D. Darcy
32  * @key randomness
33  */
34 package test.java.lang.Math;
35 
36 import java.util.Random;
37 
38 import org.testng.annotations.Test;
39 import org.testng.Assert;
40 
41 public class CubeRootTests {
42 
CubeRootTests()43     private CubeRootTests() {
44     }
45 
46     static final double infinityD = Double.POSITIVE_INFINITY;
47     static final double NaNd = Double.NaN;
48 
49     // Initialize shared random number generator
50     static java.util.Random rand = new Random();
51 
testCubeRootCase(double input, double expected)52     static void testCubeRootCase(double input, double expected) {
53         double minus_input = -input;
54         double minus_expected = -expected;
55 
56         Tests.test("Math.cbrt(double)", input,
57                 Math.cbrt(input), expected);
58         Tests.test("Math.cbrt(double)", minus_input,
59                 Math.cbrt(minus_input), minus_expected);
60         Tests.test("StrictMath.cbrt(double)", input,
61                 StrictMath.cbrt(input), expected);
62         Tests.test("StrictMath.cbrt(double)", minus_input,
63                 StrictMath.cbrt(minus_input), minus_expected);
64     }
65 
66     @Test
testCubeRoot()67     public void testCubeRoot() {
68         double[][] testCases = {
69                 {NaNd, NaNd},
70                 {Double.longBitsToDouble(0x7FF0000000000001L), NaNd},
71                 {Double.longBitsToDouble(0xFFF0000000000001L), NaNd},
72                 {Double.longBitsToDouble(0x7FF8555555555555L), NaNd},
73                 {Double.longBitsToDouble(0xFFF8555555555555L), NaNd},
74                 {Double.longBitsToDouble(0x7FFFFFFFFFFFFFFFL), NaNd},
75                 {Double.longBitsToDouble(0xFFFFFFFFFFFFFFFFL), NaNd},
76                 {Double.longBitsToDouble(0x7FFDeadBeef00000L), NaNd},
77                 {Double.longBitsToDouble(0xFFFDeadBeef00000L), NaNd},
78                 {Double.longBitsToDouble(0x7FFCafeBabe00000L), NaNd},
79                 {Double.longBitsToDouble(0xFFFCafeBabe00000L), NaNd},
80                 {Double.POSITIVE_INFINITY, Double.POSITIVE_INFINITY},
81                 {Double.NEGATIVE_INFINITY, Double.NEGATIVE_INFINITY},
82                 {+0.0, +0.0},
83                 {-0.0, -0.0},
84                 {+1.0, +1.0},
85                 {-1.0, -1.0},
86                 {+8.0, +2.0},
87                 {-8.0, -2.0}
88         };
89 
90         for (double[] testCase : testCases) {
91             testCubeRootCase(testCase[0], testCase[1]);
92         }
93 
94         // Test integer perfect cubes less than 2^53.
95         // Android-changed: reduce test run time testing every 100th of original
96         // for (int i = 0; i <= 208063; i++) {
97         for (int i = 0; i <= 208063; i += 100) {
98             double d = i;
99             testCubeRootCase(d * d * d, (double) i);
100         }
101 
102         // Test cbrt(2^(3n)) = 2^n.
103         for (int i = 18; i <= Double.MAX_EXPONENT / 3; i++) {
104             testCubeRootCase(Math.scalb(1.0, 3 * i), Math.scalb(1.0, i));
105         }
106 
107         // Test cbrt(2^(-3n)) = 2^-n.
108         for (int i = -1; i >= DoubleConsts.MIN_SUB_EXPONENT / 3; i--) {
109             testCubeRootCase(Math.scalb(1.0, 3 * i), Math.scalb(1.0, i));
110         }
111 
112         // Test random perfect cubes.  Create double values with
113         // modest exponents but only have at most the 17 most
114         // significant bits in the significand set; 17*3 = 51, which
115         // is less than the number of bits in a double's significand.
