1 /*
2 * Copyright (C) 2012 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "callee_save_frame.h"
18 #include "common_throws.h"
19 #include "dex_file-inl.h"
20 #include "dex_instruction-inl.h"
21 #include "entrypoints/entrypoint_utils-inl.h"
22 #include "gc/accounting/card_table-inl.h"
23 #include "instruction_set.h"
24 #include "interpreter/interpreter.h"
25 #include "mirror/art_method-inl.h"
26 #include "mirror/class-inl.h"
27 #include "mirror/dex_cache-inl.h"
28 #include "mirror/object-inl.h"
29 #include "mirror/object_array-inl.h"
30 #include "runtime.h"
31 #include "scoped_thread_state_change.h"
32
33 namespace art {
34
35 // Visits the arguments as saved to the stack by a Runtime::kRefAndArgs callee save frame.
36 class QuickArgumentVisitor {
37 // Number of bytes for each out register in the caller method's frame.
38 static constexpr size_t kBytesStackArgLocation = 4;
39 // Frame size in bytes of a callee-save frame for RefsAndArgs.
40 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_FrameSize =
41 GetCalleeSaveFrameSize(kRuntimeISA, Runtime::kRefsAndArgs);
42 #if defined(__arm__)
43 // The callee save frame is pointed to by SP.
44 // | argN | |
45 // | ... | |
46 // | arg4 | |
47 // | arg3 spill | | Caller's frame
48 // | arg2 spill | |
49 // | arg1 spill | |
50 // | Method* | ---
51 // | LR |
52 // | ... | callee saves
53 // | R3 | arg3
54 // | R2 | arg2
55 // | R1 | arg1
56 // | R0 | padding
57 // | Method* | <- sp
58 static constexpr bool kQuickSoftFloatAbi = true; // This is a soft float ABI.
59 static constexpr size_t kNumQuickGprArgs = 3; // 3 arguments passed in GPRs.
60 static constexpr size_t kNumQuickFprArgs = 0; // 0 arguments passed in FPRs.
61 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset =
62 arm::ArmCalleeSaveFpr1Offset(Runtime::kRefsAndArgs); // Offset of first FPR arg.
63 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset =
64 arm::ArmCalleeSaveGpr1Offset(Runtime::kRefsAndArgs); // Offset of first GPR arg.
65 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset =
66 arm::ArmCalleeSaveLrOffset(Runtime::kRefsAndArgs); // Offset of return address.
GprIndexToGprOffset(uint32_t gpr_index)67 static size_t GprIndexToGprOffset(uint32_t gpr_index) {
68 return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
69 }
70 #elif defined(__aarch64__)
71 // The callee save frame is pointed to by SP.
72 // | argN | |
73 // | ... | |
74 // | arg4 | |
75 // | arg3 spill | | Caller's frame
76 // | arg2 spill | |
77 // | arg1 spill | |
78 // | Method* | ---
79 // | LR |
80 // | X29 |
81 // | : |
82 // | X20 |
83 // | X7 |
84 // | : |
85 // | X1 |
86 // | D7 |
87 // | : |
88 // | D0 |
89 // | | padding
90 // | Method* | <- sp
91 static constexpr bool kQuickSoftFloatAbi = false; // This is a hard float ABI.
92 static constexpr size_t kNumQuickGprArgs = 7; // 7 arguments passed in GPRs.
93 static constexpr size_t kNumQuickFprArgs = 8; // 8 arguments passed in FPRs.
94 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset =
95 arm64::Arm64CalleeSaveFpr1Offset(Runtime::kRefsAndArgs); // Offset of first FPR arg.
96 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset =
97 arm64::Arm64CalleeSaveGpr1Offset(Runtime::kRefsAndArgs); // Offset of first GPR arg.
98 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset =
99 arm64::Arm64CalleeSaveLrOffset(Runtime::kRefsAndArgs); // Offset of return address.
GprIndexToGprOffset(uint32_t gpr_index)100 static size_t GprIndexToGprOffset(uint32_t gpr_index) {
101 return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
102 }
103 #elif defined(__mips__)
104 // The callee save frame is pointed to by SP.
105 // | argN | |
106 // | ... | |
107 // | arg4 | |
108 // | arg3 spill | | Caller's frame
109 // | arg2 spill | |
110 // | arg1 spill | |
111 // | Method* | ---
112 // | RA |
113 // | ... | callee saves
114 // | A3 | arg3
115 // | A2 | arg2
116 // | A1 | arg1
117 // | A0/Method* | <- sp
118 static constexpr bool kQuickSoftFloatAbi = true; // This is a soft float ABI.
119 static constexpr size_t kNumQuickGprArgs = 3; // 3 arguments passed in GPRs.
120 static constexpr size_t kNumQuickFprArgs = 0; // 0 arguments passed in FPRs.
121 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 0; // Offset of first FPR arg.
122 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 4; // Offset of first GPR arg.
123 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 60; // Offset of return address.
GprIndexToGprOffset(uint32_t gpr_index)124 static size_t GprIndexToGprOffset(uint32_t gpr_index) {
125 return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
126 }
127 #elif defined(__i386__)
128 // The callee save frame is pointed to by SP.
129 // | argN | |
130 // | ... | |
131 // | arg4 | |
132 // | arg3 spill | | Caller's frame
133 // | arg2 spill | |
134 // | arg1 spill | |
135 // | Method* | ---
136 // | Return |
137 // | EBP,ESI,EDI | callee saves
138 // | EBX | arg3
139 // | EDX | arg2
140 // | ECX | arg1
141 // | EAX/Method* | <- sp
142 static constexpr bool kQuickSoftFloatAbi = true; // This is a soft float ABI.
143 static constexpr size_t kNumQuickGprArgs = 3; // 3 arguments passed in GPRs.
144 static constexpr size_t kNumQuickFprArgs = 0; // 0 arguments passed in FPRs.
145 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 0; // Offset of first FPR arg.
146 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 4; // Offset of first GPR arg.
147 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 28; // Offset of return address.
GprIndexToGprOffset(uint32_t gpr_index)148 static size_t GprIndexToGprOffset(uint32_t gpr_index) {
149 return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
150 }
151 #elif defined(__x86_64__)
152 // The callee save frame is pointed to by SP.
153 // | argN | |
154 // | ... | |
155 // | reg. arg spills | | Caller's frame
156 // | Method* | ---
157 // | Return |
158 // | R15 | callee save
159 // | R14 | callee save
160 // | R13 | callee save
161 // | R12 | callee save
162 // | R9 | arg5
163 // | R8 | arg4
164 // | RSI/R6 | arg1
165 // | RBP/R5 | callee save
166 // | RBX/R3 | callee save
167 // | RDX/R2 | arg2
168 // | RCX/R1 | arg3
169 // | XMM7 | float arg 8
170 // | XMM6 | float arg 7
171 // | XMM5 | float arg 6
172 // | XMM4 | float arg 5
173 // | XMM3 | float arg 4
174 // | XMM2 | float arg 3
175 // | XMM1 | float arg 2
176 // | XMM0 | float arg 1
177 // | Padding |
178 // | RDI/Method* | <- sp
179 static constexpr bool kQuickSoftFloatAbi = false; // This is a hard float ABI.
180 static constexpr size_t kNumQuickGprArgs = 5; // 5 arguments passed in GPRs.
181 static constexpr size_t kNumQuickFprArgs = 8; // 8 arguments passed in FPRs.
182 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 16; // Offset of first FPR arg.
183 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 80 + 4*8; // Offset of first GPR arg.
184 static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 168 + 4*8; // Offset of return address.
GprIndexToGprOffset(uint32_t gpr_index)185 static size_t GprIndexToGprOffset(uint32_t gpr_index) {
186 switch (gpr_index) {
187 case 0: return (4 * GetBytesPerGprSpillLocation(kRuntimeISA));
188 case 1: return (1 * GetBytesPerGprSpillLocation(kRuntimeISA));
189 case 2: return (0 * GetBytesPerGprSpillLocation(kRuntimeISA));
190 case 3: return (5 * GetBytesPerGprSpillLocation(kRuntimeISA));
191 case 4: return (6 * GetBytesPerGprSpillLocation(kRuntimeISA));
192 default:
193 LOG(FATAL) << "Unexpected GPR index: " << gpr_index;
194 return 0;
195 }
196 }
197 #else
198 #error "Unsupported architecture"
199 #endif
200
201 public:
202 // Special handling for proxy methods. Proxy methods are instance methods so the
203 // 'this' object is the 1st argument. They also have the same frame layout as the
204 // kRefAndArgs runtime method. Since 'this' is a reference, it is located in the
205 // 1st GPR.
GetProxyThisObject(StackReference<mirror::ArtMethod> * sp)206 static mirror::Object* GetProxyThisObject(StackReference<mirror::ArtMethod>* sp)
207 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
208 CHECK(sp->AsMirrorPtr()->IsProxyMethod());
209 CHECK_EQ(kQuickCalleeSaveFrame_RefAndArgs_FrameSize, sp->AsMirrorPtr()->GetFrameSizeInBytes());
210 CHECK_GT(kNumQuickGprArgs, 0u);
211 constexpr uint32_t kThisGprIndex = 0u; // 'this' is in the 1st GPR.
212 size_t this_arg_offset = kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset +
213 GprIndexToGprOffset(kThisGprIndex);
214 uint8_t* this_arg_address = reinterpret_cast<uint8_t*>(sp) + this_arg_offset;
215 return reinterpret_cast<StackReference<mirror::Object>*>(this_arg_address)->AsMirrorPtr();
216 }
217
GetCallingMethod(StackReference<mirror::ArtMethod> * sp)218 static mirror::ArtMethod* GetCallingMethod(StackReference<mirror::ArtMethod>* sp)
219 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
220 DCHECK(sp->AsMirrorPtr()->IsCalleeSaveMethod());
221 byte* previous_sp = reinterpret_cast<byte*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_FrameSize;
222 return reinterpret_cast<StackReference<mirror::ArtMethod>*>(previous_sp)->AsMirrorPtr();
223 }
224
225 // For the given quick ref and args quick frame, return the caller's PC.
