1 /*
2 * Copyright (C) 2014 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "mir_graph.h"
18 #include "gtest/gtest.h"
19
20 namespace art {
21
22 class TopologicalSortOrderTest : public testing::Test {
23 protected:
24 struct BBDef {
25 static constexpr size_t kMaxSuccessors = 4;
26 static constexpr size_t kMaxPredecessors = 4;
27
28 BBType type;
29 size_t num_successors;
30 BasicBlockId successors[kMaxPredecessors];
31 size_t num_predecessors;
32 BasicBlockId predecessors[kMaxPredecessors];
33 };
34
35 #define DEF_SUCC0() \
36 0u, { }
37 #define DEF_SUCC1(s1) \
38 1u, { s1 }
39 #define DEF_SUCC2(s1, s2) \
40 2u, { s1, s2 }
41 #define DEF_SUCC3(s1, s2, s3) \
42 3u, { s1, s2, s3 }
43 #define DEF_SUCC4(s1, s2, s3, s4) \
44 4u, { s1, s2, s3, s4 }
45 #define DEF_PRED0() \
46 0u, { }
47 #define DEF_PRED1(p1) \
48 1u, { p1 }
49 #define DEF_PRED2(p1, p2) \
50 2u, { p1, p2 }
51 #define DEF_PRED3(p1, p2, p3) \
52 3u, { p1, p2, p3 }
53 #define DEF_PRED4(p1, p2, p3, p4) \
54 4u, { p1, p2, p3, p4 }
55 #define DEF_BB(type, succ, pred) \
56 { type, succ, pred }
57
DoPrepareBasicBlocks(const BBDef * defs,size_t count)58 void DoPrepareBasicBlocks(const BBDef* defs, size_t count) {
59 cu_.mir_graph->block_id_map_.clear();
60 cu_.mir_graph->block_list_.Reset();
61 ASSERT_LT(3u, count); // null, entry, exit and at least one bytecode block.
62 ASSERT_EQ(kNullBlock, defs[0].type);
63 ASSERT_EQ(kEntryBlock, defs[1].type);
64 ASSERT_EQ(kExitBlock, defs[2].type);
65 for (size_t i = 0u; i != count; ++i) {
66 const BBDef* def = &defs[i];
67 BasicBlock* bb = cu_.mir_graph->NewMemBB(def->type, i);
68 cu_.mir_graph->block_list_.Insert(bb);
69 if (def->num_successors <= 2) {
70 bb->successor_block_list_type = kNotUsed;
71 bb->successor_blocks = nullptr;
72 bb->fall_through = (def->num_successors >= 1) ? def->successors[0] : 0u;
73 bb->taken = (def->num_successors >= 2) ? def->successors[1] : 0u;
74 } else {
75 bb->successor_block_list_type = kPackedSwitch;
76 bb->fall_through = 0u;
77 bb->taken = 0u;
78 bb->successor_blocks = new (&cu_.arena) GrowableArray<SuccessorBlockInfo*>(
79 &cu_.arena, def->num_successors, kGrowableArraySuccessorBlocks);
80 for (size_t j = 0u; j != def->num_successors; ++j) {
81 SuccessorBlockInfo* successor_block_info =
82 static_cast<SuccessorBlockInfo*>(cu_.arena.Alloc(sizeof(SuccessorBlockInfo),
83 kArenaAllocSuccessor));
84 successor_block_info->block = j;
85 successor_block_info->key = 0u; // Not used by class init check elimination.
