1 /*
2  * Copyright (c) 2003, 2017, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.
8  *
9  * This code is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12  * version 2 for more details (a copy is included in the LICENSE file that
13  * accompanied this code).
14  *
15  * You should have received a copy of the GNU General Public License version
16  * 2 along with this work; if not, write to the Free Software Foundation,
17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20  * or visit www.oracle.com if you need additional information or have any
21  * questions.
22  */
23 
24 /*
25  * @test
26  * @library /test/lib
27  * @build jdk.test.lib.RandomFactory
28  * @run main HypotTests
29  * @bug 4851638 4939441 8078672
30  * @summary Tests for {Math, StrictMath}.hypot (use -Dseed=X to set PRNG seed)
31  * @author Joseph D. Darcy
32  * @key randomness
33  */
34 package test.java.lang.Math;
35 
36 import java.util.Random;
37 import org.testng.annotations.Test;
38 import org.testng.Assert;
39 
40 public class HypotTests {
41 
HypotTests()42     private HypotTests() {
43     }
44 
45     static final double infinityD = Double.POSITIVE_INFINITY;
46     static final double NaNd = Double.NaN;
47 
48     /**
49      * Given integers m and n, assuming m < n, the triple (n^2 - m^2, 2mn, and n^2 + m^2) is a
50      * Pythagorean triple with a^2 + b^2 = c^2.  This methods returns a long array holding the
51      * Pythagorean triple corresponding to the inputs.
52      */
pythagoreanTriple(int m, int n)53     static long[] pythagoreanTriple(int m, int n) {
54         long M = m;
55         long N = n;
56         long result[] = new long[3];
57 
58         result[0] = Math.abs(M * M - N * N);
59         result[1] = Math.abs(2 * M * N);
60         result[2] = Math.abs(M * M + N * N);
61 
62         return result;
63     }
64 
65     @Test
testHypot()66     public void testHypot() {
67         double[][] testCases = {
68                 // Special cases
69                 {infinityD, infinityD, infinityD},
70                 {infinityD, 0.0, infinityD},
71                 {infinityD, 1.0, infinityD},
72                 {infinityD, NaNd, infinityD},
73                 {NaNd, NaNd, NaNd},
74                 {0.0, NaNd, NaNd},
75                 {1.0, NaNd, NaNd},
76                 {Double.longBitsToDouble(0x7FF0000000000001L), 1.0, NaNd},
77                 {Double.longBitsToDouble(0xFFF0000000000001L), 1.0, NaNd},
78                 {Double.longBitsToDouble(0x7FF8555555555555L), 1.0, NaNd},
79                 {Double.longBitsToDouble(0xFFF8555555555555L), 1.0, NaNd},
80                 {Double.longBitsToDouble(0x7FFFFFFFFFFFFFFFL), 1.0, NaNd},
81                 {Double.longBitsToDouble(0xFFFFFFFFFFFFFFFFL), 1.0, NaNd},
82                 {Double.longBitsToDouble(0x7FFDeadBeef00000L), 1.0, NaNd},
83                 {Double.longBitsToDouble(0xFFFDeadBeef00000L), 1.0, NaNd},
84                 {Double.longBitsToDouble(0x7FFCafeBabe00000L), 1.0, NaNd},
85                 {Double.longBitsToDouble(0xFFFCafeBabe00000L), 1.0, NaNd},
86         };
87 
88         for (double[] testCase : testCases) {
89             testHypotCase(testCase[0], testCase[1], testCase[2]);
90         }
91 
92         // Verify hypot(x, 0.0) is close to x over the entire exponent
93         // range.
94         for (int i = DoubleConsts.MIN_SUB_EXPONENT; i <= Double.MAX_EXPONENT; i++) {
95             double input = Math.scalb(2, i);
96             testHypotCase(input, 0.0, input);
97         }
98 
99         // Test Pythagorean triples
100 
101         // Small ones
102         for (int m = 1; m < 10; m++) {
103             for (int n = m + 1; n < 11; n++) {
104                 long[] result = pythagoreanTriple(m, n);
105                 testHypotCase(result[0], result[1], result[2]);
106             }
107         }
108 
109         // Big ones
110         // Android-changed: reduce test run time testing every 5th of original
111         // for (int m = 100000; m < 100100; m++) {
112         for (int m = 100000; m < 100100; m += 5) {
113             // Android-changed: reduce test run time testing every 1000th of original
114             // for (int n = m + 100000; n < 200200; n++) {
115             for (int n = m + 100000; n < 200200; n += 1000) {
116                 long[] result = pythagoreanTriple(m, n);
117                 testHypotCase(result[0], result[1], result[2]);
118             }
119         }
120 
121         // Approaching overflow tests
122 
123         /*
124          * Create a random value r with an large-ish exponent.  The
125          * result of hypot(3*r, 4*r) should be approximately 5*r. (The
126          * computation of 4*r is exact since it just changes the
127          * exponent).  While the exponent of r is less than or equal
128          * to (MAX_EXPONENT - 3), the computation should not overflow.
