1 /*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "arm64_lir.h"
18 #include "codegen_arm64.h"
19 #include "dex/quick/mir_to_lir-inl.h"
20 #include "dex/reg_storage_eq.h"
21
22 namespace art {
23
24 /* This file contains codegen for the A64 ISA. */
25
EncodeImmSingle(uint32_t bits)26 int32_t Arm64Mir2Lir::EncodeImmSingle(uint32_t bits) {
27 /*
28 * Valid values will have the form:
29 *
30 * aBbb.bbbc.defg.h000.0000.0000.0000.0000
31 *
32 * where B = not(b). In other words, if b == 1, then B == 0 and viceversa.
33 */
34
35 // bits[19..0] are cleared.
36 if ((bits & 0x0007ffff) != 0)
37 return -1;
38
39 // bits[29..25] are all set or all cleared.
40 uint32_t b_pattern = (bits >> 16) & 0x3e00;
41 if (b_pattern != 0 && b_pattern != 0x3e00)
42 return -1;
43
44 // bit[30] and bit[29] are opposite.
45 if (((bits ^ (bits << 1)) & 0x40000000) == 0)
46 return -1;
47
48 // bits: aBbb.bbbc.defg.h000.0000.0000.0000.0000
49 // bit7: a000.0000
50 uint32_t bit7 = ((bits >> 31) & 0x1) << 7;
51 // bit6: 0b00.0000
52 uint32_t bit6 = ((bits >> 29) & 0x1) << 6;
53 // bit5_to_0: 00cd.efgh
54 uint32_t bit5_to_0 = (bits >> 19) & 0x3f;
55 return (bit7 | bit6 | bit5_to_0);
56 }
57
EncodeImmDouble(uint64_t bits)58 int32_t Arm64Mir2Lir::EncodeImmDouble(uint64_t bits) {
59 /*
60 * Valid values will have the form:
61 *
62 * aBbb.bbbb.bbcd.efgh.0000.0000.0000.0000
63 * 0000.0000.0000.0000.0000.0000.0000.0000
64 *
65 * where B = not(b).
66 */
67
68 // bits[47..0] are cleared.
69 if ((bits & UINT64_C(0xffffffffffff)) != 0)
70 return -1;
71
72 // bits[61..54] are all set or all cleared.
73 uint32_t b_pattern = (bits >> 48) & 0x3fc0;
74 if (b_pattern != 0 && b_pattern != 0x3fc0)
75 return -1;
76
77 // bit[62] and bit[61] are opposite.
78 if (((bits ^ (bits << 1)) & UINT64_C(0x4000000000000000)) == 0)
79 return -1;
80
81 // bit7: a000.0000
82 uint32_t bit7 = ((bits >> 63) & 0x1) << 7;
83 // bit6: 0b00.0000
84 uint32_t bit6 = ((bits >> 61) & 0x1) << 6;
85 // bit5_to_0: 00cd.efgh
86 uint32_t bit5_to_0 = (bits >> 48) & 0x3f;
87 return (bit7 | bit6 | bit5_to_0);
88 }
89
GetLoadStoreSize(LIR * lir)90 size_t Arm64Mir2Lir::GetLoadStoreSize(LIR* lir) {
91 bool opcode_is_wide = IS_WIDE(lir->opcode);
92 ArmOpcode opcode = UNWIDE(lir->opcode);
93 DCHECK(!IsPseudoLirOp(opcode));
94 const ArmEncodingMap *encoder = &EncodingMap[opcode];
95 uint32_t bits = opcode_is_wide ? encoder->xskeleton : encoder->wskeleton;
96 return (bits >> 30);
97 }
98
GetInstructionOffset(LIR * lir)99 size_t Arm64Mir2Lir::GetInstructionOffset(LIR* lir) {
100 size_t offset = lir->operands[2];
101 uint64_t check_flags = GetTargetInstFlags(lir->opcode);
102 DCHECK((check_flags & IS_LOAD) || (check_flags & IS_STORE));
103 if (check_flags & SCALED_OFFSET_X0) {
104 DCHECK(check_flags & IS_TERTIARY_OP);
105 offset = offset * (1 << GetLoadStoreSize(lir));
106 }
107 return offset;
108 }
109
LoadFPConstantValue(RegStorage r_dest,int32_t value)110 LIR* Arm64Mir2Lir::LoadFPConstantValue(RegStorage r_dest, int32_t value) {
111 DCHECK(r_dest.IsSingle());
112 if (value == 0) {
113 return NewLIR2(kA64Fmov2sw, r_dest.GetReg(), rwzr);
114 } else {
115 int32_t encoded_imm = EncodeImmSingle((uint32_t)value);
116 if (encoded_imm >= 0) {
117 return NewLIR2(kA64Fmov2fI, r_dest.GetReg(), encoded_imm);
118 }
119 }
120
121 LIR* data_target = ScanLiteralPool(literal_list_, value, 0);
122 if (data_target == NULL) {
123 // Wide, as we need 8B alignment.
124 data_target = AddWideData(&literal_list_, value, 0);
125 }
126
127 ScopedMemRefType mem_ref_type(this, ResourceMask::kLiteral);
128 LIR* load_pc_rel = RawLIR(current_dalvik_offset_, kA64Ldr2fp,
129 r_dest.GetReg(), 0, 0, 0, 0, data_target);
130 AppendLIR(load_pc_rel);
131 return load_pc_rel;
132 }
133
LoadFPConstantValueWide(RegStorage r_dest,int64_t value)134 LIR* Arm64Mir2Lir::LoadFPConstantValueWide(RegStorage r_dest, int64_t value) {
135 DCHECK(r_dest.IsDouble());
136 if (value == 0) {
137 return NewLIR2(kA64Fmov2Sx, r_dest.GetReg(), rxzr);
138 } else {
139 int32_t encoded_imm = EncodeImmDouble(value);
140 if (encoded_imm >= 0) {
141 return NewLIR2(FWIDE(kA64Fmov2fI), r_dest.GetReg(), encoded_imm);
142 }
143 }
144
145 // No short form - load from the literal pool.
146 int32_t val_lo = Low32Bits(value);
147 int32_t val_hi = High32Bits(value);
148 LIR* data_target = ScanLiteralPoolWide(literal_list_, val_lo, val_hi);
149 if (data_target == NULL) {
150 data_target = AddWideData(&literal_list_, val_lo, val_hi);
151 }
152
153 ScopedMemRefType mem_ref_type(this, ResourceMask::kLiteral);
154 LIR* load_pc_rel = RawLIR(current_dalvik_offset_, FWIDE(kA64Ldr2fp),
155 r_dest.GetReg(), 0, 0, 0, 0, data_target);
156 AppendLIR(load_pc_rel);
157 return load_pc_rel;
158 }
159
CountLeadingZeros(bool is_wide,uint64_t value)160 static int CountLeadingZeros(bool is_wide, uint64_t value) {
161 return (is_wide) ? __builtin_clzll(value) : __builtin_clz((uint32_t)value);
162 }
163
CountTrailingZeros(bool is_wide,uint64_t value)164 static int CountTrailingZeros(bool is_wide, uint64_t value) {
165 return (is_wide) ? __builtin_ctzll(value) : __builtin_ctz((uint32_t)value);
166 }
167
CountSetBits(bool is_wide,uint64_t value)168 static int CountSetBits(bool is_wide, uint64_t value) {
169 return ((is_wide) ?
170 __builtin_popcountll(value) : __builtin_popcount((uint32_t)value));
171 }
172
173 /**
174 * @brief Try encoding an immediate in the form required by logical instructions.
175 *
176 * @param is_wide Whether @p value is a 64-bit (as opposed to 32-bit) value.
177 * @param value An integer to be encoded. This is interpreted as 64-bit if @p is_wide is true and as
178 * 32-bit if @p is_wide is false.
179 * @return A non-negative integer containing the encoded immediate or -1 if the encoding failed.
180 * @note This is the inverse of Arm64Mir2Lir::DecodeLogicalImmediate().