GetCallingPc(StackReference<mirror::ArtMethod> * sp)226 static uintptr_t GetCallingPc(StackReference<mirror::ArtMethod>* sp)
227 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
228 DCHECK(sp->AsMirrorPtr()->IsCalleeSaveMethod());
229 byte* lr = reinterpret_cast<byte*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_LrOffset;
230 return *reinterpret_cast<uintptr_t*>(lr);
231 }
232
QuickArgumentVisitor(StackReference<mirror::ArtMethod> * sp,bool is_static,const char * shorty,uint32_t shorty_len)233 QuickArgumentVisitor(StackReference<mirror::ArtMethod>* sp, bool is_static, const char* shorty,
234 uint32_t shorty_len) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) :
235 is_static_(is_static), shorty_(shorty), shorty_len_(shorty_len),
236 gpr_args_(reinterpret_cast<byte*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset),
237 fpr_args_(reinterpret_cast<byte*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset),
238 stack_args_(reinterpret_cast<byte*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_FrameSize
239 + StackArgumentStartFromShorty(is_static, shorty, shorty_len)),
240 gpr_index_(0), fpr_index_(0), stack_index_(0), cur_type_(Primitive::kPrimVoid),
241 is_split_long_or_double_(false) {}
242
~QuickArgumentVisitor()243 virtual ~QuickArgumentVisitor() {}
244
245 virtual void Visit() = 0;
246
GetParamPrimitiveType() const247 Primitive::Type GetParamPrimitiveType() const {
248 return cur_type_;
249 }
250
GetParamAddress() const251 byte* GetParamAddress() const {
252 if (!kQuickSoftFloatAbi) {
253 Primitive::Type type = GetParamPrimitiveType();
254 if (UNLIKELY((type == Primitive::kPrimDouble) || (type == Primitive::kPrimFloat))) {
255 if ((kNumQuickFprArgs != 0) && (fpr_index_ + 1 < kNumQuickFprArgs + 1)) {
256 return fpr_args_ + (fpr_index_ * GetBytesPerFprSpillLocation(kRuntimeISA));
257 }
258 return stack_args_ + (stack_index_ * kBytesStackArgLocation);
259 }
260 }
261 if (gpr_index_ < kNumQuickGprArgs) {
262 return gpr_args_ + GprIndexToGprOffset(gpr_index_);
263 }
264 return stack_args_ + (stack_index_ * kBytesStackArgLocation);
265 }
266
IsSplitLongOrDouble() const267 bool IsSplitLongOrDouble() const {
268 if ((GetBytesPerGprSpillLocation(kRuntimeISA) == 4) || (GetBytesPerFprSpillLocation(kRuntimeISA) == 4)) {
269 return is_split_long_or_double_;
270 } else {
271 return false; // An optimization for when GPR and FPRs are 64bit.
272 }
273 }
274
IsParamAReference() const275 bool IsParamAReference() const {
276 return GetParamPrimitiveType() == Primitive::kPrimNot;
277 }
278
IsParamALongOrDouble() const279 bool IsParamALongOrDouble() const {
280 Primitive::Type type = GetParamPrimitiveType();
281 return type == Primitive::kPrimLong || type == Primitive::kPrimDouble;
282 }
283
ReadSplitLongParam() const284 uint64_t ReadSplitLongParam() const {
285 DCHECK(IsSplitLongOrDouble());
286 uint64_t low_half = *reinterpret_cast<uint32_t*>(GetParamAddress());
287 uint64_t high_half = *reinterpret_cast<uint32_t*>(stack_args_);
288 return (low_half & 0xffffffffULL) | (high_half << 32);
289 }
290
VisitArguments()291 void VisitArguments() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
292 // This implementation doesn't support reg-spill area for hard float
293 // ABI targets such as x86_64 and aarch64. So, for those targets whose
294 // 'kQuickSoftFloatAbi' is 'false':
295 // (a) 'stack_args_' should point to the first method's argument
296 // (b) whatever the argument type it is, the 'stack_index_' should
297 // be moved forward along with every visiting.
298 gpr_index_ = 0;
299 fpr_index_ = 0;
300 stack_index_ = 0;
301 if (!is_static_) { // Handle this.
302 cur_type_ = Primitive::kPrimNot;
303 is_split_long_or_double_ = false;
304 Visit();
305 if (!kQuickSoftFloatAbi || kNumQuickGprArgs == 0) {
306 stack_index_++;
307 }
308 if (kNumQuickGprArgs > 0) {
309 gpr_index_++;
310 }
311 }
312 for (uint32_t shorty_index = 1; shorty_index < shorty_len_; ++shorty_index) {
313 cur_type_ = Primitive::GetType(shorty_[shorty_index]);
314 switch (cur_type_) {
315 case Primitive::kPrimNot:
316 case Primitive::kPrimBoolean:
317 case Primitive::kPrimByte:
318 case Primitive::kPrimChar:
319 case Primitive::kPrimShort:
320 case Primitive::kPrimInt:
321 is_split_long_or_double_ = false;
322 Visit();
323 if (!kQuickSoftFloatAbi || kNumQuickGprArgs == gpr_index_) {
324 stack_index_++;
325 }
326 if (gpr_index_ < kNumQuickGprArgs) {
327 gpr_index_++;
328 }
329 break;
330 case Primitive::kPrimFloat:
331 is_split_long_or_double_ = false;
332 Visit();
333 if (kQuickSoftFloatAbi) {
334 if (gpr_index_ < kNumQuickGprArgs) {
335 gpr_index_++;
336 } else {
337 stack_index_++;
338 }
339 } else {
340 if ((kNumQuickFprArgs != 0) && (fpr_index_ + 1 < kNumQuickFprArgs + 1)) {
341 fpr_index_++;
342 }
343 stack_index_++;
344 }
345 break;
346 case Primitive::kPrimDouble:
347 case Primitive::kPrimLong:
348 if (kQuickSoftFloatAbi || (cur_type_ == Primitive::kPrimLong)) {
349 is_split_long_or_double_ = (GetBytesPerGprSpillLocation(kRuntimeISA) == 4) &&
350 ((gpr_index_ + 1) == kNumQuickGprArgs);
351 Visit();
352 if (!kQuickSoftFloatAbi || kNumQuickGprArgs == gpr_index_) {
353 if (kBytesStackArgLocation == 4) {
354 stack_index_+= 2;
355 } else {
356 CHECK_EQ(kBytesStackArgLocation, 8U);
357 stack_index_++;
358 }
359 }
360 if (gpr_index_ < kNumQuickGprArgs) {
361 gpr_index_++;
362 if (GetBytesPerGprSpillLocation(kRuntimeISA) == 4) {
363 if (gpr_index_ < kNumQuickGprArgs) {
364 gpr_index_++;
365 } else if (kQuickSoftFloatAbi) {
366 stack_index_++;
367 }
368 }
369 }
370 } else {
371 is_split_long_or_double_ = (GetBytesPerFprSpillLocation(kRuntimeISA) == 4) &&
372 ((fpr_index_ + 1) == kNumQuickFprArgs);
373 Visit();
374 if ((kNumQuickFprArgs != 0) && (fpr_index_ + 1 < kNumQuickFprArgs + 1)) {
375 fpr_index_++;
376 if (GetBytesPerFprSpillLocation(kRuntimeISA) == 4) {
377 if ((kNumQuickFprArgs != 0) && (fpr_index_ + 1 < kNumQuickFprArgs + 1)) {
378 fpr_index_++;
379 }
380 }
381 }
382 if (kBytesStackArgLocation == 4) {
383 stack_index_+= 2;
384 } else {
385 CHECK_EQ(kBytesStackArgLocation, 8U);
386 stack_index_++;
387 }
388 }
389 break;
390 default:
391 LOG(FATAL) << "Unexpected type: " << cur_type_ << " in " << shorty_;
392 }
393 }
394 }
395
396 private:
StackArgumentStartFromShorty(bool is_static,const char * shorty,uint32_t shorty_len)397 static size_t StackArgumentStartFromShorty(bool is_static, const char* shorty,
398 uint32_t shorty_len) {
399 if (kQuickSoftFloatAbi) {
400 CHECK_EQ(kNumQuickFprArgs, 0U);
401 return (kNumQuickGprArgs * GetBytesPerGprSpillLocation(kRuntimeISA))
402 + sizeof(StackReference<mirror::ArtMethod>) /* StackReference<ArtMethod> */;
403 } else {
404 // For now, there is no reg-spill area for the targets with
405 // hard float ABI. So, the offset pointing to the first method's
406 // parameter ('this' for non-static methods) should be returned.
407 return sizeof(StackReference<mirror::ArtMethod>); // Skip StackReference<ArtMethod>.
408 }
409 }
410
411 protected:
412 const bool is_static_;
413 const char* const shorty_;
414 const uint32_t shorty_len_;
415
416 private:
417 byte* const gpr_args_; // Address of GPR arguments in callee save frame.
418 byte* const fpr_args_; // Address of FPR arguments in callee save frame.
419 byte* const stack_args_; // Address of stack arguments in caller's frame.
420 uint32_t gpr_index_; // Index into spilled GPRs.
421 uint32_t fpr_index_; // Index into spilled FPRs.
422 uint32_t stack_index_; // Index into arguments on the stack.
423 // The current type of argument during VisitArguments.
424 Primitive::Type cur_type_;
425 // Does a 64bit parameter straddle the register and stack arguments?
426 bool is_split_long_or_double_;
427 };
428
429 // Returns the 'this' object of a proxy method. This function is only used by StackVisitor. It
430 // allows to use the QuickArgumentVisitor constants without moving all the code in its own module.
artQuickGetProxyThisObject(StackReference<mirror::ArtMethod> * sp)431 extern "C" mirror::Object* artQuickGetProxyThisObject(StackReference<mirror::ArtMethod>* sp)
432 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
433 return QuickArgumentVisitor::GetProxyThisObject(sp);
434 }
435
436 // Visits arguments on the stack placing them into the shadow frame.
