1 /*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 /* This file contains codegen for the Thumb2 ISA. */
18
19 #include "arm64_lir.h"
20 #include "codegen_arm64.h"
21 #include "dex/quick/mir_to_lir-inl.h"
22 #include "gc/accounting/card_table.h"
23 #include "entrypoints/quick/quick_entrypoints.h"
24
25 namespace art {
26
27 /*
28 * The sparse table in the literal pool is an array of <key,displacement>
29 * pairs. For each set, we'll load them as a pair using ldp.
30 * The test loop will look something like:
31 *
32 * adr r_base, <table>
33 * ldr r_val, [rA64_SP, v_reg_off]
34 * mov r_idx, #table_size
35 * loop:
36 * cbz r_idx, quit
37 * ldp r_key, r_disp, [r_base], #8
38 * sub r_idx, #1
39 * cmp r_val, r_key
40 * b.ne loop
41 * adr r_base, #0 ; This is the instruction from which we compute displacements
42 * add r_base, r_disp
43 * br r_base
44 * quit:
45 */
GenLargeSparseSwitch(MIR * mir,uint32_t table_offset,RegLocation rl_src)46 void Arm64Mir2Lir::GenLargeSparseSwitch(MIR* mir, uint32_t table_offset, RegLocation rl_src) {
47 const uint16_t* table = cu_->insns + current_dalvik_offset_ + table_offset;
48 if (cu_->verbose) {
49 DumpSparseSwitchTable(table);
50 }
51 // Add the table to the list - we'll process it later
52 SwitchTable *tab_rec =
53 static_cast<SwitchTable*>(arena_->Alloc(sizeof(SwitchTable), kArenaAllocData));
54 tab_rec->table = table;
55 tab_rec->vaddr = current_dalvik_offset_;
56 uint32_t size = table[1];
57 tab_rec->targets = static_cast<LIR**>(arena_->Alloc(size * sizeof(LIR*), kArenaAllocLIR));
58 switch_tables_.Insert(tab_rec);
59
60 // Get the switch value
61 rl_src = LoadValue(rl_src, kCoreReg);
62 RegStorage r_base = AllocTempWide();
63 // Allocate key and disp temps.
64 RegStorage r_key = AllocTemp();
65 RegStorage r_disp = AllocTemp();
66 // Materialize a pointer to the switch table
67 NewLIR3(kA64Adr2xd, r_base.GetReg(), 0, WrapPointer(tab_rec));
68 // Set up r_idx
69 RegStorage r_idx = AllocTemp();
70 LoadConstant(r_idx, size);
71
72 // Entry of loop.
73 LIR* loop_entry = NewLIR0(kPseudoTargetLabel);
74 LIR* branch_out = NewLIR2(kA64Cbz2rt, r_idx.GetReg(), 0);
75
76 // Load next key/disp.
77 NewLIR4(kA64LdpPost4rrXD, r_key.GetReg(), r_disp.GetReg(), r_base.GetReg(), 2);
78 OpRegRegImm(kOpSub, r_idx, r_idx, 1);
79
80 // Go to next case, if key does not match.
81 OpRegReg(kOpCmp, r_key, rl_src.reg);
82 OpCondBranch(kCondNe, loop_entry);
83
84 // Key does match: branch to case label.
85 LIR* switch_label = NewLIR3(kA64Adr2xd, r_base.GetReg(), 0, -1);
86 tab_rec->anchor = switch_label;
87
88 // Add displacement to base branch address and go!
89 OpRegRegRegExtend(kOpAdd, r_base, r_base, As64BitReg(r_disp), kA64Sxtw, 0U);
90 NewLIR1(kA64Br1x, r_base.GetReg());
91
92 // Loop exit label.