181 */
EncodeLogicalImmediate(bool is_wide,uint64_t value)182 int Arm64Mir2Lir::EncodeLogicalImmediate(bool is_wide, uint64_t value) {
183 unsigned n, imm_s, imm_r;
184
185 // Logical immediates are encoded using parameters n, imm_s and imm_r using
186 // the following table:
187 //
188 // N imms immr size S R
189 // 1 ssssss rrrrrr 64 UInt(ssssss) UInt(rrrrrr)
190 // 0 0sssss xrrrrr 32 UInt(sssss) UInt(rrrrr)
191 // 0 10ssss xxrrrr 16 UInt(ssss) UInt(rrrr)
192 // 0 110sss xxxrrr 8 UInt(sss) UInt(rrr)
193 // 0 1110ss xxxxrr 4 UInt(ss) UInt(rr)
194 // 0 11110s xxxxxr 2 UInt(s) UInt(r)
195 // (s bits must not be all set)
196 //
197 // A pattern is constructed of size bits, where the least significant S+1
198 // bits are set. The pattern is rotated right by R, and repeated across a
199 // 32 or 64-bit value, depending on destination register width.
200 //
201 // To test if an arbitary immediate can be encoded using this scheme, an
202 // iterative algorithm is used.
203 //
204
205 // 1. If the value has all set or all clear bits, it can't be encoded.
206 if (value == 0 || value == ~UINT64_C(0) ||
207 (!is_wide && (uint32_t)value == ~UINT32_C(0))) {
208 return -1;
209 }
210
211 unsigned lead_zero = CountLeadingZeros(is_wide, value);
212 unsigned lead_one = CountLeadingZeros(is_wide, ~value);
213 unsigned trail_zero = CountTrailingZeros(is_wide, value);
214 unsigned trail_one = CountTrailingZeros(is_wide, ~value);
215 unsigned set_bits = CountSetBits(is_wide, value);
216
217 // The fixed bits in the immediate s field.
218 // If width == 64 (X reg), start at 0xFFFFFF80.
219 // If width == 32 (W reg), start at 0xFFFFFFC0, as the iteration for 64-bit
220 // widths won't be executed.
221 unsigned width = (is_wide) ? 64 : 32;
222 int imm_s_fixed = (is_wide) ? -128 : -64;
223 int imm_s_mask = 0x3f;
224
225 for (;;) {
226 // 2. If the value is two bits wide, it can be encoded.
227 if (width == 2) {
228 n = 0;
229 imm_s = 0x3C;
230 imm_r = (value & 3) - 1;
231 break;
232 }
233
234 n = (width == 64) ? 1 : 0;
235 imm_s = ((imm_s_fixed | (set_bits - 1)) & imm_s_mask);
236 if ((lead_zero + set_bits) == width) {
237 imm_r = 0;
238 } else {
239 imm_r = (lead_zero > 0) ? (width - trail_zero) : lead_one;
240 }
241
242 // 3. If the sum of leading zeros, trailing zeros and set bits is
243 // equal to the bit width of the value, it can be encoded.
244 if (lead_zero + trail_zero + set_bits == width) {
245 break;
246 }
247
248 // 4. If the sum of leading ones, trailing ones and unset bits in the
249 // value is equal to the bit width of the value, it can be encoded.
250 if (lead_one + trail_one + (width - set_bits) == width) {
251 break;
252 }
253
254 // 5. If the most-significant half of the bitwise value is equal to
255 // the least-significant half, return to step 2 using the
256 // least-significant half of the value.
257 uint64_t mask = (UINT64_C(1) << (width >> 1)) - 1;
258 if ((value & mask) == ((value >> (width >> 1)) & mask)) {
259 width >>= 1;
260 set_bits >>= 1;
261 imm_s_fixed >>= 1;
262 continue;
263 }
264
265 // 6. Otherwise, the value can't be encoded.
266 return -1;
267 }
268
269 return (n << 12 | imm_r << 6 | imm_s);
270 }
271
272 // Maximum number of instructions to use for encoding the immediate.
273 static const int max_num_ops_per_const_load = 2;
274
275 /**
276 * @brief Return the number of fast halfwords in the given uint64_t integer.
277 * @details The input integer is split into 4 halfwords (bits 0-15, 16-31, 32-47, 48-63). The
278 * number of fast halfwords (halfwords that are either 0 or 0xffff) is returned. See below for
279 * a more accurate description.
280 * @param value The input 64-bit integer.
281 * @return Return @c retval such that (retval & 0x7) is the maximum between n and m, where n is
282 * the number of halfwords with all bits unset (0) and m is the number of halfwords with all bits
283 * set (0xffff). Additionally (retval & 0x8) is set when m > n.
284 */
GetNumFastHalfWords(uint64_t value)285 static int GetNumFastHalfWords(uint64_t value) {
286 unsigned int num_0000_halfwords = 0;
287 unsigned int num_ffff_halfwords = 0;
288 for (int shift = 0; shift < 64; shift += 16) {
289 uint16_t halfword = static_cast<uint16_t>(value >> shift);
290 if (halfword == 0)
291 num_0000_halfwords++;
292 else if (halfword == UINT16_C(0xffff))
293 num_ffff_halfwords++;
294 }
295 if (num_0000_halfwords >= num_ffff_halfwords) {
296 DCHECK_LE(num_0000_halfwords, 4U);
297 return num_0000_halfwords;
298 } else {
299 DCHECK_LE(num_ffff_halfwords, 4U);
300 return num_ffff_halfwords | 0x8;
301 }
302 }
303
304 // The InexpensiveConstantXXX variants below are used in the promotion algorithm to determine how a
305 // constant is considered for promotion. If the constant is "inexpensive" then the promotion
306 // algorithm will give it a low priority for promotion, even when it is referenced many times in
307 // the code.
308
InexpensiveConstantInt(int32_t value)309 bool Arm64Mir2Lir::InexpensiveConstantInt(int32_t value) {
310 // A 32-bit int can always be loaded with 2 instructions (and without using the literal pool).
311 // We therefore return true and give it a low priority for promotion.
312 return true;
313 }
314
InexpensiveConstantFloat(int32_t value)315 bool Arm64Mir2Lir::InexpensiveConstantFloat(int32_t value) {
316 return EncodeImmSingle(value) >= 0;
317 }
318
InexpensiveConstantLong(int64_t value)319 bool Arm64Mir2Lir::InexpensiveConstantLong(int64_t value) {
320 int num_slow_halfwords = 4 - (GetNumFastHalfWords(value) & 0x7);
321 if (num_slow_halfwords <= max_num_ops_per_const_load) {
322 return true;
323 }
324 return (EncodeLogicalImmediate(/*is_wide=*/true, value) >= 0);
325 }
326
InexpensiveConstantDouble(int64_t value)327 bool Arm64Mir2Lir::InexpensiveConstantDouble(int64_t value) {
328 return EncodeImmDouble(value) >= 0;
329 }
330
331 // The InexpensiveConstantXXX variants below are used to determine which A64 instructions to use
332 // when one of the operands is an immediate (e.g. register version or immediate version of add).
333
InexpensiveConstantInt(int32_t value,Instruction::Code opcode)334 bool Arm64Mir2Lir::InexpensiveConstantInt(int32_t value, Instruction::Code opcode) {
335 switch (opcode) {
336 case Instruction::IF_EQ:
337 case Instruction::IF_NE:
338 case Instruction::IF_LT:
339 case Instruction::IF_GE:
340 case Instruction::IF_GT:
341 case Instruction::IF_LE:
342 case Instruction::ADD_INT:
343 case Instruction::ADD_INT_2ADDR:
344 case Instruction::SUB_INT:
345 case Instruction::SUB_INT_2ADDR:
346 // The code below is consistent with the implementation of OpRegRegImm().
347 {
348 uint32_t abs_value = (value == INT_MIN) ? value : std::abs(value);
349 if (abs_value < 0x1000) {
350 return true;
351 } else if ((abs_value & UINT64_C(0xfff)) == 0 && ((abs_value >> 12) < 0x1000)) {
352 return true;
353 }
354 return false;
355 }
356 case Instruction::SHL_INT:
357 case Instruction::SHL_INT_2ADDR:
358 case Instruction::SHR_INT:
359 case Instruction::SHR_INT_2ADDR:
360 case Instruction::USHR_INT:
361 case Instruction::USHR_INT_2ADDR:
362 return true;
363 case Instruction::AND_INT:
364 case Instruction::AND_INT_2ADDR:
365 case Instruction::AND_INT_LIT16:
366 case Instruction::AND_INT_LIT8:
367 case Instruction::OR_INT:
368 case Instruction::OR_INT_2ADDR:
369 case Instruction::OR_INT_LIT16:
370 case Instruction::OR_INT_LIT8:
371 case Instruction::XOR_INT:
372 case Instruction::XOR_INT_2ADDR:
373 case Instruction::XOR_INT_LIT16:
374 case Instruction::XOR_INT_LIT8:
375 if (value == 0 || value == INT32_C(-1)) {
376 return true;
377 }
378 return (EncodeLogicalImmediate(/*is_wide=*/false, value) >= 0);
379 default:
380 return false;
381 }
382 }
383
384 /*
385 * Load a immediate using one single instruction when possible; otherwise
386 * use a pair of movz and movk instructions.