437 class BuildQuickShadowFrameVisitor FINAL : public QuickArgumentVisitor {
438 public:
BuildQuickShadowFrameVisitor(StackReference<mirror::ArtMethod> * sp,bool is_static,const char * shorty,uint32_t shorty_len,ShadowFrame * sf,size_t first_arg_reg)439 BuildQuickShadowFrameVisitor(StackReference<mirror::ArtMethod>* sp, bool is_static,
440 const char* shorty, uint32_t shorty_len, ShadowFrame* sf,
441 size_t first_arg_reg) :
442 QuickArgumentVisitor(sp, is_static, shorty, shorty_len), sf_(sf), cur_reg_(first_arg_reg) {}
443
444 void Visit() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) OVERRIDE;
445
446 private:
447 ShadowFrame* const sf_;
448 uint32_t cur_reg_;
449
450 DISALLOW_COPY_AND_ASSIGN(BuildQuickShadowFrameVisitor);
451 };
452
Visit()453 void BuildQuickShadowFrameVisitor::Visit() {
454 Primitive::Type type = GetParamPrimitiveType();
455 switch (type) {
456 case Primitive::kPrimLong: // Fall-through.
457 case Primitive::kPrimDouble:
458 if (IsSplitLongOrDouble()) {
459 sf_->SetVRegLong(cur_reg_, ReadSplitLongParam());
460 } else {
461 sf_->SetVRegLong(cur_reg_, *reinterpret_cast<jlong*>(GetParamAddress()));
462 }
463 ++cur_reg_;
464 break;
465 case Primitive::kPrimNot: {
466 StackReference<mirror::Object>* stack_ref =
467 reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress());
468 sf_->SetVRegReference(cur_reg_, stack_ref->AsMirrorPtr());
469 }
470 break;
471 case Primitive::kPrimBoolean: // Fall-through.
472 case Primitive::kPrimByte: // Fall-through.
473 case Primitive::kPrimChar: // Fall-through.
474 case Primitive::kPrimShort: // Fall-through.
475 case Primitive::kPrimInt: // Fall-through.
476 case Primitive::kPrimFloat:
477 sf_->SetVReg(cur_reg_, *reinterpret_cast<jint*>(GetParamAddress()));
478 break;
479 case Primitive::kPrimVoid:
480 LOG(FATAL) << "UNREACHABLE";
481 break;
482 }
483 ++cur_reg_;
484 }
485
artQuickToInterpreterBridge(mirror::ArtMethod * method,Thread * self,StackReference<mirror::ArtMethod> * sp)486 extern "C" uint64_t artQuickToInterpreterBridge(mirror::ArtMethod* method, Thread* self,
487 StackReference<mirror::ArtMethod>* sp)
488 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
489 // Ensure we don't get thread suspension until the object arguments are safely in the shadow
490 // frame.
491 FinishCalleeSaveFrameSetup(self, sp, Runtime::kRefsAndArgs);
492
493 if (method->IsAbstract()) {
494 ThrowAbstractMethodError(method);
495 return 0;
496 } else {
497 DCHECK(!method->IsNative()) << PrettyMethod(method);
498 const char* old_cause = self->StartAssertNoThreadSuspension(
499 "Building interpreter shadow frame");
500 const DexFile::CodeItem* code_item = method->GetCodeItem();
501 DCHECK(code_item != nullptr) << PrettyMethod(method);
502 uint16_t num_regs = code_item->registers_size_;
503 void* memory = alloca(ShadowFrame::ComputeSize(num_regs));
504 // No last shadow coming from quick.
505 ShadowFrame* shadow_frame(ShadowFrame::Create(num_regs, nullptr, method, 0, memory));
506 size_t first_arg_reg = code_item->registers_size_ - code_item->ins_size_;
507 uint32_t shorty_len = 0;
508 const char* shorty = method->GetShorty(&shorty_len);
509 BuildQuickShadowFrameVisitor shadow_frame_builder(sp, method->IsStatic(), shorty, shorty_len,
510 shadow_frame, first_arg_reg);
511 shadow_frame_builder.VisitArguments();
512 // Push a transition back into managed code onto the linked list in thread.
513 ManagedStack fragment;
514 self->PushManagedStackFragment(&fragment);
515 self->PushShadowFrame(shadow_frame);
516 self->EndAssertNoThreadSuspension(old_cause);
517
518 if (method->IsStatic() && !method->GetDeclaringClass()->IsInitialized()) {
519 // Ensure static method's class is initialized.
520 StackHandleScope<1> hs(self);
521 Handle<mirror::Class> h_class(hs.NewHandle(method->GetDeclaringClass()));
522 if (!Runtime::Current()->GetClassLinker()->EnsureInitialized(h_class, true, true)) {
523 DCHECK(Thread::Current()->IsExceptionPending()) << PrettyMethod(method);
524 self->PopManagedStackFragment(fragment);
525 return 0;
526 }
527 }
528
529 StackHandleScope<1> hs(self);
530 MethodHelper mh(hs.NewHandle(method));
531 JValue result = interpreter::EnterInterpreterFromStub(self, mh, code_item, *shadow_frame);
532 // Pop transition.
533 self->PopManagedStackFragment(fragment);
534 // No need to restore the args since the method has already been run by the interpreter.
535 return result.GetJ();
536 }
537 }
538
539 // Visits arguments on the stack placing them into the args vector, Object* arguments are converted
540 // to jobjects.
541 class BuildQuickArgumentVisitor FINAL : public QuickArgumentVisitor {
542 public:
BuildQuickArgumentVisitor(StackReference<mirror::ArtMethod> * sp,bool is_static,const char * shorty,uint32_t shorty_len,ScopedObjectAccessUnchecked * soa,std::vector<jvalue> * args)543 BuildQuickArgumentVisitor(StackReference<mirror::ArtMethod>* sp, bool is_static,
544 const char* shorty, uint32_t shorty_len,
545 ScopedObjectAccessUnchecked* soa, std::vector<jvalue>* args) :
546 QuickArgumentVisitor(sp, is_static, shorty, shorty_len), soa_(soa), args_(args) {}
547
548 void Visit() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) OVERRIDE;
549
550 void FixupReferences() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
551
552 private:
553 ScopedObjectAccessUnchecked* const soa_;
554 std::vector<jvalue>* const args_;
555 // References which we must update when exiting in case the GC moved the objects.
556 std::vector<std::pair<jobject, StackReference<mirror::Object>*>> references_;
557
558 DISALLOW_COPY_AND_ASSIGN(BuildQuickArgumentVisitor);
559 };
560
Visit()561 void BuildQuickArgumentVisitor::Visit() {
562 jvalue val;
563 Primitive::Type type = GetParamPrimitiveType();
564 switch (type) {
565 case Primitive::kPrimNot: {
566 StackReference<mirror::Object>* stack_ref =
567 reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress());
568 val.l = soa_->AddLocalReference<jobject>(stack_ref->AsMirrorPtr());
569 references_.push_back(std::make_pair(val.l, stack_ref));
570 break;
571 }
572 case Primitive::kPrimLong: // Fall-through.
573 case Primitive::kPrimDouble:
574 if (IsSplitLongOrDouble()) {
575 val.j = ReadSplitLongParam();
576 } else {
577 val.j = *reinterpret_cast<jlong*>(GetParamAddress());
578 }
579 break;
580 case Primitive::kPrimBoolean: // Fall-through.
581 case Primitive::kPrimByte: // Fall-through.
582 case Primitive::kPrimChar: // Fall-through.
583 case Primitive::kPrimShort: // Fall-through.
584 case Primitive::kPrimInt: // Fall-through.
585 case Primitive::kPrimFloat:
586 val.i = *reinterpret_cast<jint*>(GetParamAddress());
587 break;
588 case Primitive::kPrimVoid:
589 LOG(FATAL) << "UNREACHABLE";
590 val.j = 0;
591 break;
592 }
593 args_->push_back(val);
594 }
595
FixupReferences()596 void BuildQuickArgumentVisitor::FixupReferences() {
597 // Fixup any references which may have changed.
598 for (const auto& pair : references_) {
599 pair.second->Assign(soa_->Decode<mirror::Object*>(pair.first));
600 soa_->Env()->DeleteLocalRef(pair.first);
601 }
602 }
603
604 // Handler for invocation on proxy methods. On entry a frame will exist for the proxy object method
605 // which is responsible for recording callee save registers. We explicitly place into jobjects the
606 // incoming reference arguments (so they survive GC). We invoke the invocation handler, which is a
607 // field within the proxy object, which will box the primitive arguments and deal with error cases.
artQuickProxyInvokeHandler(mirror::ArtMethod * proxy_method,mirror::Object * receiver,Thread * self,StackReference<mirror::ArtMethod> * sp)608 extern "C" uint64_t artQuickProxyInvokeHandler(mirror::ArtMethod* proxy_method,
609 mirror::Object* receiver,
610 Thread* self, StackReference<mirror::ArtMethod>* sp)
611 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
612 DCHECK(proxy_method->IsProxyMethod()) << PrettyMethod(proxy_method);
613 DCHECK(receiver->GetClass()->IsProxyClass()) << PrettyMethod(proxy_method);
614 // Ensure we don't get thread suspension until the object arguments are safely in jobjects.
615 const char* old_cause =
616 self->StartAssertNoThreadSuspension("Adding to IRT proxy object arguments");
617 // Register the top of the managed stack, making stack crawlable.
618 DCHECK_EQ(sp->AsMirrorPtr(), proxy_method) << PrettyMethod(proxy_method);
619 self->SetTopOfStack(sp, 0);
620 DCHECK_EQ(proxy_method->GetFrameSizeInBytes(),
621 Runtime::Current()->GetCalleeSaveMethod(Runtime::kRefsAndArgs)->GetFrameSizeInBytes())
622 << PrettyMethod(proxy_method);
623 self->VerifyStack();
624 // Start new JNI local reference state.
625 JNIEnvExt* env = self->GetJniEnv();
626 ScopedObjectAccessUnchecked soa(env);
627 ScopedJniEnvLocalRefState env_state(env);
628 // Create local ref. copies of proxy method and the receiver.
629 jobject rcvr_jobj = soa.AddLocalReference<jobject>(receiver);
630
631 // Placing arguments into args vector and remove the receiver.
