1 /*
2  * Copyright (C) 2012 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 /* This file contains codegen for the X86 ISA */
18 
19 #include "codegen_x86.h"
20 #include "dex/quick/mir_to_lir-inl.h"
21 #include "gc/accounting/card_table.h"
22 #include "x86_lir.h"
23 
24 namespace art {
25 
26 /*
27  * The sparse table in the literal pool is an array of <key,displacement>
28  * pairs.
29  */
GenLargeSparseSwitch(MIR * mir,DexOffset table_offset,RegLocation rl_src)30 void X86Mir2Lir::GenLargeSparseSwitch(MIR* mir, DexOffset table_offset, RegLocation rl_src) {
31   const uint16_t* table = cu_->insns + current_dalvik_offset_ + table_offset;
32   if (cu_->verbose) {
33     DumpSparseSwitchTable(table);
34   }
35   int entries = table[1];
36   const int32_t* keys = reinterpret_cast<const int32_t*>(&table[2]);
37   const int32_t* targets = &keys[entries];
38   rl_src = LoadValue(rl_src, kCoreReg);
39   for (int i = 0; i < entries; i++) {
40     int key = keys[i];
41     BasicBlock* case_block =
42         mir_graph_->FindBlock(current_dalvik_offset_ + targets[i]);
43     OpCmpImmBranch(kCondEq, rl_src.reg, key, &block_label_list_[case_block->id]);
44   }
45 }
46 
47 /*
48  * Code pattern will look something like:
49  *
50  * mov  r_val, ..
51  * call 0
52  * pop  r_start_of_method
53  * sub  r_start_of_method, ..
54  * mov  r_key_reg, r_val
55  * sub  r_key_reg, low_key
56  * cmp  r_key_reg, size-1  ; bound check
57  * ja   done
58  * mov  r_disp, [r_start_of_method + r_key_reg * 4 + table_offset]
59  * add  r_start_of_method, r_disp
60  * jmp  r_start_of_method
61  * done:
62  */
GenLargePackedSwitch(MIR * mir,DexOffset table_offset,RegLocation rl_src)63 void X86Mir2Lir::GenLargePackedSwitch(MIR* mir, DexOffset table_offset, RegLocation rl_src) {
64   const uint16_t* table = cu_->insns + current_dalvik_offset_ + table_offset;
65   if (cu_->verbose) {
66     DumpPackedSwitchTable(table);
67   }
68   // Add the table to the list - we'll process it later
69   SwitchTable* tab_rec =
70       static_cast<SwitchTable*>(arena_->Alloc(sizeof(SwitchTable), kArenaAllocData));
71   tab_rec->table = table;
72   tab_rec->vaddr = current_dalvik_offset_;
73   int size = table[1];
74   tab_rec->targets = static_cast<LIR**>(arena_->Alloc(size * sizeof(LIR*),
75                                                       kArenaAllocLIR));
76   switch_tables_.Insert(tab_rec);
77 
78   // Get the switch value
79   rl_src = LoadValue(rl_src, kCoreReg);
80   // NewLIR0(kX86Bkpt);
81 
82   // Materialize a pointer to the switch table
83   RegStorage start_of_method_reg;
84   if (base_of_code_ != nullptr) {
85     // We can use the saved value.
86     RegLocation rl_method = mir_graph_->GetRegLocation(base_of_code_->s_reg_low);
87     if (rl_method.wide) {
88       rl_method = LoadValueWide(rl_method, kCoreReg);
89     } else {
90       rl_method = LoadValue(rl_method, kCoreReg);
91     }
92     start_of_method_reg = rl_method.reg;
93     store_method_addr_used_ = true;
94   } else {
95     start_of_method_reg = AllocTempRef();
96     NewLIR1(kX86StartOfMethod, start_of_method_reg.GetReg());
97   }
98   DCHECK_EQ(start_of_method_reg.Is64Bit(), cu_->target64);
99   int low_key = s4FromSwitchData(&table[2]);
100   RegStorage keyReg;
101   // Remove the bias, if necessary
102   if (low_key == 0) {
103     keyReg = rl_src.reg;
104   } else {
105     keyReg = AllocTemp();
106     OpRegRegImm(kOpSub, keyReg, rl_src.reg, low_key);
107   }
108   // Bounds check - if < 0 or >= size continue following switch
109   OpRegImm(kOpCmp, keyReg, size - 1);
110   LIR* branch_over = OpCondBranch(kCondHi, NULL);
111 
112   // Load the displacement from the switch table
113   RegStorage disp_reg = AllocTemp();
114   NewLIR5(kX86PcRelLoadRA, disp_reg.GetReg(), start_of_method_reg.GetReg(), keyReg.GetReg(),
115           2, WrapPointer(tab_rec));
116   // Add displacement to start of method
117   OpRegReg(kOpAdd, start_of_method_reg, cu_->target64 ? As64BitReg(disp_reg) : disp_reg);
118   // ..and go!