387 *
388 * No additional register clobbering operation performed. Use this version when
389 * 1) r_dest is freshly returned from AllocTemp or
390 * 2) The codegen is under fixed register usage
391 */
LoadConstantNoClobber(RegStorage r_dest,int value)392 LIR* Arm64Mir2Lir::LoadConstantNoClobber(RegStorage r_dest, int value) {
393 LIR* res;
394
395 if (r_dest.IsFloat()) {
396 return LoadFPConstantValue(r_dest, value);
397 }
398
399 if (r_dest.Is64Bit()) {
400 return LoadConstantWide(r_dest, value);
401 }
402
403 // Loading SP/ZR with an immediate is not supported.
404 DCHECK(!A64_REG_IS_SP(r_dest.GetReg()));
405 DCHECK(!A64_REG_IS_ZR(r_dest.GetReg()));
406
407 // Compute how many movk, movz instructions are needed to load the value.
408 uint16_t high_bits = High16Bits(value);
409 uint16_t low_bits = Low16Bits(value);
410
411 bool low_fast = ((uint16_t)(low_bits + 1) <= 1);
412 bool high_fast = ((uint16_t)(high_bits + 1) <= 1);
413
414 if (LIKELY(low_fast || high_fast)) {
415 // 1 instruction is enough to load the immediate.
416 if (LIKELY(low_bits == high_bits)) {
417 // Value is either 0 or -1: we can just use wzr.
418 ArmOpcode opcode = LIKELY(low_bits == 0) ? kA64Mov2rr : kA64Mvn2rr;
419 res = NewLIR2(opcode, r_dest.GetReg(), rwzr);
420 } else {
421 uint16_t uniform_bits, useful_bits;
422 int shift;
423
424 if (LIKELY(high_fast)) {
425 shift = 0;
426 uniform_bits = high_bits;
427 useful_bits = low_bits;
428 } else {
429 shift = 1;
430 uniform_bits = low_bits;
431 useful_bits = high_bits;
432 }
433
434 if (UNLIKELY(uniform_bits != 0)) {
435 res = NewLIR3(kA64Movn3rdM, r_dest.GetReg(), ~useful_bits, shift);
436 } else {
437 res = NewLIR3(kA64Movz3rdM, r_dest.GetReg(), useful_bits, shift);
438 }
439 }
440 } else {
441 // movk, movz require 2 instructions. Try detecting logical immediates.
442 int log_imm = EncodeLogicalImmediate(/*is_wide=*/false, value);
443 if (log_imm >= 0) {
444 res = NewLIR3(kA64Orr3Rrl, r_dest.GetReg(), rwzr, log_imm);
445 } else {
446 // Use 2 instructions.
447 res = NewLIR3(kA64Movz3rdM, r_dest.GetReg(), low_bits, 0);
448 NewLIR3(kA64Movk3rdM, r_dest.GetReg(), high_bits, 1);
449 }
450 }
451
452 return res;
453 }
454
455 // TODO: clean up the names. LoadConstantWide() should really be LoadConstantNoClobberWide().
LoadConstantWide(RegStorage r_dest,int64_t value)456 LIR* Arm64Mir2Lir::LoadConstantWide(RegStorage r_dest, int64_t value) {
457 if (r_dest.IsFloat()) {
458 return LoadFPConstantValueWide(r_dest, value);
459 }
460
461 DCHECK(r_dest.Is64Bit());
462
463 // Loading SP/ZR with an immediate is not supported.
464 DCHECK(!A64_REG_IS_SP(r_dest.GetReg()));
465 DCHECK(!A64_REG_IS_ZR(r_dest.GetReg()));
466
467 if (LIKELY(value == INT64_C(0) || value == INT64_C(-1))) {
468 // value is either 0 or -1: we can just use xzr.
469 ArmOpcode opcode = LIKELY(value == 0) ? WIDE(kA64Mov2rr) : WIDE(kA64Mvn2rr);
470 return NewLIR2(opcode, r_dest.GetReg(), rxzr);
471 }
472
473 // At least one in value's halfwords is not 0x0, nor 0xffff: find out how many.
474 uint64_t uvalue = static_cast<uint64_t>(value);
475 int num_fast_halfwords = GetNumFastHalfWords(uvalue);
476 int num_slow_halfwords = 4 - (num_fast_halfwords & 0x7);
477 bool more_ffff_halfwords = (num_fast_halfwords & 0x8) != 0;
478
479 if (num_slow_halfwords > 1) {
480 // A single movz/movn is not enough. Try the logical immediate route.
481 int log_imm = EncodeLogicalImmediate(/*is_wide=*/true, value);
482 if (log_imm >= 0) {
483 return NewLIR3(WIDE(kA64Orr3Rrl), r_dest.GetReg(), rxzr, log_imm);
484 }
485 }
486
487 if (num_slow_halfwords <= max_num_ops_per_const_load) {
488 // We can encode the number using a movz/movn followed by one or more movk.
489 ArmOpcode op;
490 uint16_t background;
491 LIR* res = nullptr;
492
493 // Decide whether to use a movz or a movn.
494 if (more_ffff_halfwords) {
495 op = WIDE(kA64Movn3rdM);
496 background = 0xffff;
497 } else {
498 op = WIDE(kA64Movz3rdM);
499 background = 0;
500 }
501
502 // Emit the first instruction (movz, movn).
503 int shift;
504 for (shift = 0; shift < 4; shift++) {
505 uint16_t halfword = static_cast<uint16_t>(uvalue >> (shift << 4));
506 if (halfword != background) {
507 res = NewLIR3(op, r_dest.GetReg(), halfword ^ background, shift);
508 break;
509 }
510 }
511
512 // Emit the movk instructions.
513 for (shift++; shift < 4; shift++) {
514 uint16_t halfword = static_cast<uint16_t>(uvalue >> (shift << 4));
515 if (halfword != background) {
516 NewLIR3(WIDE(kA64Movk3rdM), r_dest.GetReg(), halfword, shift);
517 }
518 }
519 return res;
520 }
521
522 // Use the literal pool.
523 int32_t val_lo = Low32Bits(value);
524 int32_t val_hi = High32Bits(value);
525 LIR* data_target = ScanLiteralPoolWide(literal_list_, val_lo, val_hi);
526 if (data_target == NULL) {
527 data_target = AddWideData(&literal_list_, val_lo, val_hi);
528 }
529
530 ScopedMemRefType mem_ref_type(this, ResourceMask::kLiteral);
531 LIR *res = RawLIR(current_dalvik_offset_, WIDE(kA64Ldr2rp),
532 r_dest.GetReg(), 0, 0, 0, 0, data_target);
533 AppendLIR(res);
534 return res;
535 }
536
OpUnconditionalBranch(LIR * target)537 LIR* Arm64Mir2Lir::OpUnconditionalBranch(LIR* target) {
538 LIR* res = NewLIR1(kA64B1t, 0 /* offset to be patched during assembly */);
539 res->target = target;
540 return res;
541 }
542
OpCondBranch(ConditionCode cc,LIR * target)543 LIR* Arm64Mir2Lir::OpCondBranch(ConditionCode cc, LIR* target) {
544 LIR* branch = NewLIR2(kA64B2ct, ArmConditionEncoding(cc),
545 0 /* offset to be patched */);
546 branch->target = target;
547 return branch;
548 }
549
OpReg(OpKind op,RegStorage r_dest_src)550 LIR* Arm64Mir2Lir::OpReg(OpKind op, RegStorage r_dest_src) {
551 ArmOpcode opcode = kA64Brk1d;
552 switch (op) {
553 case kOpBlx:
554 opcode = kA64Blr1x;
555 break;
556 // TODO(Arm64): port kThumbBx.
