1 /******************************************************************************
2 *
3 * Copyright 2014 Google, Inc.
4 *
5 * Licensed under the Apache License, Version 2.0 (the "License");
6 * you may not use this file except in compliance with the License.
7 * You may obtain a copy of the License at:
8 *
9 * http://www.apache.org/licenses/LICENSE-2.0
10 *
11 * Unless required by applicable law or agreed to in writing, software
12 * distributed under the License is distributed on an "AS IS" BASIS,
13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 * See the License for the specific language governing permissions and
15 * limitations under the License.
16 *
17 ******************************************************************************/
18
19 #define LOG_TAG "bt_osi_alarm"
20
21 #include "osi/include/alarm.h"
22
23 #include <base/cancelable_callback.h>
24 #include <bluetooth/log.h>
25 #include <fcntl.h>
26 #include <hardware/bluetooth.h>
27 #include <malloc.h>
28 #include <pthread.h>
29 #include <signal.h>
30 #include <string.h>
31 #include <time.h>
32
33 #include <mutex>
34
35 #include "os/log.h"
36 #include "osi/include/allocator.h"
37 #include "osi/include/fixed_queue.h"
38 #include "osi/include/list.h"
39 #include "osi/include/thread.h"
40 #include "osi/include/wakelock.h"
41 #include "osi/semaphore.h"
42 #include "stack/include/main_thread.h"
43
44 using base::Bind;
45 using base::CancelableClosure;
46 using namespace bluetooth;
47
48 // Callback and timer threads should run at RT priority in order to ensure they
49 // meet audio deadlines. Use this priority for all audio/timer related thread.
50 static const int THREAD_RT_PRIORITY = 1;
51
52 typedef struct {
53 size_t count;
54 uint64_t total_ms;
55 uint64_t max_ms;
56 } stat_t;
57
58 // Alarm-related information and statistics
59 typedef struct {
60 const char* name;
61 size_t scheduled_count;
62 size_t canceled_count;
63 size_t rescheduled_count;
64 size_t total_updates;
65 uint64_t last_update_ms;
66 stat_t overdue_scheduling;
67 stat_t premature_scheduling;
68 } alarm_stats_t;
69
70 /* Wrapper around CancellableClosure that let it be embedded in structs, without
71 * need to define copy operator. */
72 struct CancelableClosureInStruct {
73 base::CancelableClosure i;
74
operator =CancelableClosureInStruct75 CancelableClosureInStruct& operator=(const CancelableClosureInStruct& in) {
76 if (!in.i.callback().is_null()) i.Reset(in.i.callback());
77 return *this;
78 }
79 };
80
81 struct alarm_t {
82 // The mutex is held while the callback for this alarm is being executed.
83 // It allows us to release the coarse-grained monitor lock while a
84 // potentially long-running callback is executing. |alarm_cancel| uses this
85 // mutex to provide a guarantee to its caller that the callback will not be
86 // in progress when it returns.
87 std::shared_ptr<std::recursive_mutex> callback_mutex;
88 uint64_t creation_time_ms;
89 uint64_t period_ms;
90 uint64_t deadline_ms;
91 uint64_t prev_deadline_ms; // Previous deadline - used for accounting of
92 // periodic timers
93 bool is_periodic;
94 fixed_queue_t* queue; // The processing queue to add this alarm to
95 alarm_callback_t callback;
96 void* data;
97 alarm_stats_t stats;
98
99 bool for_msg_loop; // True, if the alarm should be processed on message loop
100 CancelableClosureInStruct closure; // posted to message loop for processing
101 };
102
103 // If the next wakeup time is less than this threshold, we should acquire
104 // a wakelock instead of setting a wake alarm so we're not bouncing in
105 // and out of suspend frequently. This value is externally visible to allow
106 // unit tests to run faster. It should not be modified by production code.
107 int64_t TIMER_INTERVAL_FOR_WAKELOCK_IN_MS = 3000;
108 static const clockid_t CLOCK_ID = CLOCK_BOOTTIME;
109
110 // This mutex ensures that the |alarm_set|, |alarm_cancel|, and alarm callback
111 // functions execute serially and not concurrently. As a result, this mutex
112 // also protects the |alarms| list.