632 mirror::ArtMethod* non_proxy_method = proxy_method->GetInterfaceMethodIfProxy();
633 CHECK(!non_proxy_method->IsStatic()) << PrettyMethod(proxy_method) << " "
634 << PrettyMethod(non_proxy_method);
635 std::vector<jvalue> args;
636 uint32_t shorty_len = 0;
637 const char* shorty = proxy_method->GetShorty(&shorty_len);
638 BuildQuickArgumentVisitor local_ref_visitor(sp, false, shorty, shorty_len, &soa, &args);
639
640 local_ref_visitor.VisitArguments();
641 DCHECK_GT(args.size(), 0U) << PrettyMethod(proxy_method);
642 args.erase(args.begin());
643
644 // Convert proxy method into expected interface method.
645 mirror::ArtMethod* interface_method = proxy_method->FindOverriddenMethod();
646 DCHECK(interface_method != NULL) << PrettyMethod(proxy_method);
647 DCHECK(!interface_method->IsProxyMethod()) << PrettyMethod(interface_method);
648 jobject interface_method_jobj = soa.AddLocalReference<jobject>(interface_method);
649
650 // All naked Object*s should now be in jobjects, so its safe to go into the main invoke code
651 // that performs allocations.
652 self->EndAssertNoThreadSuspension(old_cause);
653 JValue result = InvokeProxyInvocationHandler(soa, shorty, rcvr_jobj, interface_method_jobj, args);
654 // Restore references which might have moved.
655 local_ref_visitor.FixupReferences();
656 return result.GetJ();
657 }
658
659 // Read object references held in arguments from quick frames and place in a JNI local references,
660 // so they don't get garbage collected.
661 class RememberForGcArgumentVisitor FINAL : public QuickArgumentVisitor {
662 public:
RememberForGcArgumentVisitor(StackReference<mirror::ArtMethod> * sp,bool is_static,const char * shorty,uint32_t shorty_len,ScopedObjectAccessUnchecked * soa)663 RememberForGcArgumentVisitor(StackReference<mirror::ArtMethod>* sp, bool is_static,
664 const char* shorty, uint32_t shorty_len,
665 ScopedObjectAccessUnchecked* soa) :
666 QuickArgumentVisitor(sp, is_static, shorty, shorty_len), soa_(soa) {}
667
668 void Visit() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) OVERRIDE;
669
670 void FixupReferences() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
671
672 private:
673 ScopedObjectAccessUnchecked* const soa_;
674 // References which we must update when exiting in case the GC moved the objects.
675 std::vector<std::pair<jobject, StackReference<mirror::Object>*> > references_;
676
677 DISALLOW_COPY_AND_ASSIGN(RememberForGcArgumentVisitor);
678 };
679
Visit()680 void RememberForGcArgumentVisitor::Visit() {
681 if (IsParamAReference()) {
682 StackReference<mirror::Object>* stack_ref =
683 reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress());
684 jobject reference =
685 soa_->AddLocalReference<jobject>(stack_ref->AsMirrorPtr());
686 references_.push_back(std::make_pair(reference, stack_ref));
687 }
688 }
689
FixupReferences()690 void RememberForGcArgumentVisitor::FixupReferences() {
691 // Fixup any references which may have changed.
692 for (const auto& pair : references_) {
693 pair.second->Assign(soa_->Decode<mirror::Object*>(pair.first));
694 soa_->Env()->DeleteLocalRef(pair.first);
695 }
696 }
697
698 // Lazily resolve a method for quick. Called by stub code.
artQuickResolutionTrampoline(mirror::ArtMethod * called,mirror::Object * receiver,Thread * self,StackReference<mirror::ArtMethod> * sp)699 extern "C" const void* artQuickResolutionTrampoline(mirror::ArtMethod* called,
700 mirror::Object* receiver,
701 Thread* self,
702 StackReference<mirror::ArtMethod>* sp)
703 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
704 FinishCalleeSaveFrameSetup(self, sp, Runtime::kRefsAndArgs);
705 // Start new JNI local reference state
706 JNIEnvExt* env = self->GetJniEnv();
707 ScopedObjectAccessUnchecked soa(env);
708 ScopedJniEnvLocalRefState env_state(env);
709 const char* old_cause = self->StartAssertNoThreadSuspension("Quick method resolution set up");
710
711 // Compute details about the called method (avoid GCs)
712 ClassLinker* linker = Runtime::Current()->GetClassLinker();
713 mirror::ArtMethod* caller = QuickArgumentVisitor::GetCallingMethod(sp);
714 InvokeType invoke_type;
715 const DexFile* dex_file;
716 uint32_t dex_method_idx;
717 if (called->IsRuntimeMethod()) {
718 uint32_t dex_pc = caller->ToDexPc(QuickArgumentVisitor::GetCallingPc(sp));
719 const DexFile::CodeItem* code;
720 dex_file = caller->GetDexFile();
721 code = caller->GetCodeItem();
722 CHECK_LT(dex_pc, code->insns_size_in_code_units_);
723 const Instruction* instr = Instruction::At(&code->insns_[dex_pc]);
724 Instruction::Code instr_code = instr->Opcode();
725 bool is_range;
726 switch (instr_code) {
727 case Instruction::INVOKE_DIRECT:
728 invoke_type = kDirect;
729 is_range = false;
730 break;
731 case Instruction::INVOKE_DIRECT_RANGE:
732 invoke_type = kDirect;
733 is_range = true;
734 break;
735 case Instruction::INVOKE_STATIC:
736 invoke_type = kStatic;
737 is_range = false;
738 break;
739 case Instruction::INVOKE_STATIC_RANGE:
740 invoke_type = kStatic;
741 is_range = true;
742 break;
743 case Instruction::INVOKE_SUPER:
744 invoke_type = kSuper;
745 is_range = false;
746 break;
747 case Instruction::INVOKE_SUPER_RANGE:
748 invoke_type = kSuper;
749 is_range = true;
750 break;
751 case Instruction::INVOKE_VIRTUAL:
752 invoke_type = kVirtual;
753 is_range = false;
754 break;
755 case Instruction::INVOKE_VIRTUAL_RANGE:
756 invoke_type = kVirtual;
757 is_range = true;
758 break;
759 case Instruction::INVOKE_INTERFACE:
760 invoke_type = kInterface;
761 is_range = false;
762 break;
763 case Instruction::INVOKE_INTERFACE_RANGE:
764 invoke_type = kInterface;
765 is_range = true;
766 break;
767 default:
768 LOG(FATAL) << "Unexpected call into trampoline: " << instr->DumpString(NULL);
769 // Avoid used uninitialized warnings.
770 invoke_type = kDirect;
771 is_range = false;
772 }
773 dex_method_idx = (is_range) ? instr->VRegB_3rc() : instr->VRegB_35c();
774 } else {
775 invoke_type = kStatic;
776 dex_file = called->GetDexFile();
777 dex_method_idx = called->GetDexMethodIndex();
778 }
779 uint32_t shorty_len;
780 const char* shorty =
781 dex_file->GetMethodShorty(dex_file->GetMethodId(dex_method_idx), &shorty_len);
782 RememberForGcArgumentVisitor visitor(sp, invoke_type == kStatic, shorty, shorty_len, &soa);
783 visitor.VisitArguments();
784 self->EndAssertNoThreadSuspension(old_cause);
785 bool virtual_or_interface = invoke_type == kVirtual || invoke_type == kInterface;
786 // Resolve method filling in dex cache.
787 if (UNLIKELY(called->IsRuntimeMethod())) {
788 StackHandleScope<1> hs(self);
789 mirror::Object* dummy = nullptr;
790 HandleWrapper<mirror::Object> h_receiver(
791 hs.NewHandleWrapper(virtual_or_interface ? &receiver : &dummy));
792 called = linker->ResolveMethod(self, dex_method_idx, &caller, invoke_type);
793 }
794 const void* code = NULL;
795 if (LIKELY(!self->IsExceptionPending())) {
796 // Incompatible class change should have been handled in resolve method.
797 CHECK(!called->CheckIncompatibleClassChange(invoke_type))
798 << PrettyMethod(called) << " " << invoke_type;
799 if (virtual_or_interface) {
800 // Refine called method based on receiver.
801 CHECK(receiver != nullptr) << invoke_type;
802
803 mirror::ArtMethod* orig_called = called;
804 if (invoke_type == kVirtual) {
805 called = receiver->GetClass()->FindVirtualMethodForVirtual(called);
806 } else {
807 called = receiver->GetClass()->FindVirtualMethodForInterface(called);
808 }
809
810 CHECK(called != nullptr) << PrettyMethod(orig_called) << " "
811 << PrettyTypeOf(receiver) << " "
812 << invoke_type << " " << orig_called->GetVtableIndex();
813
814 // We came here because of sharpening. Ensure the dex cache is up-to-date on the method index
815 // of the sharpened method.
816 if (called->HasSameDexCacheResolvedMethods(caller)) {
817 caller->SetDexCacheResolvedMethod(called->GetDexMethodIndex(), called);
818 } else {
819 // Calling from one dex file to another, need to compute the method index appropriate to
820 // the caller's dex file. Since we get here only if the original called was a runtime
821 // method, we've got the correct dex_file and a dex_method_idx from above.
822 DCHECK_EQ(caller->GetDexFile(), dex_file);
823 StackHandleScope<1> hs(self);
824 MethodHelper mh(hs.NewHandle(called));
825 uint32_t method_index = mh.FindDexMethodIndexInOtherDexFile(*dex_file, dex_method_idx);
826 if (method_index != DexFile::kDexNoIndex) {
827 caller->SetDexCacheResolvedMethod(method_index, called);
828 }
829 }
830 } else if (invoke_type == kStatic) {
831 const auto called_dex_method_idx = called->GetDexMethodIndex();
832 // For static invokes, we may dispatch to the static method in the superclass but resolve
833 // using the subclass. To prevent getting slow paths on each invoke, we force set the
834 // resolved method for the super class dex method index if we are in the same dex file.
835 // b/19175856
836 if (called->GetDexFile() == dex_file && dex_method_idx != called_dex_method_idx) {
837 called->GetDexCache()->SetResolvedMethod(called_dex_method_idx, called);
838 }
839 }
840 // Ensure that the called method's class is initialized.