557 // case kOpBx:
558 // opcode = kThumbBx;
559 // break;
560 default:
561 LOG(FATAL) << "Bad opcode " << op;
562 }
563 return NewLIR1(opcode, r_dest_src.GetReg());
564 }
565
OpRegRegShift(OpKind op,RegStorage r_dest_src1,RegStorage r_src2,int shift)566 LIR* Arm64Mir2Lir::OpRegRegShift(OpKind op, RegStorage r_dest_src1, RegStorage r_src2, int shift) {
567 ArmOpcode wide = (r_dest_src1.Is64Bit()) ? WIDE(0) : UNWIDE(0);
568 CHECK_EQ(r_dest_src1.Is64Bit(), r_src2.Is64Bit());
569 ArmOpcode opcode = kA64Brk1d;
570
571 switch (op) {
572 case kOpCmn:
573 opcode = kA64Cmn3rro;
574 break;
575 case kOpCmp:
576 opcode = kA64Cmp3rro;
577 break;
578 case kOpMov:
579 opcode = kA64Mov2rr;
580 break;
581 case kOpMvn:
582 opcode = kA64Mvn2rr;
583 break;
584 case kOpNeg:
585 opcode = kA64Neg3rro;
586 break;
587 case kOpTst:
588 opcode = kA64Tst3rro;
589 break;
590 case kOpRev:
591 DCHECK_EQ(shift, 0);
592 // Binary, but rm is encoded twice.
593 return NewLIR2(kA64Rev2rr | wide, r_dest_src1.GetReg(), r_src2.GetReg());
594 break;
595 case kOpRevsh:
596 // Binary, but rm is encoded twice.
597 NewLIR2(kA64Rev162rr | wide, r_dest_src1.GetReg(), r_src2.GetReg());
598 // "sxth r1, r2" is "sbfm r1, r2, #0, #15"
599 return NewLIR4(kA64Sbfm4rrdd | wide, r_dest_src1.GetReg(), r_dest_src1.GetReg(), 0, 15);
600 break;
601 case kOp2Byte:
602 DCHECK_EQ(shift, ENCODE_NO_SHIFT);
603 // "sbfx r1, r2, #imm1, #imm2" is "sbfm r1, r2, #imm1, #(imm1 + imm2 - 1)".
604 // For now we use sbfm directly.
605 return NewLIR4(kA64Sbfm4rrdd | wide, r_dest_src1.GetReg(), r_src2.GetReg(), 0, 7);
606 case kOp2Short:
607 DCHECK_EQ(shift, ENCODE_NO_SHIFT);
608 // For now we use sbfm rather than its alias, sbfx.
609 return NewLIR4(kA64Sbfm4rrdd | wide, r_dest_src1.GetReg(), r_src2.GetReg(), 0, 15);
610 case kOp2Char:
611 // "ubfx r1, r2, #imm1, #imm2" is "ubfm r1, r2, #imm1, #(imm1 + imm2 - 1)".
612 // For now we use ubfm directly.
613 DCHECK_EQ(shift, ENCODE_NO_SHIFT);
614 return NewLIR4(kA64Ubfm4rrdd | wide, r_dest_src1.GetReg(), r_src2.GetReg(), 0, 15);
615 default:
616 return OpRegRegRegShift(op, r_dest_src1, r_dest_src1, r_src2, shift);
617 }
618
619 DCHECK(!IsPseudoLirOp(opcode));
620 if (EncodingMap[opcode].flags & IS_BINARY_OP) {
621 DCHECK_EQ(shift, ENCODE_NO_SHIFT);
622 return NewLIR2(opcode | wide, r_dest_src1.GetReg(), r_src2.GetReg());
623 } else if (EncodingMap[opcode].flags & IS_TERTIARY_OP) {
624 ArmEncodingKind kind = EncodingMap[opcode].field_loc[2].kind;
625 if (kind == kFmtShift) {
626 return NewLIR3(opcode | wide, r_dest_src1.GetReg(), r_src2.GetReg(), shift);
627 }
628 }
629
630 LOG(FATAL) << "Unexpected encoding operand count";
631 return NULL;
632 }
633
OpRegRegExtend(OpKind op,RegStorage r_dest_src1,RegStorage r_src2,A64RegExtEncodings ext,uint8_t amount)634 LIR* Arm64Mir2Lir::OpRegRegExtend(OpKind op, RegStorage r_dest_src1, RegStorage r_src2,
635 A64RegExtEncodings ext, uint8_t amount) {
636 ArmOpcode wide = (r_dest_src1.Is64Bit()) ? WIDE(0) : UNWIDE(0);
637 ArmOpcode opcode = kA64Brk1d;
638
639 switch (op) {
640 case kOpCmn:
641 opcode = kA64Cmn3Rre;
642 break;
643 case kOpCmp:
644 opcode = kA64Cmp3Rre;
645 break;
646 case kOpAdd:
647 // Note: intentional fallthrough
648 case kOpSub:
649 return OpRegRegRegExtend(op, r_dest_src1, r_dest_src1, r_src2, ext, amount);
650 break;
651 default:
652 LOG(FATAL) << "Bad Opcode: " << opcode;
653 break;
654 }
655
656 DCHECK(!IsPseudoLirOp(opcode));
657 if (EncodingMap[opcode].flags & IS_TERTIARY_OP) {
658 ArmEncodingKind kind = EncodingMap[opcode].field_loc[2].kind;
659 if (kind == kFmtExtend) {
660 return NewLIR3(opcode | wide, r_dest_src1.GetReg(), r_src2.GetReg(),
661 EncodeExtend(ext, amount));
662 }
663 }
664
665 LOG(FATAL) << "Unexpected encoding operand count";
666 return NULL;
667 }
668
OpRegReg(OpKind op,RegStorage r_dest_src1,RegStorage r_src2)669 LIR* Arm64Mir2Lir::OpRegReg(OpKind op, RegStorage r_dest_src1, RegStorage r_src2) {
670 /* RegReg operations with SP in first parameter need extended register instruction form.
671 * Only CMN, CMP, ADD & SUB instructions are implemented.
672 */
673 if (r_dest_src1 == rs_sp) {
674 return OpRegRegExtend(op, r_dest_src1, r_src2, kA64Uxtx, 0);
675 } else {
676 return OpRegRegShift(op, r_dest_src1, r_src2, ENCODE_NO_SHIFT);
677 }
678 }
679
OpMovRegMem(RegStorage r_dest,RegStorage r_base,int offset,MoveType move_type)680 LIR* Arm64Mir2Lir::OpMovRegMem(RegStorage r_dest, RegStorage r_base, int offset, MoveType move_type) {
681 UNIMPLEMENTED(FATAL);
682 return nullptr;
683 }
684
OpMovMemReg(RegStorage r_base,int offset,RegStorage r_src,MoveType move_type)685 LIR* Arm64Mir2Lir::OpMovMemReg(RegStorage r_base, int offset, RegStorage r_src, MoveType move_type) {
686 UNIMPLEMENTED(FATAL);
687 return nullptr;
688 }
689
OpCondRegReg(OpKind op,ConditionCode cc,RegStorage r_dest,RegStorage r_src)690 LIR* Arm64Mir2Lir::OpCondRegReg(OpKind op, ConditionCode cc, RegStorage r_dest, RegStorage r_src) {
691 LOG(FATAL) << "Unexpected use of OpCondRegReg for Arm64";
692 return NULL;
693 }
694
OpRegRegRegShift(OpKind op,RegStorage r_dest,RegStorage r_src1,RegStorage r_src2,int shift)695 LIR* Arm64Mir2Lir::OpRegRegRegShift(OpKind op, RegStorage r_dest, RegStorage r_src1,
696 RegStorage r_src2, int shift) {
697 ArmOpcode opcode = kA64Brk1d;
698
699 switch (op) {
700 case kOpAdd:
701 opcode = kA64Add4rrro;
702 break;
703 case kOpSub:
704 opcode = kA64Sub4rrro;
705 break;
706 // case kOpRsub:
707 // opcode = kA64RsubWWW;
708 // break;
709 case kOpAdc:
710 opcode = kA64Adc3rrr;
711 break;
712 case kOpAnd:
713 opcode = kA64And4rrro;
714 break;
715 case kOpXor:
716 opcode = kA64Eor4rrro;
717 break;
718 case kOpMul:
719 opcode = kA64Mul3rrr;
720 break;
721 case kOpDiv:
722 opcode = kA64Sdiv3rrr;
723 break;
724 case kOpOr:
725 opcode = kA64Orr4rrro;
726 break;
727 case kOpSbc:
728 opcode = kA64Sbc3rrr;
729 break;
730 case kOpLsl:
731 opcode = kA64Lsl3rrr;
732 break;
733 case kOpLsr:
734 opcode = kA64Lsr3rrr;
735 break;
736 case kOpAsr:
737 opcode = kA64Asr3rrr;
738 break;
739 case kOpRor:
740 opcode = kA64Ror3rrr;
741 break;
742 default:
743 LOG(FATAL) << "Bad opcode: " << op;
744 break;
745 }
746
747 // The instructions above belong to two kinds:
748 // - 4-operands instructions, where the last operand is a shift/extend immediate,
749 // - 3-operands instructions with no shift/extend.