86 bb->successor_blocks->Insert(successor_block_info);
87 }
88 }
89 bb->predecessors = new (&cu_.arena) GrowableArray<BasicBlockId>(
90 &cu_.arena, def->num_predecessors, kGrowableArrayPredecessors);
91 for (size_t j = 0u; j != def->num_predecessors; ++j) {
92 ASSERT_NE(0u, def->predecessors[j]);
93 bb->predecessors->Insert(def->predecessors[j]);
94 }
95 if (def->type == kDalvikByteCode || def->type == kEntryBlock || def->type == kExitBlock) {
96 bb->data_flow_info = static_cast<BasicBlockDataFlow*>(
97 cu_.arena.Alloc(sizeof(BasicBlockDataFlow), kArenaAllocDFInfo));
98 }
99 }
100 cu_.mir_graph->num_blocks_ = count;
101 ASSERT_EQ(count, cu_.mir_graph->block_list_.Size());
102 cu_.mir_graph->entry_block_ = cu_.mir_graph->block_list_.Get(1);
103 ASSERT_EQ(kEntryBlock, cu_.mir_graph->entry_block_->block_type);
104 cu_.mir_graph->exit_block_ = cu_.mir_graph->block_list_.Get(2);
105 ASSERT_EQ(kExitBlock, cu_.mir_graph->exit_block_->block_type);
106 }
107
108 template <size_t count>
PrepareBasicBlocks(const BBDef (& defs)[count])109 void PrepareBasicBlocks(const BBDef (&defs)[count]) {
110 DoPrepareBasicBlocks(defs, count);
111 }
112
ComputeTopologicalSortOrder()113 void ComputeTopologicalSortOrder() {
114 cu_.mir_graph->SSATransformationStart();
115 cu_.mir_graph->ComputeDFSOrders();
116 cu_.mir_graph->ComputeDominators();
117 cu_.mir_graph->ComputeTopologicalSortOrder();
118 cu_.mir_graph->SSATransformationEnd();
119 ASSERT_NE(cu_.mir_graph->topological_order_, nullptr);
120 ASSERT_NE(cu_.mir_graph->topological_order_loop_ends_, nullptr);
121 ASSERT_NE(cu_.mir_graph->topological_order_indexes_, nullptr);
122 ASSERT_EQ(cu_.mir_graph->GetNumBlocks(), cu_.mir_graph->topological_order_indexes_->Size());
123 for (size_t i = 0, size = cu_.mir_graph->GetTopologicalSortOrder()->Size(); i != size; ++i) {
124 ASSERT_LT(cu_.mir_graph->topological_order_->Get(i), cu_.mir_graph->GetNumBlocks());
125 BasicBlockId id = cu_.mir_graph->topological_order_->Get(i);
126 EXPECT_EQ(i, cu_.mir_graph->topological_order_indexes_->Get(id));
127 }
128 }
129
DoCheckOrder(const BasicBlockId * ids,size_t count)130 void DoCheckOrder(const BasicBlockId* ids, size_t count) {
131 ASSERT_EQ(count, cu_.mir_graph->GetTopologicalSortOrder()->Size());
132 for (size_t i = 0; i != count; ++i) {
133 EXPECT_EQ(ids[i], cu_.mir_graph->GetTopologicalSortOrder()->Get(i)) << i;
134 }
135 }
136
137 template <size_t count>
CheckOrder(const BasicBlockId (& ids)[count])138 void CheckOrder(const BasicBlockId (&ids)[count]) {
139 DoCheckOrder(ids, count);
140 }
141
DoCheckLoopEnds(const uint16_t * ends,size_t count)142 void DoCheckLoopEnds(const uint16_t* ends, size_t count) {
143 for (size_t i = 0; i != count; ++i) {
144 ASSERT_LT(i, cu_.mir_graph->GetTopologicalSortOrderLoopEnds()->Size());
145 EXPECT_EQ(ends[i], cu_.mir_graph->GetTopologicalSortOrderLoopEnds()->Get(i)) << i;
146 }
147 }
148
149 template <size_t count>
CheckLoopEnds(const uint16_t (& ends)[count])150 void CheckLoopEnds(const uint16_t (&ends)[count]) {
151 DoCheckLoopEnds(ends, count);
152 }
153
TopologicalSortOrderTest()154 TopologicalSortOrderTest()
155 : pool_(),
156 cu_(&pool_) {
157 cu_.mir_graph.reset(new MIRGraph(&cu_, &cu_.arena));
158 }
159
160 ArenaPool pool_;
161 CompilationUnit cu_;
162 };
163
TEST_F(TopologicalSortOrderTest,DoWhile)164 TEST_F(TopologicalSortOrderTest, DoWhile) {