841 StackHandleScope<1> hs(soa.Self());
842 Handle<mirror::Class> called_class(hs.NewHandle(called->GetDeclaringClass()));
843 linker->EnsureInitialized(called_class, true, true);
844 if (LIKELY(called_class->IsInitialized())) {
845 code = called->GetEntryPointFromQuickCompiledCode();
846 } else if (called_class->IsInitializing()) {
847 if (invoke_type == kStatic) {
848 // Class is still initializing, go to oat and grab code (trampoline must be left in place
849 // until class is initialized to stop races between threads).
850 code = linker->GetQuickOatCodeFor(called);
851 } else {
852 // No trampoline for non-static methods.
853 code = called->GetEntryPointFromQuickCompiledCode();
854 }
855 } else {
856 DCHECK(called_class->IsErroneous());
857 }
858 }
859 CHECK_EQ(code == NULL, self->IsExceptionPending());
860 // Fixup any locally saved objects may have moved during a GC.
861 visitor.FixupReferences();
862 // Place called method in callee-save frame to be placed as first argument to quick method.
863 sp->Assign(called);
864 return code;
865 }
866
867 /*
868 * This class uses a couple of observations to unite the different calling conventions through
869 * a few constants.
870 *
871 * 1) Number of registers used for passing is normally even, so counting down has no penalty for
872 * possible alignment.
873 * 2) Known 64b architectures store 8B units on the stack, both for integral and floating point
874 * types, so using uintptr_t is OK. Also means that we can use kRegistersNeededX to denote
875 * when we have to split things
876 * 3) The only soft-float, Arm, is 32b, so no widening needs to be taken into account for floats
877 * and we can use Int handling directly.
878 * 4) Only 64b architectures widen, and their stack is aligned 8B anyways, so no padding code
879 * necessary when widening. Also, widening of Ints will take place implicitly, and the
880 * extension should be compatible with Aarch64, which mandates copying the available bits
881 * into LSB and leaving the rest unspecified.
882 * 5) Aligning longs and doubles is necessary on arm only, and it's the same in registers and on
883 * the stack.
884 * 6) There is only little endian.
885 *
886 *
887 * Actual work is supposed to be done in a delegate of the template type. The interface is as
888 * follows:
889 *
890 * void PushGpr(uintptr_t): Add a value for the next GPR
891 *
892 * void PushFpr4(float): Add a value for the next FPR of size 32b. Is only called if we need
893 * padding, that is, think the architecture is 32b and aligns 64b.
894 *
895 * void PushFpr8(uint64_t): Push a double. We _will_ call this on 32b, it's the callee's job to
896 * split this if necessary. The current state will have aligned, if
897 * necessary.
898 *
899 * void PushStack(uintptr_t): Push a value to the stack.
900 *
901 * uintptr_t PushHandleScope(mirror::Object* ref): Add a reference to the HandleScope. This _will_ have nullptr,
902 * as this might be important for null initialization.
903 * Must return the jobject, that is, the reference to the
904 * entry in the HandleScope (nullptr if necessary).
905 *
906 */
907 template<class T> class BuildNativeCallFrameStateMachine {
908 public:
909 #if defined(__arm__)
910 // TODO: These are all dummy values!
911 static constexpr bool kNativeSoftFloatAbi = true;
912 static constexpr size_t kNumNativeGprArgs = 4; // 4 arguments passed in GPRs, r0-r3
913 static constexpr size_t kNumNativeFprArgs = 0; // 0 arguments passed in FPRs.
914
915 static constexpr size_t kRegistersNeededForLong = 2;
916 static constexpr size_t kRegistersNeededForDouble = 2;
917 static constexpr bool kMultiRegistersAligned = true;
918 static constexpr bool kMultiRegistersWidened = false;
919 static constexpr bool kAlignLongOnStack = true;
920 static constexpr bool kAlignDoubleOnStack = true;
921 #elif defined(__aarch64__)
922 static constexpr bool kNativeSoftFloatAbi = false; // This is a hard float ABI.
923 static constexpr size_t kNumNativeGprArgs = 8; // 6 arguments passed in GPRs.
924 static constexpr size_t kNumNativeFprArgs = 8; // 8 arguments passed in FPRs.
925
926 static constexpr size_t kRegistersNeededForLong = 1;
927 static constexpr size_t kRegistersNeededForDouble = 1;
928 static constexpr bool kMultiRegistersAligned = false;
929 static constexpr bool kMultiRegistersWidened = false;
930 static constexpr bool kAlignLongOnStack = false;
931 static constexpr bool kAlignDoubleOnStack = false;
932 #elif defined(__mips__)
933 // TODO: These are all dummy values!
934 static constexpr bool kNativeSoftFloatAbi = true; // This is a hard float ABI.
935 static constexpr size_t kNumNativeGprArgs = 0; // 6 arguments passed in GPRs.
936 static constexpr size_t kNumNativeFprArgs = 0; // 8 arguments passed in FPRs.
937
938 static constexpr size_t kRegistersNeededForLong = 2;
939 static constexpr size_t kRegistersNeededForDouble = 2;
940 static constexpr bool kMultiRegistersAligned = true;
941 static constexpr bool kMultiRegistersWidened = true;
942 static constexpr bool kAlignLongOnStack = false;
943 static constexpr bool kAlignDoubleOnStack = false;
944 #elif defined(__i386__)
945 // TODO: Check these!
946 static constexpr bool kNativeSoftFloatAbi = false; // Not using int registers for fp
947 static constexpr size_t kNumNativeGprArgs = 0; // 6 arguments passed in GPRs.
948 static constexpr size_t kNumNativeFprArgs = 0; // 8 arguments passed in FPRs.
949
950 static constexpr size_t kRegistersNeededForLong = 2;
951 static constexpr size_t kRegistersNeededForDouble = 2;
952 static constexpr bool kMultiRegistersAligned = false; // x86 not using regs, anyways
953 static constexpr bool kMultiRegistersWidened = false;
954 static constexpr bool kAlignLongOnStack = false;
955 static constexpr bool kAlignDoubleOnStack = false;
956 #elif defined(__x86_64__)
957 static constexpr bool kNativeSoftFloatAbi = false; // This is a hard float ABI.
958 static constexpr size_t kNumNativeGprArgs = 6; // 6 arguments passed in GPRs.
959 static constexpr size_t kNumNativeFprArgs = 8; // 8 arguments passed in FPRs.
960
961 static constexpr size_t kRegistersNeededForLong = 1;
962 static constexpr size_t kRegistersNeededForDouble = 1;
963 static constexpr bool kMultiRegistersAligned = false;
964 static constexpr bool kMultiRegistersWidened = false;
965 static constexpr bool kAlignLongOnStack = false;
966 static constexpr bool kAlignDoubleOnStack = false;
967 #else
968 #error "Unsupported architecture"
969 #endif
970
971 public:
BuildNativeCallFrameStateMachine(T * delegate)972 explicit BuildNativeCallFrameStateMachine(T* delegate)
973 : gpr_index_(kNumNativeGprArgs),
974 fpr_index_(kNumNativeFprArgs),
975 stack_entries_(0),
976 delegate_(delegate) {
977 // For register alignment, we want to assume that counters (gpr_index_, fpr_index_) are even iff
978 // the next register is even; counting down is just to make the compiler happy...
979 CHECK_EQ(kNumNativeGprArgs % 2, 0U);
980 CHECK_EQ(kNumNativeFprArgs % 2, 0U);
981 }
982
~BuildNativeCallFrameStateMachine()983 virtual ~BuildNativeCallFrameStateMachine() {}
984
HavePointerGpr()985 bool HavePointerGpr() {
986 return gpr_index_ > 0;
987 }
988
AdvancePointer(const void * val)989 void AdvancePointer(const void* val) {
990 if (HavePointerGpr()) {
991 gpr_index_--;
992 PushGpr(reinterpret_cast<uintptr_t>(val));
993 } else {
994 stack_entries_++; // TODO: have a field for pointer length as multiple of 32b
995 PushStack(reinterpret_cast<uintptr_t>(val));
996 gpr_index_ = 0;
997 }
998 }
999
HaveHandleScopeGpr()1000 bool HaveHandleScopeGpr() {
1001 return gpr_index_ > 0;
1002 }
1003
AdvanceHandleScope(mirror::Object * ptr)1004 void AdvanceHandleScope(mirror::Object* ptr) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1005 uintptr_t handle = PushHandle(ptr);
1006 if (HaveHandleScopeGpr()) {
1007 gpr_index_--;
1008 PushGpr(handle);
1009 } else {
1010 stack_entries_++;
1011 PushStack(handle);
1012 gpr_index_ = 0;
1013 }
1014 }
1015
HaveIntGpr()1016 bool HaveIntGpr() {
1017 return gpr_index_ > 0;
1018 }
1019
AdvanceInt(uint32_t val)1020 void AdvanceInt(uint32_t val) {
1021 if (HaveIntGpr()) {
1022 gpr_index_--;
1023 PushGpr(val);
1024 } else {
1025 stack_entries_++;
1026 PushStack(val);
1027 gpr_index_ = 0;
1028 }
1029 }
1030
HaveLongGpr()1031 bool HaveLongGpr() {
1032 return gpr_index_ >= kRegistersNeededForLong + (LongGprNeedsPadding() ? 1 : 0);
1033 }
1034
LongGprNeedsPadding()1035 bool LongGprNeedsPadding() {
1036 return kRegistersNeededForLong > 1 && // only pad when using multiple registers
1037 kAlignLongOnStack && // and when it needs alignment
1038 (gpr_index_ & 1) == 1; // counter is odd, see constructor
1039 }
1040
LongStackNeedsPadding()1041 bool LongStackNeedsPadding() {
1042 return kRegistersNeededForLong > 1 && // only pad when using multiple registers
1043 kAlignLongOnStack && // and when it needs 8B alignment
1044 (stack_entries_ & 1) == 1; // counter is odd
1045 }
1046
AdvanceLong(uint64_t val)1047 void AdvanceLong(uint64_t val) {
1048 if (HaveLongGpr()) {
1049 if (LongGprNeedsPadding()) {
1050 PushGpr(0);
1051 gpr_index_--;
1052 }
1053 if (kRegistersNeededForLong == 1) {
1054 PushGpr(static_cast<uintptr_t>(val));
1055 } else {
1056 PushGpr(static_cast<uintptr_t>(val & 0xFFFFFFFF));
1057 PushGpr(static_cast<uintptr_t>((val >> 32) & 0xFFFFFFFF));
1058 }
1059 gpr_index_ -= kRegistersNeededForLong;
1060 } else {
1061 if (LongStackNeedsPadding()) {
1062 PushStack(0);
1063 stack_entries_++;
1064 }
1065 if (kRegistersNeededForLong == 1) {
1066 PushStack(static_cast<uintptr_t>(val));
1067 stack_entries_++;
1068 } else {
1069 PushStack(static_cast<uintptr_t>(val & 0xFFFFFFFF));
1070 PushStack(static_cast<uintptr_t>((val >> 32) & 0xFFFFFFFF));
1071 stack_entries_ += 2;
1072 }
1073 gpr_index_ = 0;
1074 }
1075 }
1076
HaveFloatFpr()1077 bool HaveFloatFpr() {
1078 return fpr_index_ > 0;
1079 }
1080
AdvanceFloat(float val)1081 void AdvanceFloat(float val) {
1082 if (kNativeSoftFloatAbi) {
1083 AdvanceInt(bit_cast<float, uint32_t>(val));
1084 } else {
1085 if (HaveFloatFpr()) {
1086 fpr_index_--;
1087 if (kRegistersNeededForDouble == 1) {
1088 if (kMultiRegistersWidened) {
1089 PushFpr8(bit_cast<double, uint64_t>(val));
1090 } else {
1091 // No widening, just use the bits.