750 ArmOpcode widened_opcode = r_dest.Is64Bit() ? WIDE(opcode) : opcode;
751 CHECK_EQ(r_dest.Is64Bit(), r_src1.Is64Bit());
752 CHECK_EQ(r_dest.Is64Bit(), r_src2.Is64Bit());
753 if (EncodingMap[opcode].flags & IS_QUAD_OP) {
754 DCHECK(!IsExtendEncoding(shift));
755 return NewLIR4(widened_opcode, r_dest.GetReg(), r_src1.GetReg(), r_src2.GetReg(), shift);
756 } else {
757 DCHECK(EncodingMap[opcode].flags & IS_TERTIARY_OP);
758 DCHECK_EQ(shift, ENCODE_NO_SHIFT);
759 return NewLIR3(widened_opcode, r_dest.GetReg(), r_src1.GetReg(), r_src2.GetReg());
760 }
761 }
762
OpRegRegRegExtend(OpKind op,RegStorage r_dest,RegStorage r_src1,RegStorage r_src2,A64RegExtEncodings ext,uint8_t amount)763 LIR* Arm64Mir2Lir::OpRegRegRegExtend(OpKind op, RegStorage r_dest, RegStorage r_src1,
764 RegStorage r_src2, A64RegExtEncodings ext, uint8_t amount) {
765 ArmOpcode opcode = kA64Brk1d;
766
767 switch (op) {
768 case kOpAdd:
769 opcode = kA64Add4RRre;
770 break;
771 case kOpSub:
772 opcode = kA64Sub4RRre;
773 break;
774 default:
775 LOG(FATAL) << "Unimplemented opcode: " << op;
776 break;
777 }
778 ArmOpcode widened_opcode = r_dest.Is64Bit() ? WIDE(opcode) : opcode;
779
780 if (r_dest.Is64Bit()) {
781 CHECK(r_src1.Is64Bit());
782
783 // dest determines whether the op is wide or not. Up-convert src2 when necessary.
784 // Note: this is not according to aarch64 specifications, but our encoding.
785 if (!r_src2.Is64Bit()) {
786 r_src2 = As64BitReg(r_src2);
787 }
788 } else {
789 CHECK(!r_src1.Is64Bit());
790 CHECK(!r_src2.Is64Bit());
791 }
792
793 // Sanity checks.
794 // 1) Amount is in the range 0..4
795 CHECK_LE(amount, 4);
796
797 return NewLIR4(widened_opcode, r_dest.GetReg(), r_src1.GetReg(), r_src2.GetReg(),
798 EncodeExtend(ext, amount));
799 }
800
OpRegRegReg(OpKind op,RegStorage r_dest,RegStorage r_src1,RegStorage r_src2)801 LIR* Arm64Mir2Lir::OpRegRegReg(OpKind op, RegStorage r_dest, RegStorage r_src1, RegStorage r_src2) {
802 return OpRegRegRegShift(op, r_dest, r_src1, r_src2, ENCODE_NO_SHIFT);
803 }
804
OpRegRegImm(OpKind op,RegStorage r_dest,RegStorage r_src1,int value)805 LIR* Arm64Mir2Lir::OpRegRegImm(OpKind op, RegStorage r_dest, RegStorage r_src1, int value) {
806 return OpRegRegImm64(op, r_dest, r_src1, static_cast<int64_t>(value));
807 }
808
OpRegRegImm64(OpKind op,RegStorage r_dest,RegStorage r_src1,int64_t value)809 LIR* Arm64Mir2Lir::OpRegRegImm64(OpKind op, RegStorage r_dest, RegStorage r_src1, int64_t value) {
810 LIR* res;
811 bool neg = (value < 0);
812 uint64_t abs_value = (neg & !(value == LLONG_MIN)) ? -value : value;
813 ArmOpcode opcode = kA64Brk1d;
814 ArmOpcode alt_opcode = kA64Brk1d;
815 bool is_logical = false;
816 bool is_wide = r_dest.Is64Bit();
817 ArmOpcode wide = (is_wide) ? WIDE(0) : UNWIDE(0);
818 int info = 0;
819
820 switch (op) {
821 case kOpLsl: {
822 // "lsl w1, w2, #imm" is an alias of "ubfm w1, w2, #(-imm MOD 32), #(31-imm)"
823 // and "lsl x1, x2, #imm" of "ubfm x1, x2, #(-imm MOD 64), #(63-imm)".
824 // For now, we just use ubfm directly.
825 int max_value = (is_wide) ? 63 : 31;
826 return NewLIR4(kA64Ubfm4rrdd | wide, r_dest.GetReg(), r_src1.GetReg(),
827 (-value) & max_value, max_value - value);
828 }
829 case kOpLsr:
830 return NewLIR3(kA64Lsr3rrd | wide, r_dest.GetReg(), r_src1.GetReg(), value);
831 case kOpAsr:
832 return NewLIR3(kA64Asr3rrd | wide, r_dest.GetReg(), r_src1.GetReg(), value);
833 case kOpRor:
834 // "ror r1, r2, #imm" is an alias of "extr r1, r2, r2, #imm".
835 // For now, we just use extr directly.
836 return NewLIR4(kA64Extr4rrrd | wide, r_dest.GetReg(), r_src1.GetReg(), r_src1.GetReg(),
837 value);
838 case kOpAdd:
839 neg = !neg;
840 // Note: intentional fallthrough
841 case kOpSub:
842 // Add and sub below read/write sp rather than xzr.
843 if (abs_value < 0x1000) {
844 opcode = (neg) ? kA64Add4RRdT : kA64Sub4RRdT;
845 return NewLIR4(opcode | wide, r_dest.GetReg(), r_src1.GetReg(), abs_value, 0);
846 } else if ((abs_value & UINT64_C(0xfff)) == 0 && ((abs_value >> 12) < 0x1000)) {
847 opcode = (neg) ? kA64Add4RRdT : kA64Sub4RRdT;
848 return NewLIR4(opcode | wide, r_dest.GetReg(), r_src1.GetReg(), abs_value >> 12, 1);
849 } else {
850 alt_opcode = (op == kOpAdd) ? kA64Add4RRre : kA64Sub4RRre;
851 info = EncodeExtend(is_wide ? kA64Uxtx : kA64Uxtw, 0);
852 }
853 break;
854 case kOpAdc:
855 alt_opcode = kA64Adc3rrr;
856 break;
857 case kOpSbc:
858 alt_opcode = kA64Sbc3rrr;
859 break;
860 case kOpOr:
861 is_logical = true;
862 opcode = kA64Orr3Rrl;
863 alt_opcode = kA64Orr4rrro;
864 break;
865 case kOpAnd:
866 is_logical = true;
867 opcode = kA64And3Rrl;
868 alt_opcode = kA64And4rrro;
869 break;
870 case kOpXor:
871 is_logical = true;
872 opcode = kA64Eor3Rrl;
873 alt_opcode = kA64Eor4rrro;
874 break;
875 case kOpMul:
876 // TUNING: power of 2, shift & add
877 alt_opcode = kA64Mul3rrr;
878 break;
879 default:
880 LOG(FATAL) << "Bad opcode: " << op;
881 }
882
883 if (is_logical) {
884 int log_imm = EncodeLogicalImmediate(is_wide, value);
885 if (log_imm >= 0) {
886 return NewLIR3(opcode | wide, r_dest.GetReg(), r_src1.GetReg(), log_imm);
887 } else {
888 // When the immediate is either 0 or ~0, the logical operation can be trivially reduced
889 // to a - possibly negated - assignment.