165 const BBDef bbs[] = {
166 DEF_BB(kNullBlock, DEF_SUCC0(), DEF_PRED0()),
167 DEF_BB(kEntryBlock, DEF_SUCC1(3), DEF_PRED0()),
168 DEF_BB(kExitBlock, DEF_SUCC0(), DEF_PRED1(5)),
169 DEF_BB(kDalvikByteCode, DEF_SUCC1(4), DEF_PRED1(1)),
170 DEF_BB(kDalvikByteCode, DEF_SUCC2(5, 4), DEF_PRED2(3, 4)), // "taken" loops to self.
171 DEF_BB(kDalvikByteCode, DEF_SUCC1(2), DEF_PRED1(4)),
172 };
173 const BasicBlockId expected_order[] = {
174 1, 3, 4, 5, 2
175 };
176 const uint16_t loop_ends[] = {
177 0, 0, 3, 0, 0
178 };
179
180 PrepareBasicBlocks(bbs);
181 ComputeTopologicalSortOrder();
182 CheckOrder(expected_order);
183 CheckLoopEnds(loop_ends);
184 }
185
TEST_F(TopologicalSortOrderTest,While)186 TEST_F(TopologicalSortOrderTest, While) {
187 const BBDef bbs[] = {
188 DEF_BB(kNullBlock, DEF_SUCC0(), DEF_PRED0()),
189 DEF_BB(kEntryBlock, DEF_SUCC1(3), DEF_PRED0()),
190 DEF_BB(kExitBlock, DEF_SUCC0(), DEF_PRED1(5)),
191 DEF_BB(kDalvikByteCode, DEF_SUCC2(4, 5), DEF_PRED2(1, 4)),
192 DEF_BB(kDalvikByteCode, DEF_SUCC1(3), DEF_PRED1(3)), // Loops to 3.
193 DEF_BB(kDalvikByteCode, DEF_SUCC1(2), DEF_PRED1(3)),
194 };
195 const BasicBlockId expected_order[] = {
196 1, 3, 4, 5, 2
197 };
198 const uint16_t loop_ends[] = {
199 0, 3, 0, 0, 0
200 };
201
202 PrepareBasicBlocks(bbs);
203 ComputeTopologicalSortOrder();
204 CheckOrder(expected_order);
205 CheckLoopEnds(loop_ends);
206 }
207
TEST_F(TopologicalSortOrderTest,WhileWithTwoBackEdges)208 TEST_F(TopologicalSortOrderTest, WhileWithTwoBackEdges) {
209 const BBDef bbs[] = {
210 DEF_BB(kNullBlock, DEF_SUCC0(), DEF_PRED0()),
211 DEF_BB(kEntryBlock, DEF_SUCC1(3), DEF_PRED0()),
212 DEF_BB(kExitBlock, DEF_SUCC0(), DEF_PRED1(6)),
213 DEF_BB(kDalvikByteCode, DEF_SUCC2(4, 6), DEF_PRED3(1, 4, 5)),
214 DEF_BB(kDalvikByteCode, DEF_SUCC2(5, 3), DEF_PRED1(3)), // Loops to 3.
215 DEF_BB(kDalvikByteCode, DEF_SUCC1(3), DEF_PRED1(4)), // Loops to 3.
216 DEF_BB(kDalvikByteCode, DEF_SUCC1(2), DEF_PRED1(3)),
217 };
218 const BasicBlockId expected_order[] = {
219 1, 3, 4, 5, 6, 2
220 };
221 const uint16_t loop_ends[] = {
222 0, 4, 0, 0, 0, 0
223 };
224
225 PrepareBasicBlocks(bbs);
226 ComputeTopologicalSortOrder();
227 CheckOrder(expected_order);
228 CheckLoopEnds(loop_ends);
229 }
230
TEST_F(TopologicalSortOrderTest,NestedLoop)231 TEST_F(TopologicalSortOrderTest, NestedLoop) {