119   LIR* switch_branch = NewLIR1(kX86JmpR, start_of_method_reg.GetReg());
120   tab_rec->anchor = switch_branch;
121 
122   /* branch_over target here */
123   LIR* target = NewLIR0(kPseudoTargetLabel);
124   branch_over->target = target;
125 }
126 
127 /*
128  * Array data table format:
129  *  ushort ident = 0x0300   magic value
130  *  ushort width            width of each element in the table
131  *  uint   size             number of elements in the table
132  *  ubyte  data[size*width] table of data values (may contain a single-byte
133  *                          padding at the end)
134  *
135  * Total size is 4+(width * size + 1)/2 16-bit code units.
136  */
GenFillArrayData(DexOffset table_offset,RegLocation rl_src)137 void X86Mir2Lir::GenFillArrayData(DexOffset table_offset, RegLocation rl_src) {
138   const uint16_t* table = cu_->insns + current_dalvik_offset_ + table_offset;
139   // Add the table to the list - we'll process it later
140   FillArrayData* tab_rec =
141       static_cast<FillArrayData*>(arena_->Alloc(sizeof(FillArrayData), kArenaAllocData));
142   tab_rec->table = table;
143   tab_rec->vaddr = current_dalvik_offset_;
144   uint16_t width = tab_rec->table[1];
145   uint32_t size = tab_rec->table[2] | ((static_cast<uint32_t>(tab_rec->table[3])) << 16);
146   tab_rec->size = (size * width) + 8;
147 
148   fill_array_data_.Insert(tab_rec);
149 
150   // Making a call - use explicit registers
151   FlushAllRegs();   /* Everything to home location */
152   RegStorage array_ptr = TargetReg(kArg0, kRef);
153   RegStorage payload = TargetPtrReg(kArg1);
154   RegStorage method_start = TargetPtrReg(kArg2);
155 
156   LoadValueDirectFixed(rl_src, array_ptr);
157   // Materialize a pointer to the fill data image
158   if (base_of_code_ != nullptr) {
159     // We can use the saved value.
160     RegLocation rl_method = mir_graph_->GetRegLocation(base_of_code_->s_reg_low);
161     if (rl_method.wide) {
162       LoadValueDirectWide(rl_method, method_start);
163     } else {
164       LoadValueDirect(rl_method, method_start);
165     }
166     store_method_addr_used_ = true;
167   } else {
168     NewLIR1(kX86StartOfMethod, method_start.GetReg());
169   }
170   NewLIR2(kX86PcRelAdr, payload.GetReg(), WrapPointer(tab_rec));
171   OpRegReg(kOpAdd, payload, method_start);
172   CallRuntimeHelperRegReg(kQuickHandleFillArrayData, array_ptr, payload, true);
173 }
174 
GenMoveException(RegLocation rl_dest)175 void X86Mir2Lir::GenMoveException(RegLocation rl_dest) {
176   int ex_offset = cu_->target64 ?
177       Thread::ExceptionOffset<8>().Int32Value() :
178       Thread::ExceptionOffset<4>().Int32Value();
179   RegLocation rl_result = EvalLoc(rl_dest, kRefReg, true);
180   NewLIR2(cu_->target64 ? kX86Mov64RT : kX86Mov32RT, rl_result.reg.GetReg(), ex_offset);
181   NewLIR2(cu_->target64 ? kX86Mov64TI : kX86Mov32TI, ex_offset, 0);
182   StoreValue(rl_dest, rl_result);
183 }
184 
185 /*
186  * Mark garbage collection card. Skip if the value we're storing is null.