113 static std::mutex alarms_mutex;
114 static list_t* alarms;
115 static timer_t timer;
116 static timer_t wakeup_timer;
117 static bool timer_set;
118
119 // All alarm callbacks are dispatched from |dispatcher_thread|
120 static thread_t* dispatcher_thread;
121 static bool dispatcher_thread_active;
122 static semaphore_t* alarm_expired;
123
124 // Default alarm callback thread and queue
125 static thread_t* default_callback_thread;
126 static fixed_queue_t* default_callback_queue;
127
128 static alarm_t* alarm_new_internal(const char* name, bool is_periodic);
129 static bool lazy_initialize(void);
130 static uint64_t now_ms(void);
131 static void alarm_set_internal(alarm_t* alarm, uint64_t period_ms,
132 alarm_callback_t cb, void* data,
133 fixed_queue_t* queue, bool for_msg_loop);
134 static void alarm_cancel_internal(alarm_t* alarm);
135 static void remove_pending_alarm(alarm_t* alarm);
136 static void schedule_next_instance(alarm_t* alarm);
137 static void reschedule_root_alarm(void);
138 static void alarm_queue_ready(fixed_queue_t* queue, void* context);
139 static void timer_callback(void* data);
140 static void callback_dispatch(void* context);
141 static bool timer_create_internal(const clockid_t clock_id, timer_t* timer);
142 static void update_scheduling_stats(alarm_stats_t* stats, uint64_t now_ms,
143 uint64_t deadline_ms);
144 // Registers |queue| for processing alarm callbacks on |thread|.
145 // |queue| may not be NULL. |thread| may not be NULL.
146 static void alarm_register_processing_queue(fixed_queue_t* queue,
147 thread_t* thread);
148
update_stat(stat_t * stat,uint64_t delta_ms)149 static void update_stat(stat_t* stat, uint64_t delta_ms) {
150 if (stat->max_ms < delta_ms) stat->max_ms = delta_ms;
151 stat->total_ms += delta_ms;
152 stat->count++;
153 }
154
alarm_new(const char * name)155 alarm_t* alarm_new(const char* name) { return alarm_new_internal(name, false); }
156
alarm_new_periodic(const char * name)157 alarm_t* alarm_new_periodic(const char* name) {
158 return alarm_new_internal(name, true);
159 }
160
alarm_new_internal(const char * name,bool is_periodic)161 static alarm_t* alarm_new_internal(const char* name, bool is_periodic) {
162 // Make sure we have a list we can insert alarms into.
163 if (!alarms && !lazy_initialize()) {
164 log::fatal("initialization failed"); // if initialization failed, we
165 // should not continue
166 return NULL;
167 }
168
169 alarm_t* ret = static_cast<alarm_t*>(osi_calloc(sizeof(alarm_t)));
170
171 std::shared_ptr<std::recursive_mutex> ptr(new std::recursive_mutex());
172 ret->callback_mutex = ptr;
173 ret->is_periodic = is_periodic;
174 ret->stats.name = osi_strdup(name);
175
176 ret->for_msg_loop = false;
177 // placement new
178 new (&ret->closure) CancelableClosureInStruct();
179
180 // NOTE: The stats were reset by osi_calloc() above
181
182 return ret;
183 }
184
alarm_free(alarm_t * alarm)185 void alarm_free(alarm_t* alarm) {
186 if (!alarm) return;
187
188 alarm_cancel(alarm);
189
190 osi_free((void*)alarm->stats.name);
191 alarm->closure.~CancelableClosureInStruct();
192 alarm->callback_mutex.reset();
193 osi_free(alarm);
194 }
195
alarm_get_remaining_ms(const alarm_t * alarm)196 uint64_t alarm_get_remaining_ms(const alarm_t* alarm) {
197 log::assert_that(alarm != NULL, "assert failed: alarm != NULL");
198 uint64_t remaining_ms = 0;
199 uint64_t just_now_ms = now_ms();
200
201 std::lock_guard<std::mutex> lock(alarms_mutex);
202 if (alarm->deadline_ms > just_now_ms)
203 remaining_ms = alarm->deadline_ms - just_now_ms;
204
205 return remaining_ms;
206 }
207
alarm_set(alarm_t * alarm,uint64_t interval_ms,alarm_callback_t cb,void * data)208 void alarm_set(alarm_t* alarm, uint64_t interval_ms, alarm_callback_t cb,
209 void* data) {
210 alarm_set_internal(alarm, interval_ms, cb, data, default_callback_queue,
211 false);
212 }
213
alarm_set_on_mloop(alarm_t * alarm,uint64_t interval_ms,alarm_callback_t cb,void * data)214 void alarm_set_on_mloop(alarm_t* alarm, uint64_t interval_ms,
215 alarm_callback_t cb, void* data) {
216 alarm_set_internal(alarm, interval_ms, cb, data, NULL, true);
217 }
218
219 // Runs in exclusion with alarm_cancel and timer_callback.
