1 /*
2 * Copyright (C) 2013 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #ifndef ART_RUNTIME_BASE_HISTOGRAM_INL_H_
18 #define ART_RUNTIME_BASE_HISTOGRAM_INL_H_
19
20 #include "histogram.h"
21
22 #include "utils.h"
23
24 #include <algorithm>
25 #include <cmath>
26 #include <limits>
27 #include <ostream>
28
29 namespace art {
30
AddValue(Value value)31 template <class Value> inline void Histogram<Value>::AddValue(Value value) {
32 CHECK_GE(value, static_cast<Value>(0));
33 if (value >= max_) {
34 Value new_max = ((value + 1) / bucket_width_ + 1) * bucket_width_;
35 DCHECK_GT(new_max, max_);
36 GrowBuckets(new_max);
37 }
38
39 BucketiseValue(value);
40 }
41
Histogram(const char * name)42 template <class Value> inline Histogram<Value>::Histogram(const char* name)
43 : kAdjust(0),
44 kInitialBucketCount(0),
45 name_(name),
46 max_buckets_(0) {
47 }
48
49 template <class Value>
Histogram(const char * name,Value initial_bucket_width,size_t max_buckets)50 inline Histogram<Value>::Histogram(const char* name, Value initial_bucket_width,
51 size_t max_buckets)
52 : kAdjust(1000),
53 kInitialBucketCount(8),
54 name_(name),
55 max_buckets_(max_buckets),
56 bucket_width_(initial_bucket_width) {
57 Reset();
58 }
59
60 template <class Value>
GrowBuckets(Value new_max)61 inline void Histogram<Value>::GrowBuckets(Value new_max) {
62 while (max_ < new_max) {
63 // If we have reached the maximum number of buckets, merge buckets together.
64 if (frequency_.size() >= max_buckets_) {
65 CHECK(IsAligned<2>(frequency_.size()));
66 // We double the width of each bucket to reduce the number of buckets by a factor of 2.
67 bucket_width_ *= 2;
68 const size_t limit = frequency_.size() / 2;
69 // Merge the frequencies by adding each adjacent two together.
70 for (size_t i = 0; i < limit; ++i) {
71 frequency_[i] = frequency_[i * 2] + frequency_[i * 2 + 1];
72 }
73 // Remove frequencies in the second half of the array which were added to the first half.
74 while (frequency_.size() > limit) {
75 frequency_.pop_back();
76 }
77 }
78 max_ += bucket_width_;
79 frequency_.push_back(0);
80 }
81 }
82
FindBucket(Value val)83 template <class Value> inline size_t Histogram<Value>::FindBucket(Value val) const {
84 // Since this is only a linear histogram, bucket index can be found simply with
85 // dividing the value by the bucket width.
86 DCHECK_GE(val, min_);
87 DCHECK_LE(val, max_);
88 const size_t bucket_idx = static_cast<size_t>((val - min_) / bucket_width_);
89 DCHECK_GE(bucket_idx, 0ul);
90 DCHECK_LE(bucket_idx, GetBucketCount());
91 return bucket_idx;
92 }
93
94 template <class Value>
BucketiseValue(Value val)95 inline void Histogram<Value>::BucketiseValue(Value val) {
96 CHECK_LT(val, max_);
97 sum_ += val;
98 sum_of_squares_ += val * val;
99 ++sample_size_;
100 ++frequency_[FindBucket(val)];
101 max_value_added_ = std::max(val, max_value_added_);
102 min_value_added_ = std::min(val, min_value_added_);
103 }
104
Initialize()105 template <class Value> inline void Histogram<Value>::Initialize() {
106 for (size_t idx = 0; idx < kInitialBucketCount; idx++) {
107 frequency_.push_back(0);
108 }
109 // Cumulative frequency and ranges has a length of 1 over frequency.