116         long exponentBits1 =
117                 Double.doubleToLongBits(Math.scalb(1.0, 55)) &
118                         DoubleConsts.EXP_BIT_MASK;
119         long exponentBits2 =
120                 Double.doubleToLongBits(Math.scalb(1.0, -55)) &
121                         DoubleConsts.EXP_BIT_MASK;
122         for (int i = 0; i < 100; i++) {
123             // Take 16 bits since the 17th bit is implicit in the
124             // exponent
125             double input1 =
126                     Double.longBitsToDouble(exponentBits1 |
127                             // Significand bits
128                             ((long) (rand.nextInt() & 0xFFFF)) <<
129                                     (DoubleConsts.SIGNIFICAND_WIDTH - 1 - 16));
130             testCubeRootCase(input1 * input1 * input1, input1);
131 
132             double input2 =
133                     Double.longBitsToDouble(exponentBits2 |
134                             // Significand bits
135                             ((long) (rand.nextInt() & 0xFFFF)) <<
136                                     (DoubleConsts.SIGNIFICAND_WIDTH - 1 - 16));
137             testCubeRootCase(input2 * input2 * input2, input2);
138         }
139 
140         // Directly test quality of implementation properties of cbrt
141         // for values that aren't perfect cubes.  Verify returned
142         // result meets the 1 ulp test.  That is, we want to verify
143         // that for positive x > 1,
144         // y = cbrt(x),
145         //
146         // if (err1=x - y^3 ) < 0, abs((y_pp^3 -x )) < err1
147         // if (err1=x - y^3 ) > 0, abs((y_mm^3 -x )) < err1
148         //
149         // where y_mm and y_pp are the next smaller and next larger
150         // floating-point value to y.  In other words, if y^3 is too
151         // big, making y larger does not improve the result; likewise,
152         // if y^3 is too small, making y smaller does not improve the
153         // result.
154         //
155         // ...-----|--?--|--?--|-----... Where is the true result?
156         //         y_mm  y     y_pp
157         //
158         // The returned value y should be one of the floating-point
159         // values braketing the true result.  However, given y, a
160         // priori we don't know if the true result falls in [y_mm, y]
161         // or [y, y_pp].  The above test looks at the error in x-y^3
162         // to determine which region the true result is in; e.g. if
163         // y^3 is smaller than x, the true result should be in [y,
164         // y_pp].  Therefore, it would be an error for y_mm to be a
165         // closer approximation to x^(1/3).  In this case, it is
166         // permissible, although not ideal, for y_pp^3 to be a closer
167         // approximation to x^(1/3) than y^3.
168         //
169         // We will use pow(y,3) to compute y^3.  Although pow is not
170         // correctly rounded, StrictMath.pow should have at most 1 ulp
171         // error.  For y > 1, pow(y_mm,3) and pow(y_pp,3) will differ
172         // from pow(y,3) by more than one ulp so the comparison of
173         // errors should still be valid.
174 
175         for (int i = 0; i < 1000; i++) {
176             double d = 1.0 + rand.nextDouble();
177             double err, err_adjacent;
178 
179             double y1 = Math.cbrt(d);
180             double y2 = StrictMath.cbrt(d);
181 
182             err = d - StrictMath.pow(y1, 3);
183             if (err != 0.0) {
184                 if (Double.isNaN(err)) {
185                     Assert.fail("Encountered unexpected NaN value: d = " + d +
186                             "\tcbrt(d) = " + y1);
187                 } else {
188                     if (err < 0.0) {
189                         err_adjacent = StrictMath.pow(Math.nextUp(y1), 3) - d;
190                     } else { // (err > 0.0)
191                         err_adjacent = StrictMath.pow(Math.nextAfter(y1, 0.0), 3) - d;
192                     }
193 
194                     if (Math.abs(err) > Math.abs(err_adjacent)) {
195                         Assert.fail("For Math.cbrt(" + d + "), returned result " +
196                                 y1 + "is not as good as adjacent value.");
197                     }
198                 }
199             }
200 
201             err = d - StrictMath.pow(y2, 3);
202             if (err != 0.0) {
203                 if (Double.isNaN(err)) {
204                     Assert.fail("Encountered unexpected NaN value: d = " + d +
205                             "\tcbrt(d) = " + y2);
206                 } else {
207                     if (err < 0.0) {
208                         err_adjacent = StrictMath.pow(Math.nextUp(y2), 3) - d;
209                     } else { // (err > 0.0)
210                         err_adjacent = StrictMath.pow(Math.nextAfter(y2, 0.0), 3) - d;
211                     }
212 
213                     if (Math.abs(err) > Math.abs(err_adjacent)) {
214                         Assert.fail("For StrictMath.cbrt(" + d + "), returned result " +
215                                 y2 + "is not as good as adjacent value.");
216                     }
217                 }
218             }
219 
220 
221         }
222 
223         // Test monotonicity properties near perfect cubes; test two
224         // numbers before and two numbers after; i.e. for
225         //
226         // pcNeighbors[] =
227         // {nextDown(nextDown(pc)),
228         // nextDown(pc),
229         // pc,
230         // nextUp(pc),
231         // nextUp(nextUp(pc))}
232         //
233         // test that cbrt(pcNeighbors[i]) <= cbrt(pcNeighbors[i+1])
234         {
235 
236             double[] pcNeighbors = new double[5];
237             double[] pcNeighborsCbrt = new double[5];
238             double[] pcNeighborsStrictCbrt = new double[5];
239 
240             // Test near cbrt(2^(3n)) = 2^n.