187  */
MarkGCCard(RegStorage val_reg,RegStorage tgt_addr_reg)188 void X86Mir2Lir::MarkGCCard(RegStorage val_reg, RegStorage tgt_addr_reg) {
189   DCHECK_EQ(tgt_addr_reg.Is64Bit(), cu_->target64);
190   DCHECK_EQ(val_reg.Is64Bit(), cu_->target64);
191   RegStorage reg_card_base = AllocTempRef();
192   RegStorage reg_card_no = AllocTempRef();
193   LIR* branch_over = OpCmpImmBranch(kCondEq, val_reg, 0, NULL);
194   int ct_offset = cu_->target64 ?
195       Thread::CardTableOffset<8>().Int32Value() :
196       Thread::CardTableOffset<4>().Int32Value();
197   NewLIR2(cu_->target64 ? kX86Mov64RT : kX86Mov32RT, reg_card_base.GetReg(), ct_offset);
198   OpRegRegImm(kOpLsr, reg_card_no, tgt_addr_reg, gc::accounting::CardTable::kCardShift);
199   StoreBaseIndexed(reg_card_base, reg_card_no, reg_card_base, 0, kUnsignedByte);
200   LIR* target = NewLIR0(kPseudoTargetLabel);
201   branch_over->target = target;
202   FreeTemp(reg_card_base);
203   FreeTemp(reg_card_no);
204 }
205 
GenEntrySequence(RegLocation * ArgLocs,RegLocation rl_method)206 void X86Mir2Lir::GenEntrySequence(RegLocation* ArgLocs, RegLocation rl_method) {
207   /*
208    * On entry, rX86_ARG0, rX86_ARG1, rX86_ARG2 are live.  Let the register
209    * allocation mechanism know so it doesn't try to use any of them when
210    * expanding the frame or flushing.  This leaves the utility
211    * code with no spare temps.
212    */
213   LockTemp(rs_rX86_ARG0);
214   LockTemp(rs_rX86_ARG1);
215   LockTemp(rs_rX86_ARG2);
216 
217   /*
218    * We can safely skip the stack overflow check if we're
219    * a leaf *and* our frame size < fudge factor.
220    */
221   InstructionSet isa =  cu_->target64 ? kX86_64 : kX86;
222   bool skip_overflow_check = mir_graph_->MethodIsLeaf() && !FrameNeedsStackCheck(frame_size_, isa);
223 
224   // If we doing an implicit stack overflow check, perform the load immediately
225   // before the stack pointer is decremented and anything is saved.
226   if (!skip_overflow_check &&
227       cu_->compiler_driver->GetCompilerOptions().GetImplicitStackOverflowChecks()) {
228     // Implicit stack overflow check.
229     // test eax,[esp + -overflow]
230     int overflow = GetStackOverflowReservedBytes(isa);
231     NewLIR3(kX86Test32RM, rs_rAX.GetReg(), rs_rX86_SP.GetReg(), -overflow);
232     MarkPossibleStackOverflowException();
233   }
234 
235   /* Build frame, return address already on stack */
236   stack_decrement_ = OpRegImm(kOpSub, rs_rX86_SP, frame_size_ -
237                               GetInstructionSetPointerSize(cu_->instruction_set));
238 
239   NewLIR0(kPseudoMethodEntry);
240   /* Spill core callee saves */
241   SpillCoreRegs();
242   SpillFPRegs();
243   if (!skip_overflow_check) {
244     class StackOverflowSlowPath : public LIRSlowPath {
245      public:
246       StackOverflowSlowPath(Mir2Lir* m2l, LIR* branch, size_t sp_displace)
247           : LIRSlowPath(m2l, m2l->GetCurrentDexPc(), branch, nullptr), sp_displace_(sp_displace) {
248       }
249       void Compile() OVERRIDE {
250         m2l_->ResetRegPool();
251         m2l_->ResetDefTracking();
252         GenerateTargetLabel(kPseudoThrowTarget);
253         m2l_->OpRegImm(kOpAdd, rs_rX86_SP, sp_displace_);
254         m2l_->ClobberCallerSave();
255         // Assumes codegen and target are in thumb2 mode.