890 if (value == 0) {
891 switch (op) {
892 case kOpOr:
893 case kOpXor:
894 // Or/Xor by zero reduces to an assignment.
895 return NewLIR2(kA64Mov2rr | wide, r_dest.GetReg(), r_src1.GetReg());
896 default:
897 // And by zero reduces to a `mov rdest, xzr'.
898 DCHECK(op == kOpAnd);
899 return NewLIR2(kA64Mov2rr | wide, r_dest.GetReg(), (is_wide) ? rxzr : rwzr);
900 }
901 } else if (value == INT64_C(-1)
902 || (!is_wide && static_cast<uint32_t>(value) == ~UINT32_C(0))) {
903 switch (op) {
904 case kOpAnd:
905 // And by -1 reduces to an assignment.
906 return NewLIR2(kA64Mov2rr | wide, r_dest.GetReg(), r_src1.GetReg());
907 case kOpXor:
908 // Xor by -1 reduces to an `mvn rdest, rsrc'.
909 return NewLIR2(kA64Mvn2rr | wide, r_dest.GetReg(), r_src1.GetReg());
910 default:
911 // Or by -1 reduces to a `mvn rdest, xzr'.
912 DCHECK(op == kOpOr);
913 return NewLIR2(kA64Mvn2rr | wide, r_dest.GetReg(), (is_wide) ? rxzr : rwzr);
914 }
915 }
916 }
917 }
918
919 RegStorage r_scratch;
920 if (is_wide) {
921 r_scratch = AllocTempWide();
922 LoadConstantWide(r_scratch, value);
923 } else {
924 r_scratch = AllocTemp();
925 LoadConstant(r_scratch, value);
926 }
927 if (EncodingMap[alt_opcode].flags & IS_QUAD_OP)
928 res = NewLIR4(alt_opcode | wide, r_dest.GetReg(), r_src1.GetReg(), r_scratch.GetReg(), info);
929 else
930 res = NewLIR3(alt_opcode | wide, r_dest.GetReg(), r_src1.GetReg(), r_scratch.GetReg());
931 FreeTemp(r_scratch);
932 return res;
933 }
934
OpRegImm(OpKind op,RegStorage r_dest_src1,int value)935 LIR* Arm64Mir2Lir::OpRegImm(OpKind op, RegStorage r_dest_src1, int value) {
936 return OpRegImm64(op, r_dest_src1, static_cast<int64_t>(value));
937 }
938
OpRegImm64(OpKind op,RegStorage r_dest_src1,int64_t value)939 LIR* Arm64Mir2Lir::OpRegImm64(OpKind op, RegStorage r_dest_src1, int64_t value) {
940 ArmOpcode wide = (r_dest_src1.Is64Bit()) ? WIDE(0) : UNWIDE(0);
941 ArmOpcode opcode = kA64Brk1d;
942 ArmOpcode neg_opcode = kA64Brk1d;
943 bool shift;
944 bool neg = (value < 0);
945 uint64_t abs_value = (neg & !(value == LLONG_MIN)) ? -value : value;
946
947 if (LIKELY(abs_value < 0x1000)) {
948 // abs_value is a 12-bit immediate.
949 shift = false;
950 } else if ((abs_value & UINT64_C(0xfff)) == 0 && ((abs_value >> 12) < 0x1000)) {
951 // abs_value is a shifted 12-bit immediate.
952 shift = true;
953 abs_value >>= 12;
954 } else if (LIKELY(abs_value < 0x1000000 && (op == kOpAdd || op == kOpSub))) {
955 // Note: It is better to use two ADD/SUB instead of loading a number to a temp register.
956 // This works for both normal registers and SP.
957 // For a frame size == 0x2468, it will be encoded as:
958 // sub sp, #0x2000
959 // sub sp, #0x468
960 if (neg) {
961 op = (op == kOpAdd) ? kOpSub : kOpAdd;
962 }
963 OpRegImm64(op, r_dest_src1, abs_value & (~INT64_C(0xfff)));
964 return OpRegImm64(op, r_dest_src1, abs_value & 0xfff);
965 } else {
966 RegStorage r_tmp;
967 LIR* res;
968 if (IS_WIDE(wide)) {
969 r_tmp = AllocTempWide();
970 res = LoadConstantWide(r_tmp, value);
971 } else {
972 r_tmp = AllocTemp();
973 res = LoadConstant(r_tmp, value);
974 }
975 OpRegReg(op, r_dest_src1, r_tmp);
976 FreeTemp(r_tmp);
977 return res;
978 }
979
980 switch (op) {
981 case kOpAdd:
982 neg_opcode = kA64Sub4RRdT;
983 opcode = kA64Add4RRdT;
984 break;
985 case kOpSub:
986 neg_opcode = kA64Add4RRdT;
987 opcode = kA64Sub4RRdT;
988 break;
989 case kOpCmp:
990 neg_opcode = kA64Cmn3RdT;
991 opcode = kA64Cmp3RdT;
992 break;
993 default:
994 LOG(FATAL) << "Bad op-kind in OpRegImm: " << op;
995 break;
996 }
997
998 if (UNLIKELY(neg))
999 opcode = neg_opcode;
1000
1001 if (EncodingMap[opcode].flags & IS_QUAD_OP)
1002 return NewLIR4(opcode | wide, r_dest_src1.GetReg(), r_dest_src1.GetReg(), abs_value,
1003 (shift) ? 1 : 0);
1004 else
1005 return NewLIR3(opcode | wide, r_dest_src1.GetReg(), abs_value, (shift) ? 1 : 0);
1006 }
1007
EncodeShift(int shift_type,int amount)1008 int Arm64Mir2Lir::EncodeShift(int shift_type, int amount) {
1009 DCHECK_EQ(shift_type & 0x3, shift_type);
1010 DCHECK_EQ(amount & 0x3f, amount);
1011 return ((shift_type & 0x3) << 7) | (amount & 0x3f);
1012 }
1013
EncodeExtend(int extend_type,int amount)1014 int Arm64Mir2Lir::EncodeExtend(int extend_type, int amount) {
1015 DCHECK_EQ(extend_type & 0x7, extend_type);
1016 DCHECK_EQ(amount & 0x7, amount);
1017 return (1 << 6) | ((extend_type & 0x7) << 3) | (amount & 0x7);
1018 }
1019
IsExtendEncoding(int encoded_value)1020 bool Arm64Mir2Lir::IsExtendEncoding(int encoded_value) {
1021 return ((1 << 6) & encoded_value) != 0;
1022 }
1023
LoadBaseIndexed(RegStorage r_base,RegStorage r_index,RegStorage r_dest,int scale,OpSize size)1024 LIR* Arm64Mir2Lir::LoadBaseIndexed(RegStorage r_base, RegStorage r_index, RegStorage r_dest,
1025 int scale, OpSize size) {
1026 LIR* load;
1027 int expected_scale = 0;
1028 ArmOpcode opcode = kA64Brk1d;
1029 r_base = Check64BitReg(r_base);
1030
1031 // TODO(Arm64): The sign extension of r_index should be carried out by using an extended
1032 // register offset load (rather than doing the sign extension in a separate instruction).
1033 if (r_index.Is32Bit()) {
1034 // Assemble: ``sxtw xN, wN''.
1035 r_index = As64BitReg(r_index);
1036 NewLIR4(WIDE(kA64Sbfm4rrdd), r_index.GetReg(), r_index.GetReg(), 0, 31);
1037 }
1038
1039 if (r_dest.IsFloat()) {
1040 if (r_dest.IsDouble()) {
1041 DCHECK(size == k64 || size == kDouble);
1042 expected_scale = 3;
1043 opcode = FWIDE(kA64Ldr4fXxG);
1044 } else {
1045 DCHECK(r_dest.IsSingle());
1046 DCHECK(size == k32 || size == kSingle);
1047 expected_scale = 2;
1048 opcode = kA64Ldr4fXxG;
1049 }
1050
1051 DCHECK(scale == 0 || scale == expected_scale);
1052 return NewLIR4(opcode, r_dest.GetReg(), r_base.GetReg(), r_index.GetReg(),
1053 (scale != 0) ? 1 : 0);
1054 }
1055
1056 switch (size) {
1057 case kDouble:
1058 case kWord:
1059 case k64:
1060 r_dest = Check64BitReg(r_dest);
1061 opcode = WIDE(kA64Ldr4rXxG);
1062 expected_scale = 3;
1063 break;
1064 case kSingle: // Intentional fall-through.