93 LIR* loop_exit = NewLIR0(kPseudoTargetLabel);
94 branch_out->target = loop_exit;
95 }
96
97
GenLargePackedSwitch(MIR * mir,uint32_t table_offset,RegLocation rl_src)98 void Arm64Mir2Lir::GenLargePackedSwitch(MIR* mir, uint32_t table_offset, RegLocation rl_src) {
99 const uint16_t* table = cu_->insns + current_dalvik_offset_ + table_offset;
100 if (cu_->verbose) {
101 DumpPackedSwitchTable(table);
102 }
103 // Add the table to the list - we'll process it later
104 SwitchTable *tab_rec =
105 static_cast<SwitchTable*>(arena_->Alloc(sizeof(SwitchTable), kArenaAllocData));
106 tab_rec->table = table;
107 tab_rec->vaddr = current_dalvik_offset_;
108 uint32_t size = table[1];
109 tab_rec->targets =
110 static_cast<LIR**>(arena_->Alloc(size * sizeof(LIR*), kArenaAllocLIR));
111 switch_tables_.Insert(tab_rec);
112
113 // Get the switch value
114 rl_src = LoadValue(rl_src, kCoreReg);
115 RegStorage table_base = AllocTempWide();
116 // Materialize a pointer to the switch table
117 NewLIR3(kA64Adr2xd, table_base.GetReg(), 0, WrapPointer(tab_rec));
118 int low_key = s4FromSwitchData(&table[2]);
119 RegStorage key_reg;
120 // Remove the bias, if necessary
121 if (low_key == 0) {
122 key_reg = rl_src.reg;
123 } else {
124 key_reg = AllocTemp();
125 OpRegRegImm(kOpSub, key_reg, rl_src.reg, low_key);
126 }
127 // Bounds check - if < 0 or >= size continue following switch
128 OpRegImm(kOpCmp, key_reg, size - 1);
129 LIR* branch_over = OpCondBranch(kCondHi, NULL);
130
131 // Load the displacement from the switch table
132 RegStorage disp_reg = AllocTemp();
133 LoadBaseIndexed(table_base, As64BitReg(key_reg), disp_reg, 2, k32);
134
135 // Get base branch address.
136 RegStorage branch_reg = AllocTempWide();
137 LIR* switch_label = NewLIR3(kA64Adr2xd, branch_reg.GetReg(), 0, -1);
138 tab_rec->anchor = switch_label;
139
140 // Add displacement to base branch address and go!
141 OpRegRegRegExtend(kOpAdd, branch_reg, branch_reg, As64BitReg(disp_reg), kA64Sxtw, 0U);
142 NewLIR1(kA64Br1x, branch_reg.GetReg());
143
144 // branch_over target here
145 LIR* target = NewLIR0(kPseudoTargetLabel);
146 branch_over->target = target;
147 }
148
149 /*
150 * Array data table format:
151 * ushort ident = 0x0300 magic value
152 * ushort width width of each element in the table
153 * uint size number of elements in the table
154 * ubyte data[size*width] table of data values (may contain a single-byte
155 * padding at the end)
156 *
157 * Total size is 4+(width * size + 1)/2 16-bit code units.
158 */
GenFillArrayData(uint32_t table_offset,RegLocation rl_src)159 void Arm64Mir2Lir::GenFillArrayData(uint32_t table_offset, RegLocation rl_src) {
160 const uint16_t* table = cu_->insns + current_dalvik_offset_ + table_offset;
161 // Add the table to the list - we'll process it later
162 FillArrayData *tab_rec =
163 static_cast<FillArrayData*>(arena_->Alloc(sizeof(FillArrayData), kArenaAllocData));
164 tab_rec->table = table;
165 tab_rec->vaddr = current_dalvik_offset_;
166 uint16_t width = tab_rec->table[1];
167 uint32_t size = tab_rec->table[2] | ((static_cast<uint32_t>(tab_rec->table[3])) << 16);
168 tab_rec->size = (size * width) + 8;
169
170 fill_array_data_.Insert(tab_rec);
171
172 // Making a call - use explicit registers
173 FlushAllRegs(); /* Everything to home location */
174 LoadValueDirectFixed(rl_src, rs_x0);
175 LoadWordDisp(rs_xSELF, QUICK_ENTRYPOINT_OFFSET(8, pHandleFillArrayData).Int32Value(),
176 rs_xLR);
177 // Materialize a pointer to the fill data image
178 NewLIR3(kA64Adr2xd, rx1, 0, WrapPointer(tab_rec));
179 ClobberCallerSave();
180 LIR* call_inst = OpReg(kOpBlx, rs_xLR);
181 MarkSafepointPC(call_inst);
182 }
183
184 /*
185 * Handle unlocked -> thin locked transition inline or else call out to quick entrypoint. For more
186 * details see monitor.cc.
187 */
GenMonitorEnter(int opt_flags,RegLocation rl_src)188 void Arm64Mir2Lir::GenMonitorEnter(int opt_flags, RegLocation rl_src) {
189 // x0/w0 = object
190 // w1 = thin lock thread id
191 // x2 = address of lock word
192 // w3 = lock word / store failure
193 // TUNING: How much performance we get when we inline this?