alarm_set_internal(alarm_t * alarm,uint64_t period_ms,alarm_callback_t cb,void * data,fixed_queue_t * queue,bool for_msg_loop)220 static void alarm_set_internal(alarm_t* alarm, uint64_t period_ms,
221 alarm_callback_t cb, void* data,
222 fixed_queue_t* queue, bool for_msg_loop) {
223 log::assert_that(alarms != NULL, "assert failed: alarms != NULL");
224 log::assert_that(alarm != NULL, "assert failed: alarm != NULL");
225 log::assert_that(cb != NULL, "assert failed: cb != NULL");
226
227 std::lock_guard<std::mutex> lock(alarms_mutex);
228
229 alarm->creation_time_ms = now_ms();
230 alarm->period_ms = period_ms;
231 alarm->queue = queue;
232 alarm->callback = cb;
233 alarm->data = data;
234 alarm->for_msg_loop = for_msg_loop;
235
236 schedule_next_instance(alarm);
237 alarm->stats.scheduled_count++;
238 }
239
alarm_cancel(alarm_t * alarm)240 void alarm_cancel(alarm_t* alarm) {
241 log::assert_that(alarms != NULL, "assert failed: alarms != NULL");
242 if (!alarm) return;
243
244 std::shared_ptr<std::recursive_mutex> local_mutex_ref;
245 {
246 std::lock_guard<std::mutex> lock(alarms_mutex);
247 local_mutex_ref = alarm->callback_mutex;
248 alarm_cancel_internal(alarm);
249 }
250
251 // If the callback for |alarm| is in progress, wait here until it completes.
252 std::lock_guard<std::recursive_mutex> lock(*local_mutex_ref);
253 }
254
255 // Internal implementation of canceling an alarm.
256 // The caller must hold the |alarms_mutex|
alarm_cancel_internal(alarm_t * alarm)257 static void alarm_cancel_internal(alarm_t* alarm) {
258 bool needs_reschedule =
259 (!list_is_empty(alarms) && list_front(alarms) == alarm);
260
261 remove_pending_alarm(alarm);
262
263 alarm->deadline_ms = 0;
264 alarm->prev_deadline_ms = 0;
265 alarm->callback = NULL;
266 alarm->data = NULL;
267 alarm->stats.canceled_count++;
268 alarm->queue = NULL;
269
270 if (needs_reschedule) reschedule_root_alarm();
271 }
272
alarm_is_scheduled(const alarm_t * alarm)273 bool alarm_is_scheduled(const alarm_t* alarm) {
274 if ((alarms == NULL) || (alarm == NULL)) return false;
275 return (alarm->callback != NULL);
276 }
277
alarm_cleanup(void)278 void alarm_cleanup(void) {
279 // If lazy_initialize never ran there is nothing else to do
280 if (!alarms) return;
281
282 dispatcher_thread_active = false;
283 semaphore_post(alarm_expired);
284 thread_free(dispatcher_thread);
285 dispatcher_thread = NULL;
286
287 std::lock_guard<std::mutex> lock(alarms_mutex);
288
289 fixed_queue_free(default_callback_queue, NULL);
290 default_callback_queue = NULL;
291 thread_free(default_callback_thread);
292 default_callback_thread = NULL;
293
294 timer_delete(wakeup_timer);
295 timer_delete(timer);
296 semaphore_free(alarm_expired);
297 alarm_expired = NULL;
298
299 list_free(alarms);
300 alarms = NULL;
301 }
302
lazy_initialize(void)303 static bool lazy_initialize(void) {
304 log::assert_that(alarms == NULL, "assert failed: alarms == NULL");
305
306 // timer_t doesn't have an invalid value so we must track whether
307 // the |timer| variable is valid ourselves.