232 const BBDef bbs[] = {
233 DEF_BB(kNullBlock, DEF_SUCC0(), DEF_PRED0()),
234 DEF_BB(kEntryBlock, DEF_SUCC1(3), DEF_PRED0()),
235 DEF_BB(kExitBlock, DEF_SUCC0(), DEF_PRED1(7)),
236 DEF_BB(kDalvikByteCode, DEF_SUCC2(4, 7), DEF_PRED2(1, 6)),
237 DEF_BB(kDalvikByteCode, DEF_SUCC2(5, 6), DEF_PRED2(3, 5)),
238 DEF_BB(kDalvikByteCode, DEF_SUCC1(4), DEF_PRED1(4)), // Loops to 4.
239 DEF_BB(kDalvikByteCode, DEF_SUCC1(3), DEF_PRED1(4)), // Loops to 3.
240 DEF_BB(kDalvikByteCode, DEF_SUCC1(2), DEF_PRED1(3)),
241 };
242 const BasicBlockId expected_order[] = {
243 1, 3, 4, 5, 6, 7, 2
244 };
245 const uint16_t loop_ends[] = {
246 0, 5, 4, 0, 0, 0, 0
247 };
248
249 PrepareBasicBlocks(bbs);
250 ComputeTopologicalSortOrder();
251 CheckOrder(expected_order);
252 CheckLoopEnds(loop_ends);
253 }
254
TEST_F(TopologicalSortOrderTest,NestedLoopHeadLoops)255 TEST_F(TopologicalSortOrderTest, NestedLoopHeadLoops) {
256 const BBDef bbs[] = {
257 DEF_BB(kNullBlock, DEF_SUCC0(), DEF_PRED0()),
258 DEF_BB(kEntryBlock, DEF_SUCC1(3), DEF_PRED0()),
259 DEF_BB(kExitBlock, DEF_SUCC0(), DEF_PRED1(6)),
260 DEF_BB(kDalvikByteCode, DEF_SUCC2(4, 6), DEF_PRED2(1, 4)),
261 DEF_BB(kDalvikByteCode, DEF_SUCC2(5, 3), DEF_PRED2(3, 5)), // Nested head, loops to 3.
262 DEF_BB(kDalvikByteCode, DEF_SUCC1(4), DEF_PRED1(4)), // Loops to 4.
263 DEF_BB(kDalvikByteCode, DEF_SUCC1(2), DEF_PRED1(3)),
264 };
265 const BasicBlockId expected_order[] = {
266 1, 3, 4, 5, 6, 2
267 };
268 const uint16_t loop_ends[] = {
269 0, 4, 4, 0, 0, 0
270 };
271
272 PrepareBasicBlocks(bbs);
273 ComputeTopologicalSortOrder();
274 CheckOrder(expected_order);
275 CheckLoopEnds(loop_ends);
276 }
277
TEST_F(TopologicalSortOrderTest,NestedLoopSameBackBranchBlock)278 TEST_F(TopologicalSortOrderTest, NestedLoopSameBackBranchBlock) {
279 const BBDef bbs[] = {
280 DEF_BB(kNullBlock, DEF_SUCC0(), DEF_PRED0()),
281 DEF_BB(kEntryBlock, DEF_SUCC1(3), DEF_PRED0()),
282 DEF_BB(kExitBlock, DEF_SUCC0(), DEF_PRED1(6)),
283 DEF_BB(kDalvikByteCode, DEF_SUCC2(4, 6), DEF_PRED2(1, 5)),
284 DEF_BB(kDalvikByteCode, DEF_SUCC1(5), DEF_PRED2(3, 5)),
285 DEF_BB(kDalvikByteCode, DEF_SUCC2(4, 3), DEF_PRED1(4)), // Loops to 4 and 3.
286 DEF_BB(kDalvikByteCode, DEF_SUCC1(2), DEF_PRED1(3)),
287 };
288 const BasicBlockId expected_order[] = {
289 1, 3, 4, 5, 6, 2
290 };
291 const uint16_t loop_ends[] = {
292 0, 4, 4, 0, 0, 0
293 };
294
295 PrepareBasicBlocks(bbs);
296 ComputeTopologicalSortOrder();
297 CheckOrder(expected_order);
298 CheckLoopEnds(loop_ends);
299 }
300
TEST_F(TopologicalSortOrderTest,TwoReorderedInnerLoops)301 TEST_F(TopologicalSortOrderTest, TwoReorderedInnerLoops) {
302 // This is a simplified version of real code graph where the branch from 8 to 5 must prevent
303 // the block 5 from being considered a loop head before processing the loop 7-8.
