1 /* 2 * Copyright (c) 2003, 2017, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 */ 23 24 /* 25 * @test 26 * @library /test/lib 27 * @build jdk.test.lib.RandomFactory 28 * @run main Log1pTests 29 * @bug 4851638 4939441 8078672 30 * @summary Tests for {Math, StrictMath}.log1p (use -Dseed=X to set PRNG seed) 31 * @author Joseph D. Darcy 32 * @key randomness 33 */ 34 package test.java.lang.Math; 35 36 import android.platform.test.annotations.LargeTest; 37 38 import java.util.Random; 39 40 import org.testng.annotations.Test; 41 import org.testng.Assert; 42 43 public class Log1pTests { 44 Log1pTests()45 private Log1pTests() { 46 } 47 48 static final double infinityD = Double.POSITIVE_INFINITY; 49 static final double NaNd = Double.NaN; 50 51 /** 52 * Formulation taken from HP-15C Advanced Functions Handbook, part number HP 0015-90011, p 181. 53 * This is accurate to a few ulps. 54 */ hp15cLogp(double x)55 static double hp15cLogp(double x) { 56 double u = 1.0 + x; 57 return (u == 1.0 ? x : StrictMath.log(u) * x / (u - 1)); 58 } 59 60 /* 61 * The Taylor expansion of ln(1 + x) for -1 < x <= 1 is: 62 * 63 * x - x^2/2 + x^3/3 - ... -(-x^j)/j 64 * 65 * Therefore, for small values of x, log1p(x) ~= x. For large 66 * values of x, log1p(x) ~= log(x). 67 * 68 * Also x/(x+1) < ln(1+x) < x 69 */ 70 71 @LargeTest 72 @Test testLog1p()73 public void testLog1p() { 74 double[][] testCases = { 75 {Double.NaN, NaNd}, 76 {Double.longBitsToDouble(0x7FF0000000000001L), NaNd}, 77 {Double.longBitsToDouble(0xFFF0000000000001L), NaNd}, 78 {Double.longBitsToDouble(0x7FF8555555555555L), NaNd}, 79 {Double.longBitsToDouble(0xFFF8555555555555L), NaNd}, 80 {Double.longBitsToDouble(0x7FFFFFFFFFFFFFFFL), NaNd}, 81 {Double.longBitsToDouble(0xFFFFFFFFFFFFFFFFL), NaNd}, 82 {Double.longBitsToDouble(0x7FFDeadBeef00000L), NaNd}, 83 {Double.longBitsToDouble(0xFFFDeadBeef00000L), NaNd}, 84 {Double.longBitsToDouble(0x7FFCafeBabe00000L), NaNd}, 85 {Double.longBitsToDouble(0xFFFCafeBabe00000L), NaNd}, 86 {Double.NEGATIVE_INFINITY, NaNd}, 87 {-8.0, NaNd}, 88 {-1.0, -infinityD}, 89 {-0.0, -0.0}, 90 {+0.0, +0.0}, 91 {infinityD, infinityD}, 92 }; 93 94 // Test special cases 95 for (double[] testCase : testCases) { 96 testLog1pCaseWithUlpDiff(testCase[0], testCase[1], 0); 97 } 98 99 // For |x| < 2^-54 log1p(x) ~= x 100 for (int i = DoubleConsts.MIN_SUB_EXPONENT; i <= -54; i++) { 101 double d = Math.scalb(2, i); 102 testLog1pCase(d, d); 103 testLog1pCase(-d, -d); 104 } 105 106 // For x > 2^53 log1p(x) ~= log(x) 107 for (int i = 53; i <= Double.MAX_EXPONENT; i++) { 108 double d = Math.scalb(2, i); 109 testLog1pCaseWithUlpDiff(d, StrictMath.log(d), 2.001); 110 } 111 112 // Construct random values with exponents ranging from -53 to 113 // 52 and compare against HP-15C formula. 114 java.util.Random rand = new Random(); 115 for (int i = 0; i < 1000; i++) { 116 double d = rand.nextDouble(); 117 118 d = Math.scalb(d, -53 - Tests.ilogb(d)); 119 120 for (int j = -53; j <= 52; j++) { 121 testLog1pCaseWithUlpDiff(d, hp15cLogp(d), 5); 122 123 d *= 2.0; // increase exponent by 1 124 } 125 } 126 127 // Test for monotonicity failures near values y-1 where y ~= 128 // e^x. Test two numbers before and two numbers after each 129 // chosen value; i.e. 130 // 131 // pcNeighbors[] = 132 // {nextDown(nextDown(pc)), 133 // nextDown(pc), 134 // pc, 135 // nextUp(pc), 136 // nextUp(nextUp(pc))} 137 // 138 // and we test that log1p(pcNeighbors[i]) <= log1p(pcNeighbors[i+1]) 139 { 140 double[] pcNeighbors = new double[5]; 141 double[] pcNeighborsLog1p = new double[5]; 142 double[] pcNeighborsStrictLog1p = new double[5]; 143 144 for (int i = -36; i <= 36; i++) { 145 double pc = StrictMath.pow(Math.E, i) - 1; 146 147 pcNeighbors[2] = pc; 148 pcNeighbors[1] = Math.nextDown(pc); 149 pcNeighbors[0] = Math.nextDown(pcNeighbors[1]); 150 pcNeighbors[3] = Math.nextUp(pc); 151 pcNeighbors[4] = Math.nextUp(pcNeighbors[3]); 152 153 for (int j = 0; j < pcNeighbors.length; j++) { 154 pcNeighborsLog1p[j] = Math.log1p(pcNeighbors[j]); 155 pcNeighborsStrictLog1p[j] = StrictMath.log1p(pcNeighbors[j]); 156 } 157 158 for (int j = 0; j < pcNeighborsLog1p.length - 1; j++) { 159 if (pcNeighborsLog1p[j] > pcNeighborsLog1p[j + 1]) { 160 Assert.fail("Monotonicity failure for Math.log1p on " + 161 pcNeighbors[j] + " and " + 162 pcNeighbors[j + 1] + "\n\treturned " + 163 pcNeighborsLog1p[j] + " and " + 164 pcNeighborsLog1p[j + 1]); 165 } 166 167 if (pcNeighborsStrictLog1p[j] > pcNeighborsStrictLog1p[j + 1]) { 168 Assert.fail("Monotonicity failure for StrictMath.log1p on " + 169 pcNeighbors[j] + " and " + 170 pcNeighbors[j + 1] + "\n\treturned " + 171 pcNeighborsStrictLog1p[j] + " and " + 172 pcNeighborsStrictLog1p[j + 1]); 173 } 174 175 176 } 177 178 } 179 } 180 } 181 testLog1pCase(double input, double expected)182 public static void testLog1pCase(double input, double expected) { 183 testLog1pCaseWithUlpDiff(input, expected, 1); 184 } 185 testLog1pCaseWithUlpDiff(double input, double expected, double ulps)186 public static void testLog1pCaseWithUlpDiff(double input, double expected, double ulps) { 187 Tests.testUlpDiff("Math.lop1p(double)", 188 input, Math.log1p(input), 189 expected, ulps); 190 Tests.testUlpDiff("StrictMath.log1p(double)", 191 input, StrictMath.log1p(input), 192 expected, ulps); 193 } 194 } 195