308 bool timer_initialized = false;
309 bool wakeup_timer_initialized = false;
310
311 std::lock_guard<std::mutex> lock(alarms_mutex);
312
313 alarms = list_new(NULL);
314 if (!alarms) {
315 log::error("unable to allocate alarm list.");
316 goto error;
317 }
318
319 if (!timer_create_internal(CLOCK_ID, &timer)) goto error;
320 timer_initialized = true;
321
322 if (!timer_create_internal(CLOCK_BOOTTIME_ALARM, &wakeup_timer)) {
323 if (!timer_create_internal(CLOCK_BOOTTIME, &wakeup_timer)) {
324 goto error;
325 }
326 }
327 wakeup_timer_initialized = true;
328
329 alarm_expired = semaphore_new(0);
330 if (!alarm_expired) {
331 log::error("unable to create alarm expired semaphore");
332 goto error;
333 }
334
335 default_callback_thread =
336 thread_new_sized("alarm_default_callbacks", SIZE_MAX);
337 if (default_callback_thread == NULL) {
338 log::error("unable to create default alarm callbacks thread.");
339 goto error;
340 }
341 thread_set_rt_priority(default_callback_thread, THREAD_RT_PRIORITY);
342 default_callback_queue = fixed_queue_new(SIZE_MAX);
343 if (default_callback_queue == NULL) {
344 log::error("unable to create default alarm callbacks queue.");
345 goto error;
346 }
347 alarm_register_processing_queue(default_callback_queue,
348 default_callback_thread);
349
350 dispatcher_thread_active = true;
351 dispatcher_thread = thread_new("alarm_dispatcher");
352 if (!dispatcher_thread) {
353 log::error("unable to create alarm callback thread.");
354 goto error;
355 }
356 thread_set_rt_priority(dispatcher_thread, THREAD_RT_PRIORITY);
357 thread_post(dispatcher_thread, callback_dispatch, NULL);
358 return true;
359
360 error:
361 fixed_queue_free(default_callback_queue, NULL);
362 default_callback_queue = NULL;
363 thread_free(default_callback_thread);
364 default_callback_thread = NULL;
365
366 thread_free(dispatcher_thread);
367 dispatcher_thread = NULL;
368
369 dispatcher_thread_active = false;
370
371 semaphore_free(alarm_expired);
372 alarm_expired = NULL;
373
374 if (wakeup_timer_initialized) timer_delete(wakeup_timer);
375
376 if (timer_initialized) timer_delete(timer);
377
378 list_free(alarms);
379 alarms = NULL;
380
381 return false;
382 }
383
now_ms(void)384 static uint64_t now_ms(void) {
385 log::assert_that(alarms != NULL, "assert failed: alarms != NULL");
386
387 struct timespec ts;
388 if (clock_gettime(CLOCK_ID, &ts) == -1) {
389 log::error("unable to get current time: {}", strerror(errno));
390 return 0;
391 }
392
393 return (ts.tv_sec * 1000LL) + (ts.tv_nsec / 1000000LL);
394 }
395
396 // Remove alarm from internal alarm list and the processing queue
397 // The caller must hold the |alarms_mutex|
remove_pending_alarm(alarm_t * alarm)398 static void remove_pending_alarm(alarm_t* alarm) {
399 list_remove(alarms, alarm);
400
401 if (alarm->for_msg_loop) {
402 alarm->closure.i.Cancel();
403 } else {
404 while (fixed_queue_try_remove_from_queue(alarm->queue, alarm) != NULL) {
405 // Remove all repeated alarm instances from the queue.