1065 case k32: // Intentional fall-through.
1066 case kReference:
1067 r_dest = Check32BitReg(r_dest);
1068 opcode = kA64Ldr4rXxG;
1069 expected_scale = 2;
1070 break;
1071 case kUnsignedHalf:
1072 r_dest = Check32BitReg(r_dest);
1073 opcode = kA64Ldrh4wXxd;
1074 expected_scale = 1;
1075 break;
1076 case kSignedHalf:
1077 r_dest = Check32BitReg(r_dest);
1078 opcode = kA64Ldrsh4rXxd;
1079 expected_scale = 1;
1080 break;
1081 case kUnsignedByte:
1082 r_dest = Check32BitReg(r_dest);
1083 opcode = kA64Ldrb3wXx;
1084 break;
1085 case kSignedByte:
1086 r_dest = Check32BitReg(r_dest);
1087 opcode = kA64Ldrsb3rXx;
1088 break;
1089 default:
1090 LOG(FATAL) << "Bad size: " << size;
1091 }
1092
1093 if (UNLIKELY(expected_scale == 0)) {
1094 // This is a tertiary op (e.g. ldrb, ldrsb), it does not not support scale.
1095 DCHECK_NE(EncodingMap[UNWIDE(opcode)].flags & IS_TERTIARY_OP, 0U);
1096 DCHECK_EQ(scale, 0);
1097 load = NewLIR3(opcode, r_dest.GetReg(), r_base.GetReg(), r_index.GetReg());
1098 } else {
1099 DCHECK(scale == 0 || scale == expected_scale);
1100 load = NewLIR4(opcode, r_dest.GetReg(), r_base.GetReg(), r_index.GetReg(),
1101 (scale != 0) ? 1 : 0);
1102 }
1103
1104 return load;
1105 }
1106
LoadRefIndexed(RegStorage r_base,RegStorage r_index,RegStorage r_dest,int scale)1107 LIR* Arm64Mir2Lir::LoadRefIndexed(RegStorage r_base, RegStorage r_index, RegStorage r_dest,
1108 int scale) {
1109 return LoadBaseIndexed(r_base, r_index, As32BitReg(r_dest), scale, kReference);
1110 }
1111
StoreBaseIndexed(RegStorage r_base,RegStorage r_index,RegStorage r_src,int scale,OpSize size)1112 LIR* Arm64Mir2Lir::StoreBaseIndexed(RegStorage r_base, RegStorage r_index, RegStorage r_src,
1113 int scale, OpSize size) {
1114 LIR* store;
1115 int expected_scale = 0;
1116 ArmOpcode opcode = kA64Brk1d;
1117 r_base = Check64BitReg(r_base);
1118
1119 // TODO(Arm64): The sign extension of r_index should be carried out by using an extended
1120 // register offset store (rather than doing the sign extension in a separate instruction).
1121 if (r_index.Is32Bit()) {
1122 // Assemble: ``sxtw xN, wN''.
1123 r_index = As64BitReg(r_index);
1124 NewLIR4(WIDE(kA64Sbfm4rrdd), r_index.GetReg(), r_index.GetReg(), 0, 31);
1125 }
1126
1127 if (r_src.IsFloat()) {
1128 if (r_src.IsDouble()) {
1129 DCHECK(size == k64 || size == kDouble);
1130 expected_scale = 3;
1131 opcode = FWIDE(kA64Str4fXxG);
1132 } else {
1133 DCHECK(r_src.IsSingle());
1134 DCHECK(size == k32 || size == kSingle);
1135 expected_scale = 2;
1136 opcode = kA64Str4fXxG;
1137 }
1138
1139 DCHECK(scale == 0 || scale == expected_scale);
1140 return NewLIR4(opcode, r_src.GetReg(), r_base.GetReg(), r_index.GetReg(),
1141 (scale != 0) ? 1 : 0);
1142 }
1143
1144 switch (size) {
1145 case kDouble: // Intentional fall-trough.
1146 case kWord: // Intentional fall-trough.
1147 case k64:
1148 r_src = Check64BitReg(r_src);
1149 opcode = WIDE(kA64Str4rXxG);
1150 expected_scale = 3;
1151 break;
1152 case kSingle: // Intentional fall-trough.
1153 case k32: // Intentional fall-trough.
1154 case kReference:
1155 r_src = Check32BitReg(r_src);
1156 opcode = kA64Str4rXxG;
1157 expected_scale = 2;
1158 break;
1159 case kUnsignedHalf:
1160 case kSignedHalf:
1161 r_src = Check32BitReg(r_src);
1162 opcode = kA64Strh4wXxd;
1163 expected_scale = 1;
1164 break;
1165 case kUnsignedByte:
1166 case kSignedByte:
1167 r_src = Check32BitReg(r_src);
1168 opcode = kA64Strb3wXx;
1169 break;
1170 default:
1171 LOG(FATAL) << "Bad size: " << size;
1172 }
1173
1174 if (UNLIKELY(expected_scale == 0)) {
1175 // This is a tertiary op (e.g. strb), it does not not support scale.
1176 DCHECK_NE(EncodingMap[UNWIDE(opcode)].flags & IS_TERTIARY_OP, 0U);
1177 DCHECK_EQ(scale, 0);
1178 store = NewLIR3(opcode, r_src.GetReg(), r_base.GetReg(), r_index.GetReg());
1179 } else {
1180 store = NewLIR4(opcode, r_src.GetReg(), r_base.GetReg(), r_index.GetReg(),
1181 (scale != 0) ? 1 : 0);
1182 }
1183
1184 return store;
1185 }
1186
StoreRefIndexed(RegStorage r_base,RegStorage r_index,RegStorage r_src,int scale)1187 LIR* Arm64Mir2Lir::StoreRefIndexed(RegStorage r_base, RegStorage r_index, RegStorage r_src,
1188 int scale) {
1189 return StoreBaseIndexed(r_base, r_index, As32BitReg(r_src), scale, kReference);
1190 }
1191
1192 /*
1193 * Load value from base + displacement. Optionally perform null check
1194 * on base (which must have an associated s_reg and MIR). If not
1195 * performing null check, incoming MIR can be null.
1196 */
LoadBaseDispBody(RegStorage r_base,int displacement,RegStorage r_dest,OpSize size)1197 LIR* Arm64Mir2Lir::LoadBaseDispBody(RegStorage r_base, int displacement, RegStorage r_dest,
1198 OpSize size) {
1199 LIR* load = NULL;
1200 ArmOpcode opcode = kA64Brk1d;
1201 ArmOpcode alt_opcode = kA64Brk1d;
1202 int scale = 0;
1203
1204 switch (size) {
1205 case kDouble: // Intentional fall-through.
1206 case kWord: // Intentional fall-through.
1207 case k64:
1208 r_dest = Check64BitReg(r_dest);
1209 scale = 3;
1210 if (r_dest.IsFloat()) {
1211 DCHECK(r_dest.IsDouble());
1212 opcode = FWIDE(kA64Ldr3fXD);
1213 alt_opcode = FWIDE(kA64Ldur3fXd);
1214 } else {
1215 opcode = WIDE(kA64Ldr3rXD);
1216 alt_opcode = WIDE(kA64Ldur3rXd);
1217 }
1218 break;
1219 case kSingle: // Intentional fall-through.
1220 case k32: // Intentional fall-trough.
1221 case kReference:
1222 r_dest = Check32BitReg(r_dest);
1223 scale = 2;
1224 if (r_dest.IsFloat()) {
1225 DCHECK(r_dest.IsSingle());
1226 opcode = kA64Ldr3fXD;
1227 } else {
1228 opcode = kA64Ldr3rXD;
1229 }
1230 break;
1231 case kUnsignedHalf:
1232 scale = 1;
1233 opcode = kA64Ldrh3wXF;
1234 break;
1235 case kSignedHalf:
1236 scale = 1;
1237 opcode = kA64Ldrsh3rXF;
1238 break;
1239 case kUnsignedByte:
1240 opcode = kA64Ldrb3wXd;
1241 break;
1242 case kSignedByte:
1243 opcode = kA64Ldrsb3rXd;
1244 break;
1245 default:
1246 LOG(FATAL) << "Bad size: " << size;
1247 }
1248
1249 bool displacement_is_aligned = (displacement & ((1 << scale) - 1)) == 0;
1250 int scaled_disp = displacement >> scale;
1251 if (displacement_is_aligned && scaled_disp >= 0 && scaled_disp < 4096) {
1252 // Can use scaled load.
