1 /* 2 * Copyright (C) 2011 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17 #ifndef ART_COMPILER_UTILS_ASSEMBLER_H_ 18 #define ART_COMPILER_UTILS_ASSEMBLER_H_ 19 20 #include <vector> 21 22 #include "base/logging.h" 23 #include "base/macros.h" 24 #include "arm/constants_arm.h" 25 #include "mips/constants_mips.h" 26 #include "x86/constants_x86.h" 27 #include "x86_64/constants_x86_64.h" 28 #include "instruction_set.h" 29 #include "managed_register.h" 30 #include "memory_region.h" 31 #include "offsets.h" 32 33 namespace art { 34 35 class Assembler; 36 class AssemblerBuffer; 37 class AssemblerFixup; 38 39 namespace arm { 40 class ArmAssembler; 41 class Arm32Assembler; 42 class Thumb2Assembler; 43 } 44 namespace arm64 { 45 class Arm64Assembler; 46 } 47 namespace mips { 48 class MipsAssembler; 49 } 50 namespace x86 { 51 class X86Assembler; 52 } 53 namespace x86_64 { 54 class X86_64Assembler; 55 } 56 57 class ExternalLabel { 58 public: ExternalLabel(const char * name,uword address)59 ExternalLabel(const char* name, uword address) 60 : name_(name), address_(address) { 61 DCHECK(name != nullptr); 62 } 63 name()64 const char* name() const { return name_; } address()65 uword address() const { 66 return address_; 67 } 68 69 private: 70 const char* name_; 71 const uword address_; 72 }; 73 74 class Label { 75 public: Label()76 Label() : position_(0) {} 77 ~Label()78 ~Label() { 79 // Assert if label is being destroyed with unresolved branches pending. 80 CHECK(!IsLinked()); 81 } 82 83 // Returns the position for bound and linked labels. Cannot be used 84 // for unused labels. Position()85 int Position() const { 86 CHECK(!IsUnused()); 87 return IsBound() ? -position_ - kPointerSize : position_ - kPointerSize; 88 } 89 LinkPosition()90 int LinkPosition() const { 91 CHECK(IsLinked()); 92 return position_ - kPointerSize; 93 } 94 IsBound()95 bool IsBound() const { return position_ < 0; } IsUnused()96 bool IsUnused() const { return position_ == 0; } IsLinked()97 bool IsLinked() const { return position_ > 0; } 98 99 private: 100 int position_; 101 Reinitialize()102 void Reinitialize() { 103 position_ = 0; 104 } 105 BindTo(int position)106 void BindTo(int position) { 107 CHECK(!IsBound()); 108 position_ = -position - kPointerSize; 109 CHECK(IsBound()); 110 } 111 LinkTo(int position)112 void LinkTo(int position) { 113 CHECK(!IsBound()); 114 position_ = position + kPointerSize; 115 CHECK(IsLinked()); 116 } 117 118 friend class arm::ArmAssembler; 119 friend class arm::Arm32Assembler; 120 friend class arm::Thumb2Assembler; 121 friend class mips::MipsAssembler; 122 friend class x86::X86Assembler; 123 friend class x86_64::X86_64Assembler; 124 125 DISALLOW_COPY_AND_ASSIGN(Label); 126 }; 127 128 129 // Assembler fixups are positions in generated code that require processing 130 // after the code has been copied to executable memory. This includes building 131 // relocation information. 132 class AssemblerFixup { 133 public: 134 virtual void Process(const MemoryRegion& region, int position) = 0; ~AssemblerFixup()135 virtual ~AssemblerFixup() {} 136 137 private: 138 AssemblerFixup* previous_; 139 int position_; 140 previous()141 AssemblerFixup* previous() const { return previous_; } set_previous(AssemblerFixup * previous)142 void set_previous(AssemblerFixup* previous) { previous_ = previous; } 143 position()144 int position() const { return position_; } set_position(int position)145 void set_position(int position) { position_ = position; } 146 147 friend class AssemblerBuffer; 148 }; 149 150 // Parent of all queued slow paths, emitted during finalization 151 class SlowPath { 152 public: SlowPath()153 SlowPath() : next_(NULL) {} ~SlowPath()154 virtual ~SlowPath() {} 155 Continuation()156 Label* Continuation() { return &continuation_; } Entry()157 Label* Entry() { return &entry_; } 158 // Generate code for slow path 159 virtual void Emit(Assembler *sp_asm) = 0; 160 161 protected: 162 // Entry branched to by fast path 163 Label entry_; 164 // Optional continuation that is branched to at the end of the slow path 165 Label continuation_; 166 // Next in linked list of slow paths 167 SlowPath *next_; 168 169 private: 170 friend class AssemblerBuffer; 171 DISALLOW_COPY_AND_ASSIGN(SlowPath); 172 }; 173 174 class AssemblerBuffer { 175 public: 176 AssemblerBuffer(); 177 ~AssemblerBuffer(); 178 179 // Basic support for emitting, loading, and storing. Emit(T value)180 template<typename T> void Emit(T value) { 181 CHECK(HasEnsuredCapacity()); 182 *reinterpret_cast<T*>(cursor_) = value; 183 cursor_ += sizeof(T); 184 } 185 Load(size_t position)186 template<typename T> T Load(size_t position) { 187 CHECK_LE(position, Size() - static_cast<int>(sizeof(T))); 188 return *reinterpret_cast<T*>(contents_ + position); 189 } 190 Store(size_t position,T value)191 template<typename T> void Store(size_t position, T value) { 192 CHECK_LE(position, Size() - static_cast<int>(sizeof(T))); 193 *reinterpret_cast<T*>(contents_ + position) = value; 194 } 195 Move(size_t newposition,size_t oldposition)196 void Move(size_t newposition, size_t oldposition) { 197 CHECK(HasEnsuredCapacity()); 198 // Move the contents of the buffer from oldposition to 199 // newposition by nbytes. 200 size_t nbytes = Size() - oldposition; 201 memmove(contents_ + newposition, contents_ + oldposition, nbytes); 202 cursor_ += newposition - oldposition; 203 } 204 205 // Emit a fixup at the current location. EmitFixup(AssemblerFixup * fixup)206 void EmitFixup(AssemblerFixup* fixup) { 207 fixup->set_previous(fixup_); 208 fixup->set_position(Size()); 209 fixup_ = fixup; 210 } 211 EnqueueSlowPath(SlowPath * slowpath)212 void EnqueueSlowPath(SlowPath* slowpath) { 213 if (slow_path_ == NULL) { 214 slow_path_ = slowpath; 215 } else { 216 SlowPath* cur = slow_path_; 217 for ( ; cur->next_ != NULL ; cur = cur->next_) {} 218 cur->next_ = slowpath; 219 } 220 } 221 EmitSlowPaths(Assembler * sp_asm)222 void EmitSlowPaths(Assembler* sp_asm) { 223 SlowPath* cur = slow_path_; 224 SlowPath* next = NULL; 225 slow_path_ = NULL; 226 for ( ; cur != NULL ; cur = next) { 227 cur->Emit(sp_asm); 228 next = cur->next_; 229 delete cur; 230 } 231 } 232 233 // Get the size of the emitted code. Size()234 size_t Size() const { 235 CHECK_GE(cursor_, contents_); 236 return cursor_ - contents_; 237 } 238 contents()239 byte* contents() const { return contents_; } 240 241 // Copy the assembled instructions into the specified memory block 242 // and apply all fixups. 243 void FinalizeInstructions(const MemoryRegion& region); 244 245 // To emit an instruction to the assembler buffer, the EnsureCapacity helper 246 // must be used to guarantee that the underlying data area is big enough to 247 // hold the emitted instruction. Usage: 248 // 249 // AssemblerBuffer buffer; 250 // AssemblerBuffer::EnsureCapacity ensured(&buffer); 251 // ... emit bytes for single instruction ... 