194 // Since we've already flush all register.
195 FlushAllRegs();
196 LoadValueDirectFixed(rl_src, rs_x0); // = TargetReg(kArg0, kRef)
197 LockCallTemps(); // Prepare for explicit register usage
198 LIR* null_check_branch = nullptr;
199 if ((opt_flags & MIR_IGNORE_NULL_CHECK) && !(cu_->disable_opt & (1 << kNullCheckElimination))) {
200 null_check_branch = nullptr; // No null check.
201 } else {
202 // If the null-check fails its handled by the slow-path to reduce exception related meta-data.
203 if (!cu_->compiler_driver->GetCompilerOptions().GetImplicitNullChecks()) {
204 null_check_branch = OpCmpImmBranch(kCondEq, rs_x0, 0, NULL);
205 }
206 }
207 Load32Disp(rs_xSELF, Thread::ThinLockIdOffset<8>().Int32Value(), rs_w1);
208 OpRegRegImm(kOpAdd, rs_x2, rs_x0, mirror::Object::MonitorOffset().Int32Value());
209 NewLIR2(kA64Ldxr2rX, rw3, rx2);
210 MarkPossibleNullPointerException(opt_flags);
211 LIR* not_unlocked_branch = OpCmpImmBranch(kCondNe, rs_w3, 0, NULL);
212 NewLIR3(kA64Stxr3wrX, rw3, rw1, rx2);
213 LIR* lock_success_branch = OpCmpImmBranch(kCondEq, rs_w3, 0, NULL);
214
215 LIR* slow_path_target = NewLIR0(kPseudoTargetLabel);
216 not_unlocked_branch->target = slow_path_target;
217 if (null_check_branch != nullptr) {
218 null_check_branch->target = slow_path_target;
219 }
220 // TODO: move to a slow path.
221 // Go expensive route - artLockObjectFromCode(obj);
222 LoadWordDisp(rs_xSELF, QUICK_ENTRYPOINT_OFFSET(8, pLockObject).Int32Value(), rs_xLR);
223 ClobberCallerSave();
224 LIR* call_inst = OpReg(kOpBlx, rs_xLR);
225 MarkSafepointPC(call_inst);
226
227 LIR* success_target = NewLIR0(kPseudoTargetLabel);
228 lock_success_branch->target = success_target;
229 GenMemBarrier(kLoadAny);
230 }
231
232 /*
233 * Handle thin locked -> unlocked transition inline or else call out to quick entrypoint. For more
234 * details see monitor.cc. Note the code below doesn't use ldxr/stxr as the code holds the lock
235 * and can only give away ownership if its suspended.
236 */
GenMonitorExit(int opt_flags,RegLocation rl_src)237 void Arm64Mir2Lir::GenMonitorExit(int opt_flags, RegLocation rl_src) {
238 // x0/w0 = object
239 // w1 = thin lock thread id
240 // w2 = lock word
241 // TUNING: How much performance we get when we inline this?
242 // Since we've already flush all register.
243 FlushAllRegs();
244 LoadValueDirectFixed(rl_src, rs_x0); // Get obj
245 LockCallTemps(); // Prepare for explicit register usage
246 LIR* null_check_branch = nullptr;
247 if ((opt_flags & MIR_IGNORE_NULL_CHECK) && !(cu_->disable_opt & (1 << kNullCheckElimination))) {
248 null_check_branch = nullptr; // No null check.
249 } else {
250 // If the null-check fails its handled by the slow-path to reduce exception related meta-data.
251 if (!cu_->compiler_driver->GetCompilerOptions().GetImplicitNullChecks()) {
252 null_check_branch = OpCmpImmBranch(kCondEq, rs_x0, 0, NULL);
253 }
254 }
255 Load32Disp(rs_xSELF, Thread::ThinLockIdOffset<8>().Int32Value(), rs_w1);
256 Load32Disp(rs_x0, mirror::Object::MonitorOffset().Int32Value(), rs_w2);
257 MarkPossibleNullPointerException(opt_flags);
258 LIR* slow_unlock_branch = OpCmpBranch(kCondNe, rs_w1, rs_w2, NULL);
259 GenMemBarrier(kAnyStore);
260 Store32Disp(rs_x0, mirror::Object::MonitorOffset().Int32Value(), rs_wzr);
261 LIR* unlock_success_branch = OpUnconditionalBranch(NULL);
262
263 LIR* slow_path_target = NewLIR0(kPseudoTargetLabel);
264 slow_unlock_branch->target = slow_path_target;
265 if (null_check_branch != nullptr) {
266 null_check_branch->target = slow_path_target;
267 }
268 // TODO: move to a slow path.