406 // NOTE: We are defensive here - we shouldn't have repeated alarm
407 // instances
408 }
409 }
410 }
411
412 // Must be called with |alarms_mutex| held
schedule_next_instance(alarm_t * alarm)413 static void schedule_next_instance(alarm_t* alarm) {
414 // If the alarm is currently set and it's at the start of the list,
415 // we'll need to re-schedule since we've adjusted the earliest deadline.
416 bool needs_reschedule =
417 (!list_is_empty(alarms) && list_front(alarms) == alarm);
418 if (alarm->callback) remove_pending_alarm(alarm);
419
420 // Calculate the next deadline for this alarm
421 uint64_t just_now_ms = now_ms();
422 uint64_t ms_into_period = 0;
423 if ((alarm->is_periodic) && (alarm->period_ms != 0))
424 ms_into_period =
425 ((just_now_ms - alarm->creation_time_ms) % alarm->period_ms);
426 alarm->deadline_ms = just_now_ms + (alarm->period_ms - ms_into_period);
427
428 // Add it into the timer list sorted by deadline (earliest deadline first).
429 if (list_is_empty(alarms) ||
430 ((alarm_t*)list_front(alarms))->deadline_ms > alarm->deadline_ms) {
431 list_prepend(alarms, alarm);
432 } else {
433 for (list_node_t* node = list_begin(alarms); node != list_end(alarms);
434 node = list_next(node)) {
435 list_node_t* next = list_next(node);
436 if (next == list_end(alarms) ||
437 ((alarm_t*)list_node(next))->deadline_ms > alarm->deadline_ms) {
438 list_insert_after(alarms, node, alarm);
439 break;
440 }
441 }
442 }
443
444 // If the new alarm has the earliest deadline, we need to re-evaluate our
445 // schedule.
446 if (needs_reschedule ||
447 (!list_is_empty(alarms) && list_front(alarms) == alarm)) {
448 reschedule_root_alarm();
449 }
450 }
451
452 // NOTE: must be called with |alarms_mutex| held
reschedule_root_alarm(void)453 static void reschedule_root_alarm(void) {
454 log::assert_that(alarms != NULL, "assert failed: alarms != NULL");
455
456 const bool timer_was_set = timer_set;
457 alarm_t* next;
458 int64_t next_expiration;
459
460 // If used in a zeroed state, disarms the timer.
461 struct itimerspec timer_time;
462 memset(&timer_time, 0, sizeof(timer_time));
463
464 if (list_is_empty(alarms)) goto done;
465
466 next = static_cast<alarm_t*>(list_front(alarms));
467 next_expiration = next->deadline_ms - now_ms();
468 if (next_expiration < TIMER_INTERVAL_FOR_WAKELOCK_IN_MS) {
469 if (!timer_set) {
470 if (!wakelock_acquire()) {
471 log::error("unable to acquire wake lock");
472 }
473 }
474
475 timer_time.it_value.tv_sec = (next->deadline_ms / 1000);
476 timer_time.it_value.tv_nsec = (next->deadline_ms % 1000) * 1000000LL;
477
478 // It is entirely unsafe to call timer_settime(2) with a zeroed timerspec
479 // for timers with *_ALARM clock IDs. Although the man page states that the
480 // timer would be canceled, the current behavior (as of Linux kernel 3.17)
481 // is that the callback is issued immediately. The only way to cancel an
482 // *_ALARM timer is to delete the timer. But unfortunately, deleting and
483 // re-creating a timer is rather expensive; every timer_create(2) spawns a
484 // new thread. So we simply set the timer to fire at the largest possible
485 // time.
486 //
487 // If we've reached this code path, we're going to grab a wake lock and
488 // wait for the next timer to fire. In that case, there's no reason to
489 // have a pending wakeup timer so we simply cancel it.