252 253 #ifndef NDEBUG 254 255 class EnsureCapacity { 256 public: EnsureCapacity(AssemblerBuffer * buffer)257 explicit EnsureCapacity(AssemblerBuffer* buffer) { 258 if (buffer->cursor() >= buffer->limit()) { 259 buffer->ExtendCapacity(); 260 } 261 // In debug mode, we save the assembler buffer along with the gap 262 // size before we start emitting to the buffer. This allows us to 263 // check that any single generated instruction doesn't overflow the 264 // limit implied by the minimum gap size. 265 buffer_ = buffer; 266 gap_ = ComputeGap(); 267 // Make sure that extending the capacity leaves a big enough gap 268 // for any kind of instruction. 269 CHECK_GE(gap_, kMinimumGap); 270 // Mark the buffer as having ensured the capacity. 271 CHECK(!buffer->HasEnsuredCapacity()); // Cannot nest. 272 buffer->has_ensured_capacity_ = true; 273 } 274 ~EnsureCapacity()275 ~EnsureCapacity() { 276 // Unmark the buffer, so we cannot emit after this. 277 buffer_->has_ensured_capacity_ = false; 278 // Make sure the generated instruction doesn't take up more 279 // space than the minimum gap. 280 int delta = gap_ - ComputeGap(); 281 CHECK_LE(delta, kMinimumGap); 282 } 283 284 private: 285 AssemblerBuffer* buffer_; 286 int gap_; 287 ComputeGap()288 int ComputeGap() { return buffer_->Capacity() - buffer_->Size(); } 289 }; 290 291 bool has_ensured_capacity_; HasEnsuredCapacity()292 bool HasEnsuredCapacity() const { return has_ensured_capacity_; } 293 294 #else 295 296 class EnsureCapacity { 297 public: EnsureCapacity(AssemblerBuffer * buffer)298 explicit EnsureCapacity(AssemblerBuffer* buffer) { 299 if (buffer->cursor() >= buffer->limit()) buffer->ExtendCapacity(); 300 } 301 }; 302 303 // When building the C++ tests, assertion code is enabled. To allow 304 // asserting that the user of the assembler buffer has ensured the 305 // capacity needed for emitting, we add a dummy method in non-debug mode. HasEnsuredCapacity()306 bool HasEnsuredCapacity() const { return true; } 307 308 #endif 309 310 // Returns the position in the instruction stream. GetPosition()311 int GetPosition() { return cursor_ - contents_; } 312 313 private: 314 // The limit is set to kMinimumGap bytes before the end of the data area. 315 // This leaves enough space for the longest possible instruction and allows 316 // for a single, fast space check per instruction. 317 static const int kMinimumGap = 32; 318 319 byte* contents_; 320 byte* cursor_; 321 byte* limit_; 322 AssemblerFixup* fixup_; 323 #ifndef NDEBUG 324 bool fixups_processed_; 325 #endif 326 327 // Head of linked list of slow paths 328 SlowPath* slow_path_; 329 cursor()330 byte* cursor() const { return cursor_; } limit()331 byte* limit() const { return limit_; } Capacity()332 size_t Capacity() const { 333 CHECK_GE(limit_, contents_); 334 return (limit_ - contents_) + kMinimumGap; 335 } 336 337 // Process the fixup chain starting at the given fixup. The offset is 338 // non-zero for fixups in the body if the preamble is non-empty. 339 void ProcessFixups(const MemoryRegion& region); 340 341 // Compute the limit based on the data area and the capacity. See 342 // description of kMinimumGap for the reasoning behind the value. ComputeLimit(byte * data,size_t capacity)343 static byte* ComputeLimit(byte* data, size_t capacity) { 344 return data + capacity - kMinimumGap; 345 } 346 347 void ExtendCapacity(); 348 349 friend class AssemblerFixup; 350 }; 351 352 class Assembler { 353 public: 354 static Assembler* Create(InstructionSet instruction_set); 355 