269 // Go expensive route - artUnlockObjectFromCode(obj);
270 LoadWordDisp(rs_xSELF, QUICK_ENTRYPOINT_OFFSET(8, pUnlockObject).Int32Value(), rs_xLR);
271 ClobberCallerSave();
272 LIR* call_inst = OpReg(kOpBlx, rs_xLR);
273 MarkSafepointPC(call_inst);
274
275 LIR* success_target = NewLIR0(kPseudoTargetLabel);
276 unlock_success_branch->target = success_target;
277 }
278
GenMoveException(RegLocation rl_dest)279 void Arm64Mir2Lir::GenMoveException(RegLocation rl_dest) {
280 int ex_offset = Thread::ExceptionOffset<8>().Int32Value();
281 RegLocation rl_result = EvalLoc(rl_dest, kRefReg, true);
282 LoadRefDisp(rs_xSELF, ex_offset, rl_result.reg, kNotVolatile);
283 StoreRefDisp(rs_xSELF, ex_offset, rs_xzr, kNotVolatile);
284 StoreValue(rl_dest, rl_result);
285 }
286
287 /*
288 * Mark garbage collection card. Skip if the value we're storing is null.
289 */
MarkGCCard(RegStorage val_reg,RegStorage tgt_addr_reg)290 void Arm64Mir2Lir::MarkGCCard(RegStorage val_reg, RegStorage tgt_addr_reg) {
291 RegStorage reg_card_base = AllocTempWide();
292 RegStorage reg_card_no = AllocTempWide(); // Needs to be wide as addr is ref=64b
293 LIR* branch_over = OpCmpImmBranch(kCondEq, val_reg, 0, NULL);
294 LoadWordDisp(rs_xSELF, Thread::CardTableOffset<8>().Int32Value(), reg_card_base);
295 OpRegRegImm(kOpLsr, reg_card_no, tgt_addr_reg, gc::accounting::CardTable::kCardShift);
296 // TODO(Arm64): generate "strb wB, [xB, wC, uxtw]" rather than "strb wB, [xB, xC]"?
297 StoreBaseIndexed(reg_card_base, reg_card_no, As32BitReg(reg_card_base),
298 0, kUnsignedByte);
299 LIR* target = NewLIR0(kPseudoTargetLabel);
300 branch_over->target = target;
301 FreeTemp(reg_card_base);
302 FreeTemp(reg_card_no);
303 }
304
GenEntrySequence(RegLocation * ArgLocs,RegLocation rl_method)305 void Arm64Mir2Lir::GenEntrySequence(RegLocation* ArgLocs, RegLocation rl_method) {
306 /*
307 * On entry, x0 to x7 are live. Let the register allocation
308 * mechanism know so it doesn't try to use any of them when
309 * expanding the frame or flushing.
310 * Reserve x8 & x9 for temporaries.
311 */
312 LockTemp(rs_x0);
313 LockTemp(rs_x1);
314 LockTemp(rs_x2);
315 LockTemp(rs_x3);
316 LockTemp(rs_x4);
317 LockTemp(rs_x5);
318 LockTemp(rs_x6);
319 LockTemp(rs_x7);
320 LockTemp(rs_xIP0);
321 LockTemp(rs_xIP1);
322
323 /* TUNING:
324 * Use AllocTemp() and reuse LR if possible to give us the freedom on adjusting the number
325 * of temp registers.
326 */
327
328 /*
329 * We can safely skip the stack overflow check if we're
330 * a leaf *and* our frame size < fudge factor.
331 */
332 bool skip_overflow_check = mir_graph_->MethodIsLeaf() && !FrameNeedsStackCheck(frame_size_, kArm64);
333
334 NewLIR0(kPseudoMethodEntry);
335
336 const size_t kStackOverflowReservedUsableBytes = GetStackOverflowReservedBytes(kArm64);
337 const bool large_frame = static_cast<size_t>(frame_size_) > kStackOverflowReservedUsableBytes;
338 bool generate_explicit_stack_overflow_check = large_frame ||
339 !cu_->compiler_driver->GetCompilerOptions().GetImplicitStackOverflowChecks();
340 const int spill_count = num_core_spills_ + num_fp_spills_;
341 const int spill_size = (spill_count * kArm64PointerSize + 15) & ~0xf; // SP 16 byte alignment.