490 struct itimerspec end_of_time;
491 memset(&end_of_time, 0, sizeof(end_of_time));
492 end_of_time.it_value.tv_sec = (time_t)(1LL << (sizeof(time_t) * 8 - 2));
493 timer_settime(wakeup_timer, TIMER_ABSTIME, &end_of_time, NULL);
494 } else {
495 // WARNING: do not attempt to use relative timers with *_ALARM clock IDs
496 // in kernels before 3.17 unless you have the following patch:
497 // https://lkml.org/lkml/2014/7/7/576
498 struct itimerspec wakeup_time;
499 memset(&wakeup_time, 0, sizeof(wakeup_time));
500
501 wakeup_time.it_value.tv_sec = (next->deadline_ms / 1000);
502 wakeup_time.it_value.tv_nsec = (next->deadline_ms % 1000) * 1000000LL;
503 if (timer_settime(wakeup_timer, TIMER_ABSTIME, &wakeup_time, NULL) == -1)
504 log::error("unable to set wakeup timer: {}", strerror(errno));
505 }
506
507 done:
508 timer_set =
509 timer_time.it_value.tv_sec != 0 || timer_time.it_value.tv_nsec != 0;
510 if (timer_was_set && !timer_set) {
511 wakelock_release();
512 }
513
514 if (timer_settime(timer, TIMER_ABSTIME, &timer_time, NULL) == -1)
515 log::error("unable to set timer: {}", strerror(errno));
516
517 // If next expiration was in the past (e.g. short timer that got context
518 // switched) then the timer might have diarmed itself. Detect this case and
519 // work around it by manually signalling the |alarm_expired| semaphore.
520 //
521 // It is possible that the timer was actually super short (a few
522 // milliseconds) and the timer expired normally before we called
523 // |timer_gettime|. Worst case, |alarm_expired| is signaled twice for that
524 // alarm. Nothing bad should happen in that case though since the callback
525 // dispatch function checks to make sure the timer at the head of the list
526 // actually expired.
527 if (timer_set) {
528 struct itimerspec time_to_expire;
529 timer_gettime(timer, &time_to_expire);
530 if (time_to_expire.it_value.tv_sec == 0 &&
531 time_to_expire.it_value.tv_nsec == 0) {
532 log::info(
533 "alarm expiration too close for posix timers, switching to guns");
534 semaphore_post(alarm_expired);
535 }
536 }
537 }
538
alarm_register_processing_queue(fixed_queue_t * queue,thread_t * thread)539 static void alarm_register_processing_queue(fixed_queue_t* queue,
540 thread_t* thread) {
541 log::assert_that(queue != NULL, "assert failed: queue != NULL");
542 log::assert_that(thread != NULL, "assert failed: thread != NULL");
543
544 fixed_queue_register_dequeue(queue, thread_get_reactor(thread),
545 alarm_queue_ready, NULL);
546 }
547
alarm_ready_generic(alarm_t * alarm,std::unique_lock<std::mutex> & lock)548 static void alarm_ready_generic(alarm_t* alarm,
549 std::unique_lock<std::mutex>& lock) {
550 if (alarm == NULL) {
551 return; // The alarm was probably canceled
552 }
553
554 //
555 // If the alarm is not periodic, we've fully serviced it now, and can reset
556 // some of its internal state. This is useful to distinguish between expired
557 // alarms and active ones.
558 //
559 if (!alarm->callback) {
560 log::fatal("timer callback is NULL! Name={}", alarm->stats.name);
561 }
562 alarm_callback_t callback = alarm->callback;
563 void* data = alarm->data;
564 uint64_t deadline_ms = alarm->deadline_ms;
565 if (alarm->is_periodic) {
566 // The periodic alarm has been rescheduled and alarm->deadline has been
567 // updated, hence we need to use the previous deadline.
568 deadline_ms = alarm->prev_deadline_ms;
569 } else {
570 alarm->deadline_ms = 0;
571 alarm->callback = NULL;
572 alarm->data = NULL;
573 alarm->queue = NULL;
574 }
575
576 // Increment the reference count of the mutex so it doesn't get freed
577 // before the callback gets finished executing.