1253 load = NewLIR3(opcode, r_dest.GetReg(), r_base.GetReg(), scaled_disp);
1254 } else if (alt_opcode != kA64Brk1d && IS_SIGNED_IMM9(displacement)) {
1255 // Can use unscaled load.
1256 load = NewLIR3(alt_opcode, r_dest.GetReg(), r_base.GetReg(), displacement);
1257 } else {
1258 // Use long sequence.
1259 // TODO: cleaner support for index/displacement registers? Not a reference, but must match width.
1260 RegStorage r_scratch = AllocTempWide();
1261 LoadConstantWide(r_scratch, displacement);
1262 load = LoadBaseIndexed(r_base, r_scratch, r_dest, 0, size);
1263 FreeTemp(r_scratch);
1264 }
1265
1266 // TODO: in future may need to differentiate Dalvik accesses w/ spills
1267 if (mem_ref_type_ == ResourceMask::kDalvikReg) {
1268 DCHECK(r_base == rs_sp);
1269 AnnotateDalvikRegAccess(load, displacement >> 2, true /* is_load */, r_dest.Is64Bit());
1270 }
1271 return load;
1272 }
1273
LoadBaseDisp(RegStorage r_base,int displacement,RegStorage r_dest,OpSize size,VolatileKind is_volatile)1274 LIR* Arm64Mir2Lir::LoadBaseDisp(RegStorage r_base, int displacement, RegStorage r_dest,
1275 OpSize size, VolatileKind is_volatile) {
1276 // LoadBaseDisp() will emit correct insn for atomic load on arm64
1277 // assuming r_dest is correctly prepared using RegClassForFieldLoadStore().
1278
1279 LIR* load = LoadBaseDispBody(r_base, displacement, r_dest, size);
1280
1281 if (UNLIKELY(is_volatile == kVolatile)) {
1282 // TODO: This should generate an acquire load instead of the barrier.
1283 GenMemBarrier(kLoadAny);
1284 }
1285
1286 return load;
1287 }
1288
LoadRefDisp(RegStorage r_base,int displacement,RegStorage r_dest,VolatileKind is_volatile)1289 LIR* Arm64Mir2Lir::LoadRefDisp(RegStorage r_base, int displacement, RegStorage r_dest,
1290 VolatileKind is_volatile) {
1291 return LoadBaseDisp(r_base, displacement, As32BitReg(r_dest), kReference, is_volatile);
1292 }
1293
StoreBaseDispBody(RegStorage r_base,int displacement,RegStorage r_src,OpSize size)1294 LIR* Arm64Mir2Lir::StoreBaseDispBody(RegStorage r_base, int displacement, RegStorage r_src,
1295 OpSize size) {
1296 LIR* store = NULL;
1297 ArmOpcode opcode = kA64Brk1d;
1298 ArmOpcode alt_opcode = kA64Brk1d;
1299 int scale = 0;
1300
1301 switch (size) {
1302 case kDouble: // Intentional fall-through.
1303 case kWord: // Intentional fall-through.
1304 case k64:
1305 r_src = Check64BitReg(r_src);
1306 scale = 3;
1307 if (r_src.IsFloat()) {
1308 DCHECK(r_src.IsDouble());
1309 opcode = FWIDE(kA64Str3fXD);
1310 alt_opcode = FWIDE(kA64Stur3fXd);
1311 } else {
1312 opcode = FWIDE(kA64Str3rXD);
1313 alt_opcode = FWIDE(kA64Stur3rXd);
1314 }
1315 break;
1316 case kSingle: // Intentional fall-through.
1317 case k32: // Intentional fall-trough.
1318 case kReference:
1319 r_src = Check32BitReg(r_src);
1320 scale = 2;
1321 if (r_src.IsFloat()) {
1322 DCHECK(r_src.IsSingle());
1323 opcode = kA64Str3fXD;
1324 } else {
1325 opcode = kA64Str3rXD;
1326 }
1327 break;
1328 case kUnsignedHalf:
1329 case kSignedHalf:
1330 scale = 1;
1331 opcode = kA64Strh3wXF;
1332 break;
1333 case kUnsignedByte:
1334 case kSignedByte:
1335 opcode = kA64Strb3wXd;
1336 break;
1337 default:
1338 LOG(FATAL) << "Bad size: " << size;
1339 }
1340
1341 bool displacement_is_aligned = (displacement & ((1 << scale) - 1)) == 0;
1342 int scaled_disp = displacement >> scale;
1343 if (displacement_is_aligned && scaled_disp >= 0 && scaled_disp < 4096) {
1344 // Can use scaled store.
1345 store = NewLIR3(opcode, r_src.GetReg(), r_base.GetReg(), scaled_disp);
1346 } else if (alt_opcode != kA64Brk1d && IS_SIGNED_IMM9(displacement)) {
1347 // Can use unscaled store.
1348 store = NewLIR3(alt_opcode, r_src.GetReg(), r_base.GetReg(), displacement);
1349 } else {
1350 // Use long sequence.
1351 RegStorage r_scratch = AllocTempWide();
1352 LoadConstantWide(r_scratch, displacement);
1353 store = StoreBaseIndexed(r_base, r_scratch, r_src, 0, size);
1354 FreeTemp(r_scratch);
1355 }
1356
1357 // TODO: In future, may need to differentiate Dalvik & spill accesses.
1358 if (mem_ref_type_ == ResourceMask::kDalvikReg) {
1359 DCHECK(r_base == rs_sp);
1360 AnnotateDalvikRegAccess(store, displacement >> 2, false /* is_load */, r_src.Is64Bit());
1361 }
1362 return store;
1363 }
1364
StoreBaseDisp(RegStorage r_base,int displacement,RegStorage r_src,OpSize size,VolatileKind is_volatile)1365 LIR* Arm64Mir2Lir::StoreBaseDisp(RegStorage r_base, int displacement, RegStorage r_src,
1366 OpSize size, VolatileKind is_volatile) {
1367 // TODO: This should generate a release store and no barriers.
1368 if (UNLIKELY(is_volatile == kVolatile)) {
1369 // Ensure that prior accesses become visible to other threads first.
1370 GenMemBarrier(kAnyStore);
1371 }
1372
1373 // StoreBaseDisp() will emit correct insn for atomic store on arm64
1374 // assuming r_dest is correctly prepared using RegClassForFieldLoadStore().
1375
1376 LIR* store = StoreBaseDispBody(r_base, displacement, r_src, size);
1377
1378 if (UNLIKELY(is_volatile == kVolatile)) {
1379 // Preserve order with respect to any subsequent volatile loads.
1380 // We need StoreLoad, but that generally requires the most expensive barrier.
1381 GenMemBarrier(kAnyAny);
1382 }
1383
1384 return store;
1385 }
1386
StoreRefDisp(RegStorage r_base,int displacement,RegStorage r_src,VolatileKind is_volatile)1387 LIR* Arm64Mir2Lir::StoreRefDisp(RegStorage r_base, int displacement, RegStorage r_src,
1388 VolatileKind is_volatile) {
1389 return StoreBaseDisp(r_base, displacement, As32BitReg(r_src), kReference, is_volatile);
1390 }
1391
OpFpRegCopy(RegStorage r_dest,RegStorage r_src)1392 LIR* Arm64Mir2Lir::OpFpRegCopy(RegStorage r_dest, RegStorage r_src) {
1393 LOG(FATAL) << "Unexpected use of OpFpRegCopy for Arm64";
1394 return NULL;
1395 }
1396
OpMem(OpKind op,RegStorage r_base,int disp)1397 LIR* Arm64Mir2Lir::OpMem(OpKind op, RegStorage r_base, int disp) {
1398 LOG(FATAL) << "Unexpected use of OpMem for Arm64";
1399 return NULL;
1400 }
1401
InvokeTrampoline(OpKind op,RegStorage r_tgt,QuickEntrypointEnum trampoline)1402 LIR* Arm64Mir2Lir::InvokeTrampoline(OpKind op, RegStorage r_tgt, QuickEntrypointEnum trampoline) {
1403 return OpReg(op, r_tgt);
1404 }
1405
1406 } // namespace art
1407