1092 PushFpr8(bit_cast<float, uint64_t>(val));
1093 }
1094 } else {
1095 PushFpr4(val);
1096 }
1097 } else {
1098 stack_entries_++;
1099 if (kRegistersNeededForDouble == 1 && kMultiRegistersWidened) {
1100 // Need to widen before storing: Note the "double" in the template instantiation.
1101 // Note: We need to jump through those hoops to make the compiler happy.
1102 DCHECK_EQ(sizeof(uintptr_t), sizeof(uint64_t));
1103 PushStack(static_cast<uintptr_t>(bit_cast<double, uint64_t>(val)));
1104 } else {
1105 PushStack(bit_cast<float, uintptr_t>(val));
1106 }
1107 fpr_index_ = 0;
1108 }
1109 }
1110 }
1111
HaveDoubleFpr()1112 bool HaveDoubleFpr() {
1113 return fpr_index_ >= kRegistersNeededForDouble + (DoubleFprNeedsPadding() ? 1 : 0);
1114 }
1115
DoubleFprNeedsPadding()1116 bool DoubleFprNeedsPadding() {
1117 return kRegistersNeededForDouble > 1 && // only pad when using multiple registers
1118 kAlignDoubleOnStack && // and when it needs alignment
1119 (fpr_index_ & 1) == 1; // counter is odd, see constructor
1120 }
1121
DoubleStackNeedsPadding()1122 bool DoubleStackNeedsPadding() {
1123 return kRegistersNeededForDouble > 1 && // only pad when using multiple registers
1124 kAlignDoubleOnStack && // and when it needs 8B alignment
1125 (stack_entries_ & 1) == 1; // counter is odd
1126 }
1127
AdvanceDouble(uint64_t val)1128 void AdvanceDouble(uint64_t val) {
1129 if (kNativeSoftFloatAbi) {
1130 AdvanceLong(val);
1131 } else {
1132 if (HaveDoubleFpr()) {
1133 if (DoubleFprNeedsPadding()) {
1134 PushFpr4(0);
1135 fpr_index_--;
1136 }
1137 PushFpr8(val);
1138 fpr_index_ -= kRegistersNeededForDouble;
1139 } else {
1140 if (DoubleStackNeedsPadding()) {
1141 PushStack(0);
1142 stack_entries_++;
1143 }
1144 if (kRegistersNeededForDouble == 1) {
1145 PushStack(static_cast<uintptr_t>(val));
1146 stack_entries_++;
1147 } else {
1148 PushStack(static_cast<uintptr_t>(val & 0xFFFFFFFF));
1149 PushStack(static_cast<uintptr_t>((val >> 32) & 0xFFFFFFFF));
1150 stack_entries_ += 2;
1151 }
1152 fpr_index_ = 0;
1153 }
1154 }
1155 }
1156
getStackEntries()1157 uint32_t getStackEntries() {
1158 return stack_entries_;
1159 }
1160
getNumberOfUsedGprs()1161 uint32_t getNumberOfUsedGprs() {
1162 return kNumNativeGprArgs - gpr_index_;
1163 }
1164
getNumberOfUsedFprs()1165 uint32_t getNumberOfUsedFprs() {
1166 return kNumNativeFprArgs - fpr_index_;
1167 }
1168
1169 private:
PushGpr(uintptr_t val)1170 void PushGpr(uintptr_t val) {
1171 delegate_->PushGpr(val);
1172 }
PushFpr4(float val)1173 void PushFpr4(float val) {
1174 delegate_->PushFpr4(val);
1175 }
PushFpr8(uint64_t val)1176 void PushFpr8(uint64_t val) {
1177 delegate_->PushFpr8(val);
1178 }
PushStack(uintptr_t val)1179 void PushStack(uintptr_t val) {
1180 delegate_->PushStack(val);
1181 }
PushHandle(mirror::Object * ref)1182 uintptr_t PushHandle(mirror::Object* ref) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1183 return delegate_->PushHandle(ref);
1184 }
1185
1186 uint32_t gpr_index_; // Number of free GPRs
1187 uint32_t fpr_index_; // Number of free FPRs
1188 uint32_t stack_entries_; // Stack entries are in multiples of 32b, as floats are usually not
1189 // extended
1190 T* delegate_; // What Push implementation gets called
1191 };
1192
1193 // Computes the sizes of register stacks and call stack area. Handling of references can be extended
1194 // in subclasses.
1195 //
1196 // To handle native pointers, use "L" in the shorty for an object reference, which simulates
1197 // them with handles.
1198 class ComputeNativeCallFrameSize {
1199 public:
ComputeNativeCallFrameSize()1200 ComputeNativeCallFrameSize() : num_stack_entries_(0) {}
1201
~ComputeNativeCallFrameSize()1202 virtual ~ComputeNativeCallFrameSize() {}
1203
GetStackSize()1204 uint32_t GetStackSize() {
1205 return num_stack_entries_ * sizeof(uintptr_t);
1206 }
1207
LayoutCallStack(uint8_t * sp8)1208 uint8_t* LayoutCallStack(uint8_t* sp8) {
1209 sp8 -= GetStackSize();
1210 // Align by kStackAlignment.
1211 sp8 = reinterpret_cast<uint8_t*>(RoundDown(reinterpret_cast<uintptr_t>(sp8), kStackAlignment));
1212 return sp8;
1213 }
1214
LayoutCallRegisterStacks(uint8_t * sp8,uintptr_t ** start_gpr,uint32_t ** start_fpr)1215 uint8_t* LayoutCallRegisterStacks(uint8_t* sp8, uintptr_t** start_gpr, uint32_t** start_fpr) {
1216 // Assumption is OK right now, as we have soft-float arm
1217 size_t fregs = BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>::kNumNativeFprArgs;
1218 sp8 -= fregs * sizeof(uintptr_t);
1219 *start_fpr = reinterpret_cast<uint32_t*>(sp8);
1220 size_t iregs = BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>::kNumNativeGprArgs;
1221 sp8 -= iregs * sizeof(uintptr_t);
1222 *start_gpr = reinterpret_cast<uintptr_t*>(sp8);
1223 return sp8;
1224 }
1225
LayoutNativeCall(uint8_t * sp8,uintptr_t ** start_stack,uintptr_t ** start_gpr,uint32_t ** start_fpr)1226 uint8_t* LayoutNativeCall(uint8_t* sp8, uintptr_t** start_stack, uintptr_t** start_gpr,
1227 uint32_t** start_fpr) {
1228 // Native call stack.
1229 sp8 = LayoutCallStack(sp8);
1230 *start_stack = reinterpret_cast<uintptr_t*>(sp8);
1231
1232 // Put fprs and gprs below.
1233 sp8 = LayoutCallRegisterStacks(sp8, start_gpr, start_fpr);
1234
1235 // Return the new bottom.
1236 return sp8;
1237 }
1238
WalkHeader(BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize> * sm)1239 virtual void WalkHeader(BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>* sm)
1240 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {}
1241
Walk(const char * shorty,uint32_t shorty_len)1242 void Walk(const char* shorty, uint32_t shorty_len) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1243 BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize> sm(this);
1244
1245 WalkHeader(&sm);
1246
1247 for (uint32_t i = 1; i < shorty_len; ++i) {
1248 Primitive::Type cur_type_ = Primitive::GetType(shorty[i]);
1249 switch (cur_type_) {
1250 case Primitive::kPrimNot:
1251 sm.AdvanceHandleScope(
1252 reinterpret_cast<mirror::Object*>(0x12345678));
1253 break;
1254
1255 case Primitive::kPrimBoolean:
1256 case Primitive::kPrimByte:
1257 case Primitive::kPrimChar:
1258 case Primitive::kPrimShort:
1259 case Primitive::kPrimInt:
1260 sm.AdvanceInt(0);
1261 break;
1262 case Primitive::kPrimFloat:
1263 sm.AdvanceFloat(0);
1264 break;
1265 case Primitive::kPrimDouble:
1266 sm.AdvanceDouble(0);
1267 break;
1268 case Primitive::kPrimLong:
1269 sm.AdvanceLong(0);
1270 break;
1271 default:
1272 LOG(FATAL) << "Unexpected type: " << cur_type_ << " in " << shorty;
1273 }
1274 }
1275
1276 num_stack_entries_ = sm.getStackEntries();
1277 }
1278
PushGpr(uintptr_t)1279 void PushGpr(uintptr_t /* val */) {
1280 // not optimizing registers, yet
1281 }
1282
PushFpr4(float)1283 void PushFpr4(float /* val */) {
1284 // not optimizing registers, yet
1285 }
1286
PushFpr8(uint64_t)1287 void PushFpr8(uint64_t /* val */) {
1288 // not optimizing registers, yet
1289 }
1290
PushStack(uintptr_t)1291 void PushStack(uintptr_t /* val */) {
1292 // counting is already done in the superclass
1293 }
1294
PushHandle(mirror::Object *)1295 virtual uintptr_t PushHandle(mirror::Object* /* ptr */) {
1296 return reinterpret_cast<uintptr_t>(nullptr);
1297 }
1298
1299 protected:
1300 uint32_t num_stack_entries_;
1301 };
1302
1303 class ComputeGenericJniFrameSize FINAL : public ComputeNativeCallFrameSize {
1304 public:
ComputeGenericJniFrameSize()1305 ComputeGenericJniFrameSize() : num_handle_scope_references_(0) {}
1306
1307 // Lays out the callee-save frame. Assumes that the incorrect frame corresponding to RefsAndArgs
1308 // is at *m = sp. Will update to point to the bottom of the save frame.