578 std::shared_ptr<std::recursive_mutex> local_mutex_ref = alarm->callback_mutex;
579 std::lock_guard<std::recursive_mutex> cb_lock(*local_mutex_ref);
580 lock.unlock();
581
582 // Update the statistics
583 update_scheduling_stats(&alarm->stats, now_ms(), deadline_ms);
584
585 // NOTE: Do NOT access "alarm" after the callback, as a safety precaution
586 // in case the callback itself deleted the alarm.
587 callback(data);
588 }
589
alarm_ready_mloop(alarm_t * alarm)590 static void alarm_ready_mloop(alarm_t* alarm) {
591 std::unique_lock<std::mutex> lock(alarms_mutex);
592 alarm_ready_generic(alarm, lock);
593 }
594
alarm_queue_ready(fixed_queue_t * queue,void *)595 static void alarm_queue_ready(fixed_queue_t* queue, void* /* context */) {
596 log::assert_that(queue != NULL, "assert failed: queue != NULL");
597
598 std::unique_lock<std::mutex> lock(alarms_mutex);
599 alarm_t* alarm = (alarm_t*)fixed_queue_try_dequeue(queue);
600 alarm_ready_generic(alarm, lock);
601 }
602
603 // Callback function for wake alarms and our posix timer
timer_callback(void *)604 static void timer_callback(void* /* ptr */) { semaphore_post(alarm_expired); }
605
606 // Function running on |dispatcher_thread| that performs the following:
607 // (1) Receives a signal using |alarm_exired| that the alarm has expired
608 // (2) Dispatches the alarm callback for processing by the corresponding
609 // thread for that alarm.
callback_dispatch(void *)610 static void callback_dispatch(void* /* context */) {
611 while (true) {
612 semaphore_wait(alarm_expired);
613 if (!dispatcher_thread_active) break;
614
615 std::lock_guard<std::mutex> lock(alarms_mutex);
616 alarm_t* alarm;
617
618 // Take into account that the alarm may get cancelled before we get to it.
619 // We're done here if there are no alarms or the alarm at the front is in
620 // the future. Exit right away since there's nothing left to do.
621 if (list_is_empty(alarms) ||
622 (alarm = static_cast<alarm_t*>(list_front(alarms)))->deadline_ms >
623 now_ms()) {
624 reschedule_root_alarm();
625 continue;
626 }
627
628 list_remove(alarms, alarm);
629
630 if (alarm->is_periodic) {
631 alarm->prev_deadline_ms = alarm->deadline_ms;
632 schedule_next_instance(alarm);
633 alarm->stats.rescheduled_count++;
634 }
635 reschedule_root_alarm();
636
637 // Enqueue the alarm for processing
638 if (alarm->for_msg_loop) {
639 if (!get_main_thread()) {
640 log::error("message loop already NULL. Alarm: {}", alarm->stats.name);
641 continue;
642 }
643
644 alarm->closure.i.Reset(Bind(alarm_ready_mloop, alarm));
645 get_main_thread()->DoInThread(FROM_HERE, alarm->closure.i.callback());
646 } else {
647 fixed_queue_enqueue(alarm->queue, alarm);
648 }
649 }
650
651 log::info("Callback thread exited");
652 }
653
timer_create_internal(const clockid_t clock_id,timer_t * timer)654 static bool timer_create_internal(const clockid_t clock_id, timer_t* timer) {
655 log::assert_that(timer != NULL, "assert failed: timer != NULL");
656
657 struct sigevent sigevent;
658 // create timer with RT priority thread
659 pthread_attr_t thread_attr;
660 pthread_attr_init(&thread_attr);
661 pthread_attr_setschedpolicy(&thread_attr, SCHED_FIFO);
662 struct sched_param param;
663 param.sched_priority = THREAD_RT_PRIORITY;
664 pthread_attr_setschedparam(&thread_attr, ¶m);
665
666 memset(&sigevent, 0, sizeof(sigevent));