356 // Emit slow paths queued during assembly EmitSlowPaths()357 virtual void EmitSlowPaths() { buffer_.EmitSlowPaths(this); } 358 359 // Size of generated code CodeSize()360 virtual size_t CodeSize() const { return buffer_.Size(); } 361 362 // Copy instructions out of assembly buffer into the given region of memory FinalizeInstructions(const MemoryRegion & region)363 virtual void FinalizeInstructions(const MemoryRegion& region) { 364 buffer_.FinalizeInstructions(region); 365 } 366 367 // TODO: Implement with disassembler. Comment(const char * format,...)368 virtual void Comment(const char* format, ...) { } 369 370 // Emit code that will create an activation on the stack 371 virtual void BuildFrame(size_t frame_size, ManagedRegister method_reg, 372 const std::vector<ManagedRegister>& callee_save_regs, 373 const ManagedRegisterEntrySpills& entry_spills) = 0; 374 375 // Emit code that will remove an activation from the stack 376 virtual void RemoveFrame(size_t frame_size, 377 const std::vector<ManagedRegister>& callee_save_regs) = 0; 378 379 virtual void IncreaseFrameSize(size_t adjust) = 0; 380 virtual void DecreaseFrameSize(size_t adjust) = 0; 381 382 // Store routines 383 virtual void Store(FrameOffset offs, ManagedRegister src, size_t size) = 0; 384 virtual void StoreRef(FrameOffset dest, ManagedRegister src) = 0; 385 virtual void StoreRawPtr(FrameOffset dest, ManagedRegister src) = 0; 386 387 virtual void StoreImmediateToFrame(FrameOffset dest, uint32_t imm, 388 ManagedRegister scratch) = 0; 389 390 virtual void StoreImmediateToThread32(ThreadOffset<4> dest, uint32_t imm, 391 ManagedRegister scratch); 392 virtual void StoreImmediateToThread64(ThreadOffset<8> dest, uint32_t imm, 393 ManagedRegister scratch); 394 395 virtual void StoreStackOffsetToThread32(ThreadOffset<4> thr_offs, 396 FrameOffset fr_offs, 397 ManagedRegister scratch); 398 virtual void StoreStackOffsetToThread64(ThreadOffset<8> thr_offs, 399 FrameOffset fr_offs, 400 ManagedRegister scratch); 401 402 virtual void StoreStackPointerToThread32(ThreadOffset<4> thr_offs); 403 virtual void StoreStackPointerToThread64(ThreadOffset<8> thr_offs); 404 405 virtual void StoreSpanning(FrameOffset dest, ManagedRegister src, 406 FrameOffset in_off, ManagedRegister scratch) = 0; 407 408 // Load routines 409 virtual void Load(ManagedRegister dest, FrameOffset src, size_t size) = 0; 410 411 virtual void LoadFromThread32(ManagedRegister dest, ThreadOffset<4> src, size_t size); 412 virtual void LoadFromThread64(ManagedRegister dest, ThreadOffset<8> src, size_t size); 413 414 virtual void LoadRef(ManagedRegister dest, FrameOffset src) = 0; 415 virtual void LoadRef(ManagedRegister dest, ManagedRegister base, MemberOffset offs) = 0; 416 417 virtual void LoadRawPtr(ManagedRegister dest, ManagedRegister base, Offset offs) = 0; 418 419 virtual void LoadRawPtrFromThread32(ManagedRegister dest, ThreadOffset<4> offs); 420 virtual void LoadRawPtrFromThread64(ManagedRegister dest, ThreadOffset<8> offs); 421 422 // Copying routines 423 virtual void Move(ManagedRegister dest, ManagedRegister src, size_t size) = 0; 424 425 virtual void CopyRawPtrFromThread32(FrameOffset fr_offs, ThreadOffset<4> thr_offs, 426 ManagedRegister scratch); 427 virtual void CopyRawPtrFromThread64(FrameOffset fr_offs, ThreadOffset<8> thr_offs, 428 ManagedRegister scratch); 429 430 virtual void CopyRawPtrToThread32(ThreadOffset<4> thr_offs, FrameOffset fr_offs, 431 ManagedRegister scratch); 432 