1 /*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "base/logging.h"
18 #include "base/mutex.h"
19 #include "dex_file-inl.h"
20 #include "dex_instruction-inl.h"
21 #include "driver/compiler_driver.h"
22 #include "driver/dex_compilation_unit.h"
23 #include "mirror/art_field-inl.h"
24 #include "mirror/art_method-inl.h"
25 #include "mirror/class-inl.h"
26 #include "mirror/dex_cache.h"
27 #include "thread-inl.h"
28
29 namespace art {
30 namespace optimizer {
31
32 // Controls quickening activation.
33 const bool kEnableQuickening = true;
34 // Control check-cast elision.
35 const bool kEnableCheckCastEllision = true;
36
37 class DexCompiler {
38 public:
DexCompiler(art::CompilerDriver & compiler,const DexCompilationUnit & unit,DexToDexCompilationLevel dex_to_dex_compilation_level)39 DexCompiler(art::CompilerDriver& compiler,
40 const DexCompilationUnit& unit,
41 DexToDexCompilationLevel dex_to_dex_compilation_level)
42 : driver_(compiler),
43 unit_(unit),
44 dex_to_dex_compilation_level_(dex_to_dex_compilation_level) {}
45
~DexCompiler()46 ~DexCompiler() {}
47
48 void Compile();
49
50 private:
GetDexFile() const51 const DexFile& GetDexFile() const {
52 return *unit_.GetDexFile();
53 }
54
PerformOptimizations() const55 bool PerformOptimizations() const {
56 return dex_to_dex_compilation_level_ >= kOptimize;
57 }
58
59 // Compiles a RETURN-VOID into a RETURN-VOID-BARRIER within a constructor where
60 // a barrier is required.
61 void CompileReturnVoid(Instruction* inst, uint32_t dex_pc);
62
63 // Compiles a CHECK-CAST into 2 NOP instructions if it is known to be safe. In
64 // this case, returns the second NOP instruction pointer. Otherwise, returns
65 // the given "inst".
66 Instruction* CompileCheckCast(Instruction* inst, uint32_t dex_pc);
67
68 // Compiles a field access into a quick field access.
69 // The field index is replaced by an offset within an Object where we can read
70 // from / write to this field. Therefore, this does not involve any resolution
71 // at runtime.
72 // Since the field index is encoded with 16 bits, we can replace it only if the
73 // field offset can be encoded with 16 bits too.
74 void CompileInstanceFieldAccess(Instruction* inst, uint32_t dex_pc,
75 Instruction::Code new_opcode, bool is_put);
76
77 // Compiles a virtual method invocation into a quick virtual method invocation.
78 // The method index is replaced by the vtable index where the corresponding
79 // AbstractMethod can be found. Therefore, this does not involve any resolution
80 // at runtime.
81 // Since the method index is encoded with 16 bits, we can replace it only if the
82 // vtable index can be encoded with 16 bits too.
83 void CompileInvokeVirtual(Instruction* inst, uint32_t dex_pc,
84 Instruction::Code new_opcode, bool is_range);
85
86 CompilerDriver& driver_;
87 const DexCompilationUnit& unit_;
88 const DexToDexCompilationLevel dex_to_dex_compilation_level_;
89
90 DISALLOW_COPY_AND_ASSIGN(DexCompiler);
91 };
92
Compile()93 void DexCompiler::Compile() {
94 DCHECK_GE(dex_to_dex_compilation_level_, kRequired);
95 const DexFile::CodeItem* code_item = unit_.GetCodeItem();
96 const uint16_t* insns = code_item->insns_;
97 const uint32_t insns_size = code_item->insns_size_in_code_units_;
98 Instruction* inst = const_cast<Instruction*>(Instruction::At(insns));
99
100 for (uint32_t dex_pc = 0; dex_pc < insns_size;
101 inst = const_cast<Instruction*>(inst->Next()), dex_pc = inst->GetDexPc(insns)) {
102 switch (inst->Opcode()) {
103 case Instruction::RETURN_VOID:
104 CompileReturnVoid(inst, dex_pc);
105 break;
106
107 case Instruction::CHECK_CAST:
108 inst = CompileCheckCast(inst, dex_pc);
109 break;
110
111 case Instruction::IGET:
112 CompileInstanceFieldAccess(inst, dex_pc, Instruction::IGET_QUICK, false);
113 break;
114
115 case Instruction::IGET_WIDE:
116 CompileInstanceFieldAccess(inst, dex_pc, Instruction::IGET_WIDE_QUICK, false);
117 break;
118
119 case Instruction::IGET_OBJECT:
120 CompileInstanceFieldAccess(inst, dex_pc, Instruction::IGET_OBJECT_QUICK, false);
121 break;
122
123 case Instruction::IPUT:
124 case Instruction::IPUT_BOOLEAN:
125 case Instruction::IPUT_BYTE:
126 case Instruction::IPUT_CHAR:
127 case Instruction::IPUT_SHORT:
128 // These opcodes have the same implementation in interpreter so group
129 // them under IPUT_QUICK.