342 const int frame_size_without_spills = frame_size_ - spill_size;
343
344 if (!skip_overflow_check) {
345 if (generate_explicit_stack_overflow_check) {
346 // Load stack limit
347 LoadWordDisp(rs_xSELF, Thread::StackEndOffset<8>().Int32Value(), rs_xIP1);
348 } else {
349 // Implicit stack overflow check.
350 // Generate a load from [sp, #-framesize]. If this is in the stack
351 // redzone we will get a segmentation fault.
352
353 // TODO: If the frame size is small enough, is it possible to make this a pre-indexed load,
354 // so that we can avoid the following "sub sp" when spilling?
355 OpRegRegImm(kOpSub, rs_x8, rs_sp, GetStackOverflowReservedBytes(kArm64));
356 LoadWordDisp(rs_x8, 0, rs_x8);
357 MarkPossibleStackOverflowException();
358 }
359 }
360
361 int spilled_already = 0;
362 if (spill_size > 0) {
363 spilled_already = SpillRegs(rs_sp, core_spill_mask_, fp_spill_mask_, frame_size_);
364 DCHECK(spill_size == spilled_already || frame_size_ == spilled_already);
365 }
366
367 if (spilled_already != frame_size_) {
368 OpRegImm(kOpSub, rs_sp, frame_size_without_spills);
369 }
370
371 if (!skip_overflow_check) {
372 if (generate_explicit_stack_overflow_check) {
373 class StackOverflowSlowPath: public LIRSlowPath {
374 public:
375 StackOverflowSlowPath(Mir2Lir* m2l, LIR* branch, size_t sp_displace) :
376 LIRSlowPath(m2l, m2l->GetCurrentDexPc(), branch, nullptr),
377 sp_displace_(sp_displace) {
378 }
379 void Compile() OVERRIDE {
380 m2l_->ResetRegPool();
381 m2l_->ResetDefTracking();
382 GenerateTargetLabel(kPseudoThrowTarget);
383 // Unwinds stack.
384 m2l_->OpRegImm(kOpAdd, rs_sp, sp_displace_);
385 m2l_->ClobberCallerSave();
386 ThreadOffset<8> func_offset = QUICK_ENTRYPOINT_OFFSET(8, pThrowStackOverflow);
387 m2l_->LockTemp(rs_xIP0);
388 m2l_->LoadWordDisp(rs_xSELF, func_offset.Int32Value(), rs_xIP0);
389 m2l_->NewLIR1(kA64Br1x, rs_xIP0.GetReg());
390 m2l_->FreeTemp(rs_xIP0);
391 }
392
393 private:
394 const size_t sp_displace_;
395 };
396
397 LIR* branch = OpCmpBranch(kCondUlt, rs_sp, rs_xIP1, nullptr);
398 AddSlowPath(new(arena_)StackOverflowSlowPath(this, branch, frame_size_));
399 }
400 }
401
402 FlushIns(ArgLocs, rl_method);
403
404 FreeTemp(rs_x0);
405 FreeTemp(rs_x1);
406 FreeTemp(rs_x2);
407 FreeTemp(rs_x3);
408 FreeTemp(rs_x4);
409 FreeTemp(rs_x5);
410 FreeTemp(rs_x6);
411 FreeTemp(rs_x7);
412 FreeTemp(rs_xIP0);
413 FreeTemp(rs_xIP1);
414 }
415
GenExitSequence()416 void Arm64Mir2Lir::GenExitSequence() {
417 /*
418 * In the exit path, r0/r1 are live - make sure they aren't
419 * allocated by the register utilities as temps.
420 */
421 LockTemp(rs_x0);
422 LockTemp(rs_x1);
423
424 NewLIR0(kPseudoMethodExit);
425
426 UnspillRegs(rs_sp, core_spill_mask_, fp_spill_mask_, frame_size_);
427
428 // Finally return.
429 NewLIR0(kA64Ret);
430 }
431
GenSpecialExitSequence()432 void Arm64Mir2Lir::GenSpecialExitSequence() {
433 NewLIR0(kA64Ret);
434 }
435
436 } // namespace art
437