virtual void CopyRawPtrToThread64(ThreadOffset<8> thr_offs, FrameOffset fr_offs, 433 ManagedRegister scratch); 434 435 virtual void CopyRef(FrameOffset dest, FrameOffset src, 436 ManagedRegister scratch) = 0; 437 438 virtual void Copy(FrameOffset dest, FrameOffset src, ManagedRegister scratch, size_t size) = 0; 439 440 virtual void Copy(FrameOffset dest, ManagedRegister src_base, Offset src_offset, 441 ManagedRegister scratch, size_t size) = 0; 442 443 virtual void Copy(ManagedRegister dest_base, Offset dest_offset, FrameOffset src, 444 ManagedRegister scratch, size_t size) = 0; 445 446 virtual void Copy(FrameOffset dest, FrameOffset src_base, Offset src_offset, 447 ManagedRegister scratch, size_t size) = 0; 448 449 virtual void Copy(ManagedRegister dest, Offset dest_offset, 450 ManagedRegister src, Offset src_offset, 451 ManagedRegister scratch, size_t size) = 0; 452 453 virtual void Copy(FrameOffset dest, Offset dest_offset, FrameOffset src, Offset src_offset, 454 ManagedRegister scratch, size_t size) = 0; 455 456 virtual void MemoryBarrier(ManagedRegister scratch) = 0; 457 458 // Sign extension 459 virtual void SignExtend(ManagedRegister mreg, size_t size) = 0; 460 461 // Zero extension 462 virtual void ZeroExtend(ManagedRegister mreg, size_t size) = 0; 463 464 // Exploit fast access in managed code to Thread::Current() 465 virtual void GetCurrentThread(ManagedRegister tr) = 0; 466 virtual void GetCurrentThread(FrameOffset dest_offset, 467 ManagedRegister scratch) = 0; 468 469 // Set up out_reg to hold a Object** into the handle scope, or to be NULL if the 470 // value is null and null_allowed. in_reg holds a possibly stale reference 471 // that can be used to avoid loading the handle scope entry to see if the value is 472 // NULL. 473 virtual void CreateHandleScopeEntry(ManagedRegister out_reg, FrameOffset handlescope_offset, 474 ManagedRegister in_reg, bool null_allowed) = 0; 475 476 // Set up out_off to hold a Object** into the handle scope, or to be NULL if the 477 // value is null and null_allowed. 478 virtual void CreateHandleScopeEntry(FrameOffset out_off, FrameOffset handlescope_offset, 479 ManagedRegister scratch, bool null_allowed) = 0; 480 481 // src holds a handle scope entry (Object**) load this into dst 482 virtual void LoadReferenceFromHandleScope(ManagedRegister dst, 483 ManagedRegister src) = 0; 484 485 // Heap::VerifyObject on src. In some cases (such as a reference to this) we 486 // know that src may not be null. 487 virtual void VerifyObject(ManagedRegister src, bool could_be_null) = 0; 488 virtual void VerifyObject(FrameOffset src, bool could_be_null) = 0; 489 490 // Call to address held at [base+offset] 491 virtual void Call(ManagedRegister base, Offset offset, 492 ManagedRegister scratch) = 0; 493 virtual void Call(FrameOffset base, Offset offset, 494 ManagedRegister scratch) = 0; 495 virtual void CallFromThread32(ThreadOffset<4> offset, ManagedRegister scratch); 496 virtual void CallFromThread64(ThreadOffset<8> offset, ManagedRegister scratch); 497 498 // Generate code to check if Thread::Current()->exception_ is non-null 499 // and branch to a ExceptionSlowPath if it is. 500 virtual void ExceptionPoll(ManagedRegister scratch, size_t stack_adjust) = 0; 501 ~Assembler()502 virtual ~Assembler() {} 503 504 protected: Assembler()505 Assembler() : buffer_() {} 506 507 AssemblerBuffer buffer_; 508 }; 509 510 } // namespace art 511 512 #endif // ART_COMPILER_UTILS_ASSEMBLER_H_ 513