1309 //
1310 // Note: assumes ComputeAll() has been run before.
LayoutCalleeSaveFrame(StackReference<mirror::ArtMethod> ** m,void * sp,HandleScope ** table,uint32_t * handle_scope_entries)1311 void LayoutCalleeSaveFrame(StackReference<mirror::ArtMethod>** m, void* sp, HandleScope** table,
1312 uint32_t* handle_scope_entries)
1313 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1314 mirror::ArtMethod* method = (*m)->AsMirrorPtr();
1315
1316 uint8_t* sp8 = reinterpret_cast<uint8_t*>(sp);
1317
1318 // First, fix up the layout of the callee-save frame.
1319 // We have to squeeze in the HandleScope, and relocate the method pointer.
1320
1321 // "Free" the slot for the method.
1322 sp8 += kPointerSize; // In the callee-save frame we use a full pointer.
1323
1324 // Under the callee saves put handle scope and new method stack reference.
1325 *handle_scope_entries = num_handle_scope_references_;
1326
1327 size_t handle_scope_size = HandleScope::SizeOf(num_handle_scope_references_);
1328 size_t scope_and_method = handle_scope_size + sizeof(StackReference<mirror::ArtMethod>);
1329
1330 sp8 -= scope_and_method;
1331 // Align by kStackAlignment.
1332 sp8 = reinterpret_cast<uint8_t*>(RoundDown(
1333 reinterpret_cast<uintptr_t>(sp8), kStackAlignment));
1334
1335 uint8_t* sp8_table = sp8 + sizeof(StackReference<mirror::ArtMethod>);
1336 *table = reinterpret_cast<HandleScope*>(sp8_table);
1337 (*table)->SetNumberOfReferences(num_handle_scope_references_);
1338
1339 // Add a slot for the method pointer, and fill it. Fix the pointer-pointer given to us.
1340 uint8_t* method_pointer = sp8;
1341 StackReference<mirror::ArtMethod>* new_method_ref =
1342 reinterpret_cast<StackReference<mirror::ArtMethod>*>(method_pointer);
1343 new_method_ref->Assign(method);
1344 *m = new_method_ref;
1345 }
1346
1347 // Adds space for the cookie. Note: may leave stack unaligned.
LayoutCookie(uint8_t ** sp)1348 void LayoutCookie(uint8_t** sp) {
1349 // Reference cookie and padding
1350 *sp -= 8;
1351 }
1352
1353 // Re-layout the callee-save frame (insert a handle-scope). Then add space for the cookie.
1354 // Returns the new bottom. Note: this may be unaligned.
LayoutJNISaveFrame(StackReference<mirror::ArtMethod> ** m,void * sp,HandleScope ** table,uint32_t * handle_scope_entries)1355 uint8_t* LayoutJNISaveFrame(StackReference<mirror::ArtMethod>** m, void* sp, HandleScope** table,
1356 uint32_t* handle_scope_entries)
1357 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1358 // First, fix up the layout of the callee-save frame.
1359 // We have to squeeze in the HandleScope, and relocate the method pointer.
1360 LayoutCalleeSaveFrame(m, sp, table, handle_scope_entries);
1361
1362 // The bottom of the callee-save frame is now where the method is, *m.
1363 uint8_t* sp8 = reinterpret_cast<uint8_t*>(*m);
1364
1365 // Add space for cookie.
1366 LayoutCookie(&sp8);
1367
1368 return sp8;
1369 }
1370
1371 // WARNING: After this, *sp won't be pointing to the method anymore!
ComputeLayout(StackReference<mirror::ArtMethod> ** m,bool is_static,const char * shorty,uint32_t shorty_len,HandleScope ** table,uint32_t * handle_scope_entries,uintptr_t ** start_stack,uintptr_t ** start_gpr,uint32_t ** start_fpr)1372 uint8_t* ComputeLayout(StackReference<mirror::ArtMethod>** m, bool is_static, const char* shorty,
1373 uint32_t shorty_len, HandleScope** table, uint32_t* handle_scope_entries,
1374 uintptr_t** start_stack, uintptr_t** start_gpr, uint32_t** start_fpr)
1375 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1376 Walk(shorty, shorty_len);
1377
1378 // JNI part.
1379 uint8_t* sp8 = LayoutJNISaveFrame(m, reinterpret_cast<void*>(*m), table, handle_scope_entries);
1380
1381 sp8 = LayoutNativeCall(sp8, start_stack, start_gpr, start_fpr);
1382
1383 // Return the new bottom.
1384 return sp8;
1385 }
1386
1387 uintptr_t PushHandle(mirror::Object* /* ptr */) OVERRIDE;
1388
1389 // Add JNIEnv* and jobj/jclass before the shorty-derived elements.
1390 void WalkHeader(BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>* sm) OVERRIDE
1391 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
1392
1393 private:
1394 uint32_t num_handle_scope_references_;
1395 };
1396
PushHandle(mirror::Object *)1397 uintptr_t ComputeGenericJniFrameSize::PushHandle(mirror::Object* /* ptr */) {
1398 num_handle_scope_references_++;
1399 return reinterpret_cast<uintptr_t>(nullptr);
1400 }
1401
WalkHeader(BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize> * sm)1402 void ComputeGenericJniFrameSize::WalkHeader(
1403 BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>* sm) {
1404 // JNIEnv
1405 sm->AdvancePointer(nullptr);
1406
1407 // Class object or this as first argument
1408 sm->AdvanceHandleScope(reinterpret_cast<mirror::Object*>(0x12345678));
1409 }
1410
1411 // Class to push values to three separate regions. Used to fill the native call part. Adheres to
1412 // the template requirements of BuildGenericJniFrameStateMachine.
1413 class FillNativeCall {
1414 public:
FillNativeCall(uintptr_t * gpr_regs,uint32_t * fpr_regs,uintptr_t * stack_args)1415 FillNativeCall(uintptr_t* gpr_regs, uint32_t* fpr_regs, uintptr_t* stack_args) :
1416 cur_gpr_reg_(gpr_regs), cur_fpr_reg_(fpr_regs), cur_stack_arg_(stack_args) {}
1417
~FillNativeCall()1418 virtual ~FillNativeCall() {}
1419
Reset(uintptr_t * gpr_regs,uint32_t * fpr_regs,uintptr_t * stack_args)1420 void Reset(uintptr_t* gpr_regs, uint32_t* fpr_regs, uintptr_t* stack_args) {
1421 cur_gpr_reg_ = gpr_regs;
1422 cur_fpr_reg_ = fpr_regs;
1423 cur_stack_arg_ = stack_args;
1424 }
1425
PushGpr(uintptr_t val)1426 void PushGpr(uintptr_t val) {
1427 *cur_gpr_reg_ = val;
1428 cur_gpr_reg_++;
1429 }
1430
PushFpr4(float val)1431 void PushFpr4(float val) {
1432 *cur_fpr_reg_ = val;
1433 cur_fpr_reg_++;
1434 }
1435
PushFpr8(uint64_t val)1436 void PushFpr8(uint64_t val) {
1437 uint64_t* tmp = reinterpret_cast<uint64_t*>(cur_fpr_reg_);
1438 *tmp = val;
1439 cur_fpr_reg_ += 2;
1440 }
1441
PushStack(uintptr_t val)1442 void PushStack(uintptr_t val) {
1443 *cur_stack_arg_ = val;
1444 cur_stack_arg_++;
1445 }
1446
PushHandle(mirror::Object * ref)1447 virtual uintptr_t PushHandle(mirror::Object* ref) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1448 LOG(FATAL) << "(Non-JNI) Native call does not use handles.";
1449 return 0U;
1450 }
1451
1452 private:
1453 uintptr_t* cur_gpr_reg_;
1454 uint32_t* cur_fpr_reg_;
1455 uintptr_t* cur_stack_arg_;
1456 };
1457
1458 // Visits arguments on the stack placing them into a region lower down the stack for the benefit
1459 // of transitioning into native code.
1460 class BuildGenericJniFrameVisitor FINAL : public QuickArgumentVisitor {
1461 public:
BuildGenericJniFrameVisitor(StackReference<mirror::ArtMethod> ** sp,bool is_static,const char * shorty,uint32_t shorty_len,Thread * self)1462 BuildGenericJniFrameVisitor(StackReference<mirror::ArtMethod>** sp, bool is_static,
1463 const char* shorty, uint32_t shorty_len, Thread* self)
1464 : QuickArgumentVisitor(*sp, is_static, shorty, shorty_len),
1465 jni_call_(nullptr, nullptr, nullptr, nullptr), sm_(&jni_call_) {
1466 ComputeGenericJniFrameSize fsc;
1467 uintptr_t* start_gpr_reg;
1468 uint32_t* start_fpr_reg;
1469 uintptr_t* start_stack_arg;
1470 uint32_t handle_scope_entries;
1471 bottom_of_used_area_ = fsc.ComputeLayout(sp, is_static, shorty, shorty_len, &handle_scope_,
1472 &handle_scope_entries, &start_stack_arg,
1473 &start_gpr_reg, &start_fpr_reg);
1474
1475 handle_scope_->SetNumberOfReferences(handle_scope_entries);
1476 jni_call_.Reset(start_gpr_reg, start_fpr_reg, start_stack_arg, handle_scope_);
1477
1478 // jni environment is always first argument
1479 sm_.AdvancePointer(self->GetJniEnv());
1480
1481 if (is_static) {
1482 sm_.AdvanceHandleScope((*sp)->AsMirrorPtr()->GetDeclaringClass());
1483 }
1484 }
1485
1486 void Visit() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) OVERRIDE;
1487
1488 void FinalizeHandleScope(Thread* self) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
1489
GetFirstHandleScopeEntry()1490 StackReference<mirror::Object>* GetFirstHandleScopeEntry()
1491 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1492 return handle_scope_->GetHandle(0).GetReference();
1493 }
1494
GetFirstHandleScopeJObject()1495 jobject GetFirstHandleScopeJObject() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1496 return handle_scope_->GetHandle(0).ToJObject();
1497 }
1498
GetBottomOfUsedArea()1499 void* GetBottomOfUsedArea() {
1500 return bottom_of_used_area_;
1501 }
1502
1503 private:
1504 // A class to fill a JNI call. Adds reference/handle-scope management to FillNativeCall.