256         m2l_->CallHelper(RegStorage::InvalidReg(), kQuickThrowStackOverflow,
257                          false /* MarkSafepointPC */, false /* UseLink */);
258       }
259 
260      private:
261       const size_t sp_displace_;
262     };
263     if (!cu_->compiler_driver->GetCompilerOptions().GetImplicitStackOverflowChecks()) {
264       // TODO: for large frames we should do something like:
265       // spill ebp
266       // lea ebp, [esp + frame_size]
267       // cmp ebp, fs:[stack_end_]
268       // jcc stack_overflow_exception
269       // mov esp, ebp
270       // in case a signal comes in that's not using an alternate signal stack and the large frame
271       // may have moved us outside of the reserved area at the end of the stack.
272       // cmp rs_rX86_SP, fs:[stack_end_]; jcc throw_slowpath
273       if (cu_->target64) {
274         OpRegThreadMem(kOpCmp, rs_rX86_SP, Thread::StackEndOffset<8>());
275       } else {
276         OpRegThreadMem(kOpCmp, rs_rX86_SP, Thread::StackEndOffset<4>());
277       }
278       LIR* branch = OpCondBranch(kCondUlt, nullptr);
279       AddSlowPath(
280         new(arena_)StackOverflowSlowPath(this, branch,
281                                          frame_size_ -
282                                          GetInstructionSetPointerSize(cu_->instruction_set)));
283     }
284   }
285 
286   FlushIns(ArgLocs, rl_method);
287 
288   if (base_of_code_ != nullptr) {
289     RegStorage method_start = TargetPtrReg(kArg0);
290     // We have been asked to save the address of the method start for later use.
291     setup_method_address_[0] = NewLIR1(kX86StartOfMethod, method_start.GetReg());
292     int displacement = SRegOffset(base_of_code_->s_reg_low);
293     // Native pointer - must be natural word size.
294     setup_method_address_[1] = StoreBaseDisp(rs_rX86_SP, displacement, method_start,
295                                              cu_->target64 ? k64 : k32, kNotVolatile);
296   }
297 
298   FreeTemp(rs_rX86_ARG0);
299   FreeTemp(rs_rX86_ARG1);
300   FreeTemp(rs_rX86_ARG2);
301 }
302 
GenExitSequence()303 void X86Mir2Lir::GenExitSequence() {
304   /*
305    * In the exit path, rX86_RET0/rX86_RET1 are live - make sure they aren't
306    * allocated by the register utilities as temps.
307    */
308   LockTemp(rs_rX86_RET0);
309   LockTemp(rs_rX86_RET1);
310 
311   NewLIR0(kPseudoMethodExit);
312   UnSpillCoreRegs();
313   UnSpillFPRegs();
314   /* Remove frame except for return address */
315   stack_increment_ = OpRegImm(kOpAdd, rs_rX86_SP, frame_size_ - GetInstructionSetPointerSize(cu_->instruction_set));
316   NewLIR0(kX86Ret);
317 }
318 
GenSpecialExitSequence()319 void X86Mir2Lir::GenSpecialExitSequence() {
320   NewLIR0(kX86Ret);
321 }
322 
GenImplicitNullCheck(RegStorage reg,int opt_flags)323 void X86Mir2Lir::GenImplicitNullCheck(RegStorage reg, int opt_flags) {
324   if (!(cu_->disable_opt & (1 << kNullCheckElimination)) && (opt_flags & MIR_IGNORE_NULL_CHECK)) {
325     return;
326   }
327   // Implicit null pointer check.
328   // test eax,[arg1+0]
329   NewLIR3(kX86Test32RM, rs_rAX.GetReg(), reg.GetReg(), 0);
330   MarkPossibleNullPointerException(opt_flags);
331 }
332 
333 }  // namespace art
334