667 sigevent.sigev_notify = SIGEV_THREAD;
668 sigevent.sigev_notify_function = (void (*)(union sigval))timer_callback;
669 sigevent.sigev_notify_attributes = &thread_attr;
670 if (timer_create(clock_id, &sigevent, timer) == -1) {
671 log::error("unable to create timer with clock {}: {}", clock_id,
672 strerror(errno));
673 if (clock_id == CLOCK_BOOTTIME_ALARM) {
674 log::error(
675 "The kernel might not have support for "
676 "timer_create(CLOCK_BOOTTIME_ALARM): "
677 "https://lwn.net/Articles/429925/");
678 log::error(
679 "See following patches: "
680 "https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/log/"
681 "?qt=grep&q=CLOCK_BOOTTIME_ALARM");
682 }
683 return false;
684 }
685
686 return true;
687 }
688
update_scheduling_stats(alarm_stats_t * stats,uint64_t now_ms,uint64_t deadline_ms)689 static void update_scheduling_stats(alarm_stats_t* stats, uint64_t now_ms,
690 uint64_t deadline_ms) {
691 stats->total_updates++;
692 stats->last_update_ms = now_ms;
693
694 if (deadline_ms < now_ms) {
695 // Overdue scheduling
696 uint64_t delta_ms = now_ms - deadline_ms;
697 update_stat(&stats->overdue_scheduling, delta_ms);
698 } else if (deadline_ms > now_ms) {
699 // Premature scheduling
700 uint64_t delta_ms = deadline_ms - now_ms;
701 update_stat(&stats->premature_scheduling, delta_ms);
702 }
703 }
704
dump_stat(int fd,stat_t * stat,const char * description)705 static void dump_stat(int fd, stat_t* stat, const char* description) {
706 uint64_t average_time_ms = 0;
707 if (stat->count != 0) average_time_ms = stat->total_ms / stat->count;
708
709 dprintf(fd, "%-51s: %llu / %llu / %llu\n", description,
710 (unsigned long long)stat->total_ms, (unsigned long long)stat->max_ms,
711 (unsigned long long)average_time_ms);
712 }
713
alarm_debug_dump(int fd)714 void alarm_debug_dump(int fd) {
715 dprintf(fd, "\nBluetooth Alarms Statistics:\n");
716
717 std::lock_guard<std::mutex> lock(alarms_mutex);
718
719 if (alarms == NULL) {
720 dprintf(fd, " None\n");
721 return;
722 }
723
724 uint64_t just_now_ms = now_ms();
725
726 dprintf(fd, " Total Alarms: %zu\n\n", list_length(alarms));
727
728 // Dump info for each alarm
729 for (list_node_t* node = list_begin(alarms); node != list_end(alarms);
730 node = list_next(node)) {
731 alarm_t* alarm = (alarm_t*)list_node(node);
732 alarm_stats_t* stats = &alarm->stats;
733
734 dprintf(fd, " Alarm : %s (%s)\n", stats->name,
735 (alarm->is_periodic) ? "PERIODIC" : "SINGLE");
736
737 dprintf(fd, "%-51s: %zu / %zu / %zu / %zu\n",
738 " Action counts (sched/resched/exec/cancel)",
739 stats->scheduled_count, stats->rescheduled_count,
740 stats->total_updates, stats->canceled_count);
741
742 dprintf(fd, "%-51s: %zu / %zu\n",
743 " Deviation counts (overdue/premature)",
744 stats->overdue_scheduling.count, stats->premature_scheduling.count);
745
746 dprintf(fd, "%-51s: %llu / %llu / %lld\n",
747 " Time in ms (since creation/interval/remaining)",
748 (unsigned long long)(just_now_ms - alarm->creation_time_ms),
749 (unsigned long long)alarm->period_ms,
750 (long long)(alarm->deadline_ms - just_now_ms));
751
752 dump_stat(fd, &stats->overdue_scheduling,
753 " Overdue scheduling time in ms (total/max/avg)");
754
755 dump_stat(fd, &stats->premature_scheduling,
756 " Premature scheduling time in ms (total/max/avg)");
757
758 dprintf(fd, "\n");
759 }
760 }
761