241             for (int i = 18; i <= Double.MAX_EXPONENT / 3; i++) {
242                 double pc = Math.scalb(1.0, 3 * i);
243 
244                 pcNeighbors[2] = pc;
245                 pcNeighbors[1] = Math.nextDown(pc);
246                 pcNeighbors[0] = Math.nextDown(pcNeighbors[1]);
247                 pcNeighbors[3] = Math.nextUp(pc);
248                 pcNeighbors[4] = Math.nextUp(pcNeighbors[3]);
249 
250                 for (int j = 0; j < pcNeighbors.length; j++) {
251                     pcNeighborsCbrt[j] = Math.cbrt(pcNeighbors[j]);
252                     pcNeighborsStrictCbrt[j] = StrictMath.cbrt(pcNeighbors[j]);
253                 }
254 
255                 for (int j = 0; j < pcNeighborsCbrt.length - 1; j++) {
256                     if (pcNeighborsCbrt[j] > pcNeighborsCbrt[j + 1]) {
257                         Assert.fail("Monotonicity failure for Math.cbrt on " +
258                                 pcNeighbors[j] + " and " +
259                                 pcNeighbors[j + 1] + "\n\treturned " +
260                                 pcNeighborsCbrt[j] + " and " +
261                                 pcNeighborsCbrt[j + 1]);
262                     }
263 
264                     if (pcNeighborsStrictCbrt[j] > pcNeighborsStrictCbrt[j + 1]) {
265                         Assert.fail("Monotonicity failure for StrictMath.cbrt on " +
266                                 pcNeighbors[j] + " and " +
267                                 pcNeighbors[j + 1] + "\n\treturned " +
268                                 pcNeighborsStrictCbrt[j] + " and " +
269                                 pcNeighborsStrictCbrt[j + 1]);
270                     }
271 
272 
273                 }
274 
275             }
276 
277             // Test near cbrt(2^(-3n)) = 2^-n.
278             for (int i = -1; i >= DoubleConsts.MIN_SUB_EXPONENT / 3; i--) {
279                 double pc = Math.scalb(1.0, 3 * i);
280 
281                 pcNeighbors[2] = pc;
282                 pcNeighbors[1] = Math.nextDown(pc);
283                 pcNeighbors[0] = Math.nextDown(pcNeighbors[1]);
284                 pcNeighbors[3] = Math.nextUp(pc);
285                 pcNeighbors[4] = Math.nextUp(pcNeighbors[3]);
286 
287                 for (int j = 0; j < pcNeighbors.length; j++) {
288                     pcNeighborsCbrt[j] = Math.cbrt(pcNeighbors[j]);
289                     pcNeighborsStrictCbrt[j] = StrictMath.cbrt(pcNeighbors[j]);
290                 }
291 
292                 for (int j = 0; j < pcNeighborsCbrt.length - 1; j++) {
293                     if (pcNeighborsCbrt[j] > pcNeighborsCbrt[j + 1]) {
294                         Assert.fail("Monotonicity failure for Math.cbrt on " +
295                                 pcNeighbors[j] + " and " +
296                                 pcNeighbors[j + 1] + "\n\treturned " +
297                                 pcNeighborsCbrt[j] + " and " +
298                                 pcNeighborsCbrt[j + 1]);
299                     }
300 
301                     if (pcNeighborsStrictCbrt[j] > pcNeighborsStrictCbrt[j + 1]) {
302                         Assert.fail("Monotonicity failure for StrictMath.cbrt on " +
303                                 pcNeighbors[j] + " and " +
304                                 pcNeighbors[j + 1] + "\n\treturned " +
305                                 pcNeighborsStrictCbrt[j] + " and " +
306                                 pcNeighborsStrictCbrt[j + 1]);
307                     }
308 
309 
310                 }
311             }
312         }
313     }
314 
315 }
316