129          */
130         java.util.Random rand = new Random();
131         // Android-changed: reduce test run time testing every 10th of original
132         // for (int i = 0; i < 1000; i++) {
133         for (int i = 0; i < 1000; i += 10) {
134             double d = rand.nextDouble();
135             // Scale d to have an exponent equal to MAX_EXPONENT -15
136             d = Math.scalb(d, Double.MAX_EXPONENT
137                     - 15 - Tests.ilogb(d));
138             for (int j = 0; j <= 13; j += 1) {
139                 testHypotCase(3 * d, 4 * d, 5 * d, 2.5);
140                 d *= 2.0; // increase exponent by 1
141             }
142         }
143 
144         // Test for monotonicity failures.  Fix one argument and test
145         // two numbers before and two numbers after each chosen value;
146         // i.e.
147         //
148         // pcNeighbors[] =
149         // {nextDown(nextDown(pc)),
150         // nextDown(pc),
151         // pc,
152         // nextUp(pc),
153         // nextUp(nextUp(pc))}
154         //
155         // and we test that hypot(pcNeighbors[i]) <= hypot(pcNeighbors[i+1])
156         {
157             double[] pcNeighbors = new double[5];
158             double[] pcNeighborsHypot = new double[5];
159             double[] pcNeighborsStrictHypot = new double[5];
160 
161             for (int i = -18; i <= 18; i++) {
162                 double pc = Math.scalb(1.0, i);
163 
164                 pcNeighbors[2] = pc;
165                 pcNeighbors[1] = Math.nextDown(pc);
166                 pcNeighbors[0] = Math.nextDown(pcNeighbors[1]);
167                 pcNeighbors[3] = Math.nextUp(pc);
168                 pcNeighbors[4] = Math.nextUp(pcNeighbors[3]);
169 
170                 for (int j = 0; j < pcNeighbors.length; j++) {
171                     pcNeighborsHypot[j] = Math.hypot(2.0, pcNeighbors[j]);
172                     pcNeighborsStrictHypot[j] = StrictMath.hypot(2.0, pcNeighbors[j]);
173                 }
174 
175                 for (int j = 0; j < pcNeighborsHypot.length - 1; j++) {
176                     if (pcNeighborsHypot[j] > pcNeighborsHypot[j + 1]) {
177                         Assert.fail("Monotonicity failure for Math.hypot on " +
178                                 pcNeighbors[j] + " and " +
179                                 pcNeighbors[j + 1] + "\n\treturned " +
180                                 pcNeighborsHypot[j] + " and " +
181                                 pcNeighborsHypot[j + 1]);
182                     }
183 
184                     if (pcNeighborsStrictHypot[j] > pcNeighborsStrictHypot[j + 1]) {
185                         Assert.fail("Monotonicity failure for StrictMath.hypot on " +
186                                 pcNeighbors[j] + " and " +
187                                 pcNeighbors[j + 1] + "\n\treturned " +
188                                 pcNeighborsStrictHypot[j] + " and " +
189                                 pcNeighborsStrictHypot[j + 1]);
190                     }
191                 }
192             }
193         }
194     }
195 
testHypotCase(double input1, double input2, double expected)196     static void testHypotCase(double input1, double input2, double expected) {
197         testHypotCase(input1, input2, expected, 1);
198     }
199 
testHypotCase(double input1, double input2, double expected, double ulps)200     static void testHypotCase(double input1, double input2, double expected, double ulps) {
201         if (expected < 0.0) {
202             Assert.fail("Result of hypot must be greater than or equal to zero");
203         }
204 
205         // Test Math and StrictMath methods with no inputs negated,
206         // each input negated singly, and both inputs negated.  Also
207         // test inputs in reversed order.
208 
209         for (int i = -1; i <= 1; i += 2) {
210             for (int j = -1; j <= 1; j += 2) {
211                 double x = i * input1;
212                 double y = j * input2;
213                 Tests.testUlpDiff("Math.hypot", x, y,
214                         Math.hypot(x, y), expected, ulps);
215                 Tests.testUlpDiff("Math.hypot", y, x,
216                         Math.hypot(y, x), expected, ulps);
217 
218                 Tests.testUlpDiff("StrictMath.hypot", x, y,
219                         StrictMath.hypot(x, y), expected, ulps);
220                 Tests.testUlpDiff("StrictMath.hypot", y, x,
221                         StrictMath.hypot(y, x), expected, ulps);
222             }
223         }
224     }
225 }
226