130 CompileInstanceFieldAccess(inst, dex_pc, Instruction::IPUT_QUICK, true);
131 break;
132
133 case Instruction::IPUT_WIDE:
134 CompileInstanceFieldAccess(inst, dex_pc, Instruction::IPUT_WIDE_QUICK, true);
135 break;
136
137 case Instruction::IPUT_OBJECT:
138 CompileInstanceFieldAccess(inst, dex_pc, Instruction::IPUT_OBJECT_QUICK, true);
139 break;
140
141 case Instruction::INVOKE_VIRTUAL:
142 CompileInvokeVirtual(inst, dex_pc, Instruction::INVOKE_VIRTUAL_QUICK, false);
143 break;
144
145 case Instruction::INVOKE_VIRTUAL_RANGE:
146 CompileInvokeVirtual(inst, dex_pc, Instruction::INVOKE_VIRTUAL_RANGE_QUICK, true);
147 break;
148
149 default:
150 // Nothing to do.
151 break;
152 }
153 }
154 }
155
CompileReturnVoid(Instruction * inst,uint32_t dex_pc)156 void DexCompiler::CompileReturnVoid(Instruction* inst, uint32_t dex_pc) {
157 DCHECK(inst->Opcode() == Instruction::RETURN_VOID);
158 // Are we compiling a non-clinit constructor?
159 if (!unit_.IsConstructor() || unit_.IsStatic()) {
160 return;
161 }
162 // Do we need a constructor barrier ?
163 if (!driver_.RequiresConstructorBarrier(Thread::Current(), unit_.GetDexFile(),
164 unit_.GetClassDefIndex())) {
165 return;
166 }
167 // Replace RETURN_VOID by RETURN_VOID_BARRIER.
168 VLOG(compiler) << "Replacing " << Instruction::Name(inst->Opcode())
169 << " by " << Instruction::Name(Instruction::RETURN_VOID_BARRIER)
170 << " at dex pc " << StringPrintf("0x%x", dex_pc) << " in method "
171 << PrettyMethod(unit_.GetDexMethodIndex(), GetDexFile(), true);
172 inst->SetOpcode(Instruction::RETURN_VOID_BARRIER);
173 }
174
CompileCheckCast(Instruction * inst,uint32_t dex_pc)175 Instruction* DexCompiler::CompileCheckCast(Instruction* inst, uint32_t dex_pc) {
176 if (!kEnableCheckCastEllision || !PerformOptimizations()) {
177 return inst;
178 }
179 if (!driver_.IsSafeCast(&unit_, dex_pc)) {
180 return inst;
181 }
182 // Ok, this is a safe cast. Since the "check-cast" instruction size is 2 code
183 // units and a "nop" instruction size is 1 code unit, we need to replace it by
184 // 2 consecutive NOP instructions.
185 // Because the caller loops over instructions by calling Instruction::Next onto
186 // the current instruction, we need to return the 2nd NOP instruction. Indeed,
187 // its next instruction is the former check-cast's next instruction.
188 VLOG(compiler) << "Removing " << Instruction::Name(inst->Opcode())
189 << " by replacing it with 2 NOPs at dex pc "
190 << StringPrintf("0x%x", dex_pc) << " in method "
191 << PrettyMethod(unit_.GetDexMethodIndex(), GetDexFile(), true);
192 // We are modifying 4 consecutive bytes.
193 inst->SetOpcode(Instruction::NOP);
194 inst->SetVRegA_10x(0u); // keep compliant with verifier.
195 // Get to next instruction which is the second half of check-cast and replace
196 // it by a NOP.
197 inst = const_cast<Instruction*>(inst->Next());
198 inst->SetOpcode(Instruction::NOP);
199 inst->SetVRegA_10x(0u); // keep compliant with verifier.