304 const BBDef bbs[] = {
305 DEF_BB(kNullBlock, DEF_SUCC0(), DEF_PRED0()),
306 DEF_BB(kEntryBlock, DEF_SUCC1(3), DEF_PRED0()),
307 DEF_BB(kExitBlock, DEF_SUCC0(), DEF_PRED1(9)),
308 DEF_BB(kDalvikByteCode, DEF_SUCC2(4, 9), DEF_PRED2(1, 5)),
309 DEF_BB(kDalvikByteCode, DEF_SUCC2(5, 7), DEF_PRED1(3)), // Branch over loop in 5.
310 DEF_BB(kDalvikByteCode, DEF_SUCC2(6, 3), DEF_PRED3(4, 6, 8)), // Loops to 4; inner loop.
311 DEF_BB(kDalvikByteCode, DEF_SUCC1(5), DEF_PRED1(5)), // Loops to 5.
312 DEF_BB(kDalvikByteCode, DEF_SUCC1(8), DEF_PRED2(4, 8)), // Loop head.
313 DEF_BB(kDalvikByteCode, DEF_SUCC2(7, 5), DEF_PRED1(7)), // Loops to 7; branches to 5.
314 DEF_BB(kDalvikByteCode, DEF_SUCC1(2), DEF_PRED1(3)),
315 };
316 const BasicBlockId expected_order[] = {
317 1, 3, 4, 7, 8, 5, 6, 9, 2
318 };
319 const uint16_t loop_ends[] = {
320 0, 7, 0, 5, 0, 7, 0, 0, 0
321 };
322
323 PrepareBasicBlocks(bbs);
324 ComputeTopologicalSortOrder();
325 CheckOrder(expected_order);
326 CheckLoopEnds(loop_ends);
327 }
328
TEST_F(TopologicalSortOrderTest,NestedLoopWithBackEdgeAfterOuterLoopBackEdge)329 TEST_F(TopologicalSortOrderTest, NestedLoopWithBackEdgeAfterOuterLoopBackEdge) {
330 // This is a simplified version of real code graph. The back-edge from 7 to the inner
331 // loop head 4 comes after the back-edge from 6 to the outer loop head 3. To make this
332 // appear a bit more complex, there's also a back-edge from 5 to 4.
333 const BBDef bbs[] = {
334 DEF_BB(kNullBlock, DEF_SUCC0(), DEF_PRED0()),
335 DEF_BB(kEntryBlock, DEF_SUCC1(3), DEF_PRED0()),
336 DEF_BB(kExitBlock, DEF_SUCC0(), DEF_PRED1(7)),
337 DEF_BB(kDalvikByteCode, DEF_SUCC1(4), DEF_PRED2(1, 6)), // Outer loop head.
338 DEF_BB(kDalvikByteCode, DEF_SUCC2(5, 6), DEF_PRED3(3, 5, 7)), // Inner loop head.
339 DEF_BB(kDalvikByteCode, DEF_SUCC1(4), DEF_PRED1(4)), // Loops to inner loop head 4.
340 DEF_BB(kDalvikByteCode, DEF_SUCC2(7, 3), DEF_PRED1(4)), // Loops to outer loop head 3.
341 DEF_BB(kDalvikByteCode, DEF_SUCC2(2, 4), DEF_PRED1(6)), // Loops to inner loop head 4.
342 };
343 const BasicBlockId expected_order[] = {
344 // NOTE: The 5 goes before 6 only because 5 is a "fall-through" from 4 while 6 is "taken".
345 1, 3, 4, 5, 6, 7, 2
346 };
347 const uint16_t loop_ends[] = {
348 0, 6, 6, 0, 0, 0, 0
349 };
350
351 PrepareBasicBlocks(bbs);
352 ComputeTopologicalSortOrder();
353 CheckOrder(expected_order);
354 CheckLoopEnds(loop_ends);
355 }
356
TEST_F(TopologicalSortOrderTest,LoopWithTwoEntryPoints)357 TEST_F(TopologicalSortOrderTest, LoopWithTwoEntryPoints) {
358 const BBDef bbs[] = {
359 DEF_BB(kNullBlock, DEF_SUCC0(), DEF_PRED0()),
360 DEF_BB(kEntryBlock, DEF_SUCC1(3), DEF_PRED0()),
361 DEF_BB(kExitBlock, DEF_SUCC0(), DEF_PRED1(7)),
362 DEF_BB(kDalvikByteCode, DEF_SUCC2(5, 4), DEF_PRED1(1)),
363 DEF_BB(kDalvikByteCode, DEF_SUCC1(5), DEF_PRED2(3, 6)), // Fall-back block is chosen as
364 DEF_BB(kDalvikByteCode, DEF_SUCC1(6), DEF_PRED2(3, 4)), // the earlier from these two.
365 DEF_BB(kDalvikByteCode, DEF_SUCC2(4, 7), DEF_PRED1(5)),
366 DEF_BB(kDalvikByteCode, DEF_SUCC1(2), DEF_PRED1(6)),
367 };
368 const BasicBlockId expected_order[] = {
369 1, 3, 4, 5, 6, 7, 2
370 };
371 const uint16_t loop_ends[] = {
372 0, 0, 5, 0, 0, 0, 0
373 };
374
375 PrepareBasicBlocks(bbs);
376 ComputeTopologicalSortOrder();
377 CheckOrder(expected_order);
378 CheckLoopEnds(loop_ends);
379 }
380
381 } // namespace art
382