110 max_ = bucket_width_ * GetBucketCount();
111 }
112
GetBucketCount()113 template <class Value> inline size_t Histogram<Value>::GetBucketCount() const {
114 return frequency_.size();
115 }
116
Reset()117 template <class Value> inline void Histogram<Value>::Reset() {
118 sum_of_squares_ = 0;
119 sample_size_ = 0;
120 min_ = 0;
121 sum_ = 0;
122 min_value_added_ = std::numeric_limits<Value>::max();
123 max_value_added_ = std::numeric_limits<Value>::min();
124 frequency_.clear();
125 Initialize();
126 }
127
GetRange(size_t bucket_idx)128 template <class Value> inline Value Histogram<Value>::GetRange(size_t bucket_idx) const {
129 DCHECK_LE(bucket_idx, GetBucketCount());
130 return min_ + bucket_idx * bucket_width_;
131 }
132
Mean()133 template <class Value> inline double Histogram<Value>::Mean() const {
134 DCHECK_GT(sample_size_, 0ull);
135 return static_cast<double>(sum_) / static_cast<double>(sample_size_);
136 }
137
Variance()138 template <class Value> inline double Histogram<Value>::Variance() const {
139 DCHECK_GT(sample_size_, 0ull);
140 // Using algorithms for calculating variance over a population:
141 // http://en.wikipedia.org/wiki/Algorithms_for_calculating_variance
142 Value sum_squared = sum_ * sum_;
143 double sum_squared_by_n_squared =
144 static_cast<double>(sum_squared) /
145 static_cast<double>(sample_size_ * sample_size_);
146 double sum_of_squares_by_n =
147 static_cast<double>(sum_of_squares_) / static_cast<double>(sample_size_);
148 return sum_of_squares_by_n - sum_squared_by_n_squared;
149 }
150
151 template <class Value>
PrintBins(std::ostream & os,const CumulativeData & data)152 inline void Histogram<Value>::PrintBins(std::ostream& os, const CumulativeData& data) const {
153 DCHECK_GT(sample_size_, 0ull);
154 for (size_t bin_idx = 0; bin_idx < data.freq_.size(); ++bin_idx) {
155 if (bin_idx > 0 && data.perc_[bin_idx] == data.perc_[bin_idx - 1]) {
156 bin_idx++;
157 continue;
158 }
159 os << GetRange(bin_idx) << ": " << data.freq_[bin_idx] << "\t"
160 << data.perc_[bin_idx] * 100.0 << "%\n";
161 }
162 }
163
164 template <class Value>
PrintConfidenceIntervals(std::ostream & os,double interval,const CumulativeData & data)165 inline void Histogram<Value>::PrintConfidenceIntervals(std::ostream &os, double interval,
166 const CumulativeData& data) const {
167 static constexpr size_t kFractionalDigits = 3;
168 DCHECK_GT(interval, 0);
169 DCHECK_LT(interval, 1.0);
170 const double per_0 = (1.0 - interval) / 2.0;
171 const double per_1 = per_0 + interval;
172 const TimeUnit unit = GetAppropriateTimeUnit(Mean() * kAdjust);
173 os << Name() << ":\tSum: " << PrettyDuration(Sum() * kAdjust) << " "
174 << (interval * 100) << "% C.I. " << FormatDuration(Percentile(per_0, data) * kAdjust, unit,
175 kFractionalDigits)
176 << "-" << FormatDuration(Percentile(per_1, data) * kAdjust, unit, kFractionalDigits) << " "
177 << "Avg: " << FormatDuration(Mean() * kAdjust, unit, kFractionalDigits) << " Max: "
178 << FormatDuration(Max() * kAdjust, unit, kFractionalDigits) << "\n";
179 }
180
181 template <class Value>
CreateHistogram(CumulativeData * out_data)182 inline void Histogram<Value>::CreateHistogram(CumulativeData* out_data) const {
183 DCHECK_GT(sample_size_, 0ull);
184 out_data->freq_.clear();
185 out_data->perc_.clear();
186 uint64_t accumulated = 0;
187 out_data->freq_.push_back(accumulated);
188 out_data->perc_.push_back(0.0);
189 for (size_t idx = 0; idx < frequency_.size(); idx++) {
190 accumulated += frequency_[idx];
191 out_data->freq_.push_back(accumulated);
192 out_data->perc_.push_back(static_cast<double>(accumulated) / static_cast<double>(sample_size_));
193 }
194 DCHECK_EQ(out_data->freq_.back(), sample_size_);
195 DCHECK_LE(std::abs(out_data->perc_.back() - 1.0), 0.001);
196 }
197
198 template <class Value>
Percentile(double per,const CumulativeData & data)199 inline double Histogram<Value>::Percentile(double per, const CumulativeData& data) const {
200 DCHECK_GT(data.perc_.size(), 0ull);
201 size_t upper_idx = 0, lower_idx = 0;
202 for (size_t idx = 0; idx < data.perc_.size(); idx++) {
203 if (per <= data.perc_[idx]) {
204 upper_idx = idx;
205 break;
206 }
207
208 if (per >= data.perc_[idx] && idx != 0 && data.perc_[idx] != data.perc_[idx - 1]) {
209 lower_idx = idx;
210 }
211 }
212
213 const double lower_perc = data.perc_[lower_idx];
214 const double lower_value = static_cast<double>(GetRange(lower_idx));
215 if (per == lower_perc) {
216 return lower_value;
217 }
218
219 const double upper_perc = data.perc_[upper_idx];
220 const double upper_value = static_cast<double>(GetRange(upper_idx));
221 if (per == upper_perc) {
222 return upper_value;
223 }
224 DCHECK_GT(upper_perc, lower_perc);
225
226 double value = lower_value + (upper_value - lower_value) *
227 (per - lower_perc) / (upper_perc - lower_perc);
228
229 if (value < min_value_added_) {
230 value = min_value_added_;
231 } else if (value > max_value_added_) {
232 value = max_value_added_;
233 }
234
235 return value;
236 }
237
238 } // namespace art
239 #endif // ART_RUNTIME_BASE_HISTOGRAM_INL_H_
240
241