200 return inst;
201 }
202
CompileInstanceFieldAccess(Instruction * inst,uint32_t dex_pc,Instruction::Code new_opcode,bool is_put)203 void DexCompiler::CompileInstanceFieldAccess(Instruction* inst,
204 uint32_t dex_pc,
205 Instruction::Code new_opcode,
206 bool is_put) {
207 if (!kEnableQuickening || !PerformOptimizations()) {
208 return;
209 }
210 uint32_t field_idx = inst->VRegC_22c();
211 MemberOffset field_offset(0u);
212 bool is_volatile;
213 bool fast_path = driver_.ComputeInstanceFieldInfo(field_idx, &unit_, is_put,
214 &field_offset, &is_volatile);
215 if (fast_path && !is_volatile && IsUint(16, field_offset.Int32Value())) {
216 VLOG(compiler) << "Quickening " << Instruction::Name(inst->Opcode())
217 << " to " << Instruction::Name(new_opcode)
218 << " by replacing field index " << field_idx
219 << " by field offset " << field_offset.Int32Value()
220 << " at dex pc " << StringPrintf("0x%x", dex_pc) << " in method "
221 << PrettyMethod(unit_.GetDexMethodIndex(), GetDexFile(), true);
222 // We are modifying 4 consecutive bytes.
223 inst->SetOpcode(new_opcode);
224 // Replace field index by field offset.
225 inst->SetVRegC_22c(static_cast<uint16_t>(field_offset.Int32Value()));
226 }
227 }
228
CompileInvokeVirtual(Instruction * inst,uint32_t dex_pc,Instruction::Code new_opcode,bool is_range)229 void DexCompiler::CompileInvokeVirtual(Instruction* inst,
230 uint32_t dex_pc,
231 Instruction::Code new_opcode,
232 bool is_range) {
233 if (!kEnableQuickening || !PerformOptimizations()) {
234 return;
235 }
236 uint32_t method_idx = is_range ? inst->VRegB_3rc() : inst->VRegB_35c();
237 MethodReference target_method(&GetDexFile(), method_idx);
238 InvokeType invoke_type = kVirtual;
239 InvokeType original_invoke_type = invoke_type;
240 int vtable_idx;
241 uintptr_t direct_code;
242 uintptr_t direct_method;
243 // TODO: support devirtualization.
244 const bool kEnableDevirtualization = false;
245 bool fast_path = driver_.ComputeInvokeInfo(&unit_, dex_pc,
246 false, kEnableDevirtualization,
247 &invoke_type,
248 &target_method, &vtable_idx,
249 &direct_code, &direct_method);
250 if (fast_path && original_invoke_type == invoke_type) {
251 if (vtable_idx >= 0 && IsUint(16, vtable_idx)) {
252 VLOG(compiler) << "Quickening " << Instruction::Name(inst->Opcode())
253 << "(" << PrettyMethod(method_idx, GetDexFile(), true) << ")"
254 << " to " << Instruction::Name(new_opcode)
255 << " by replacing method index " << method_idx
256 << " by vtable index " << vtable_idx
257 << " at dex pc " << StringPrintf("0x%x", dex_pc) << " in method "
258 << PrettyMethod(unit_.GetDexMethodIndex(), GetDexFile(), true);
259 // We are modifying 4 consecutive bytes.
260 inst->SetOpcode(new_opcode);
261 // Replace method index by vtable index.
262 if (is_range) {
263 inst->SetVRegB_3rc(static_cast<uint16_t>(vtable_idx));
264 } else {
265 inst->SetVRegB_35c(static_cast<uint16_t>(vtable_idx));
266 }
267 }
268 }
269 }
270
271 } // namespace optimizer
272 } // namespace art
273
ArtCompileDEX(art::CompilerDriver & driver,const art::DexFile::CodeItem * code_item,uint32_t access_flags,art::InvokeType invoke_type,uint16_t class_def_idx,uint32_t method_idx,jobject class_loader,const art::DexFile & dex_file,art::DexToDexCompilationLevel dex_to_dex_compilation_level)274 extern "C" void ArtCompileDEX(art::CompilerDriver& driver, const art::DexFile::CodeItem* code_item,
275 uint32_t access_flags, art::InvokeType invoke_type,
276 uint16_t class_def_idx, uint32_t method_idx, jobject class_loader,
277 const art::DexFile& dex_file,
278 art::DexToDexCompilationLevel dex_to_dex_compilation_level) {
279 if (dex_to_dex_compilation_level != art::kDontDexToDexCompile) {
280 art::DexCompilationUnit unit(NULL, class_loader, art::Runtime::Current()->GetClassLinker(),
281 dex_file, code_item, class_def_idx, method_idx, access_flags,
282 driver.GetVerifiedMethod(&dex_file, method_idx));
283 art::optimizer::DexCompiler dex_compiler(driver, unit, dex_to_dex_compilation_level);
284 dex_compiler.Compile();
285 }
286 }
287