1505 class FillJniCall FINAL : public FillNativeCall {
1506 public:
FillJniCall(uintptr_t * gpr_regs,uint32_t * fpr_regs,uintptr_t * stack_args,HandleScope * handle_scope)1507 FillJniCall(uintptr_t* gpr_regs, uint32_t* fpr_regs, uintptr_t* stack_args,
1508 HandleScope* handle_scope) : FillNativeCall(gpr_regs, fpr_regs, stack_args),
1509 handle_scope_(handle_scope), cur_entry_(0) {}
1510
1511 uintptr_t PushHandle(mirror::Object* ref) OVERRIDE SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
1512
Reset(uintptr_t * gpr_regs,uint32_t * fpr_regs,uintptr_t * stack_args,HandleScope * scope)1513 void Reset(uintptr_t* gpr_regs, uint32_t* fpr_regs, uintptr_t* stack_args, HandleScope* scope) {
1514 FillNativeCall::Reset(gpr_regs, fpr_regs, stack_args);
1515 handle_scope_ = scope;
1516 cur_entry_ = 0U;
1517 }
1518
ResetRemainingScopeSlots()1519 void ResetRemainingScopeSlots() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1520 // Initialize padding entries.
1521 size_t expected_slots = handle_scope_->NumberOfReferences();
1522 while (cur_entry_ < expected_slots) {
1523 handle_scope_->GetHandle(cur_entry_++).Assign(nullptr);
1524 }
1525 DCHECK_NE(cur_entry_, 0U);
1526 }
1527
1528 private:
1529 HandleScope* handle_scope_;
1530 size_t cur_entry_;
1531 };
1532
1533 HandleScope* handle_scope_;
1534 FillJniCall jni_call_;
1535 void* bottom_of_used_area_;
1536
1537 BuildNativeCallFrameStateMachine<FillJniCall> sm_;
1538
1539 DISALLOW_COPY_AND_ASSIGN(BuildGenericJniFrameVisitor);
1540 };
1541
PushHandle(mirror::Object * ref)1542 uintptr_t BuildGenericJniFrameVisitor::FillJniCall::PushHandle(mirror::Object* ref) {
1543 uintptr_t tmp;
1544 Handle<mirror::Object> h = handle_scope_->GetHandle(cur_entry_);
1545 h.Assign(ref);
1546 tmp = reinterpret_cast<uintptr_t>(h.ToJObject());
1547 cur_entry_++;
1548 return tmp;
1549 }
1550
Visit()1551 void BuildGenericJniFrameVisitor::Visit() {
1552 Primitive::Type type = GetParamPrimitiveType();
1553 switch (type) {
1554 case Primitive::kPrimLong: {
1555 jlong long_arg;
1556 if (IsSplitLongOrDouble()) {
1557 long_arg = ReadSplitLongParam();
1558 } else {
1559 long_arg = *reinterpret_cast<jlong*>(GetParamAddress());
1560 }
1561 sm_.AdvanceLong(long_arg);
1562 break;
1563 }
1564 case Primitive::kPrimDouble: {
1565 uint64_t double_arg;
1566 if (IsSplitLongOrDouble()) {
1567 // Read into union so that we don't case to a double.
1568 double_arg = ReadSplitLongParam();
1569 } else {
1570 double_arg = *reinterpret_cast<uint64_t*>(GetParamAddress());
1571 }
1572 sm_.AdvanceDouble(double_arg);
1573 break;
1574 }
1575 case Primitive::kPrimNot: {
1576 StackReference<mirror::Object>* stack_ref =
1577 reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress());
1578 sm_.AdvanceHandleScope(stack_ref->AsMirrorPtr());
1579 break;
1580 }
1581 case Primitive::kPrimFloat:
1582 sm_.AdvanceFloat(*reinterpret_cast<float*>(GetParamAddress()));
1583 break;
1584 case Primitive::kPrimBoolean: // Fall-through.
1585 case Primitive::kPrimByte: // Fall-through.
1586 case Primitive::kPrimChar: // Fall-through.
1587 case Primitive::kPrimShort: // Fall-through.
1588 case Primitive::kPrimInt: // Fall-through.
1589 sm_.AdvanceInt(*reinterpret_cast<jint*>(GetParamAddress()));
1590 break;
1591 case Primitive::kPrimVoid:
1592 LOG(FATAL) << "UNREACHABLE";
1593 break;
1594 }
1595 }
1596
FinalizeHandleScope(Thread * self)1597 void BuildGenericJniFrameVisitor::FinalizeHandleScope(Thread* self) {
1598 // Clear out rest of the scope.
1599 jni_call_.ResetRemainingScopeSlots();
1600 // Install HandleScope.
1601 self->PushHandleScope(handle_scope_);
1602 }
1603
1604 #if defined(__arm__) || defined(__aarch64__)
1605 extern "C" void* artFindNativeMethod();
1606 #else
1607 extern "C" void* artFindNativeMethod(Thread* self);
1608 #endif
1609
artQuickGenericJniEndJNIRef(Thread * self,uint32_t cookie,jobject l,jobject lock)1610 uint64_t artQuickGenericJniEndJNIRef(Thread* self, uint32_t cookie, jobject l, jobject lock) {
1611 if (lock != nullptr) {
1612 return reinterpret_cast<uint64_t>(JniMethodEndWithReferenceSynchronized(l, cookie, lock, self));
1613 } else {
1614 return reinterpret_cast<uint64_t>(JniMethodEndWithReference(l, cookie, self));
1615 }
1616 }
1617
artQuickGenericJniEndJNINonRef(Thread * self,uint32_t cookie,jobject lock)1618 void artQuickGenericJniEndJNINonRef(Thread* self, uint32_t cookie, jobject lock) {
1619 if (lock != nullptr) {
1620 JniMethodEndSynchronized(cookie, lock, self);
1621 } else {
1622 JniMethodEnd(cookie, self);
1623 }
1624 }
1625
1626 /*
1627 * Initializes an alloca region assumed to be directly below sp for a native call:
1628 * Create a HandleScope and call stack and fill a mini stack with values to be pushed to registers.
1629 * The final element on the stack is a pointer to the native code.
1630 *
1631 * On entry, the stack has a standard callee-save frame above sp, and an alloca below it.
1632 * We need to fix this, as the handle scope needs to go into the callee-save frame.
1633 *
1634 * The return of this function denotes:
1635 * 1) How many bytes of the alloca can be released, if the value is non-negative.
1636 * 2) An error, if the value is negative.
1637 */
artQuickGenericJniTrampoline(Thread * self,StackReference<mirror::ArtMethod> * sp)1638 extern "C" TwoWordReturn artQuickGenericJniTrampoline(Thread* self,
1639 StackReference<mirror::ArtMethod>* sp)
1640 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1641 mirror::ArtMethod* called = sp->AsMirrorPtr();
1642 DCHECK(called->IsNative()) << PrettyMethod(called, true);
1643 uint32_t shorty_len = 0;
1644 const char* shorty = called->GetShorty(&shorty_len);
1645
1646 // Run the visitor.
1647 BuildGenericJniFrameVisitor visitor(&sp, called->IsStatic(), shorty, shorty_len, self);
1648 visitor.VisitArguments();
1649 visitor.FinalizeHandleScope(self);
1650
1651 // Fix up managed-stack things in Thread.
1652 self->SetTopOfStack(sp, 0);
1653
1654 self->VerifyStack();
1655
1656 // Start JNI, save the cookie.
1657 uint32_t cookie;
1658 if (called->IsSynchronized()) {
1659 cookie = JniMethodStartSynchronized(visitor.GetFirstHandleScopeJObject(), self);
1660 if (self->IsExceptionPending()) {
1661 self->PopHandleScope();
1662 // A negative value denotes an error.
1663 return GetTwoWordFailureValue();
1664 }
1665 } else {
1666 cookie = JniMethodStart(self);
1667 }
1668 uint32_t* sp32 = reinterpret_cast<uint32_t*>(sp);
1669 *(sp32 - 1) = cookie;
1670
1671 // Retrieve the stored native code.
1672 void* nativeCode = called->GetEntryPointFromJni();
1673
1674 // There are two cases for the content of nativeCode:
1675 // 1) Pointer to the native function.
1676 // 2) Pointer to the trampoline for native code binding.
1677 // In the second case, we need to execute the binding and continue with the actual native function
1678 // pointer.
1679 DCHECK(nativeCode != nullptr);
1680 if (nativeCode == GetJniDlsymLookupStub()) {
1681 #if defined(__arm__) || defined(__aarch64__)
1682 nativeCode = artFindNativeMethod();
1683 #else
1684 nativeCode = artFindNativeMethod(self);
1685 #endif
1686
1687 if (nativeCode == nullptr) {
1688 DCHECK(self->IsExceptionPending()); // There should be an exception pending now.
1689
1690 // End JNI, as the assembly will move to deliver the exception.
1691 jobject lock = called->IsSynchronized() ? visitor.GetFirstHandleScopeJObject() : nullptr;
1692 if (shorty[0] == 'L') {
1693 artQuickGenericJniEndJNIRef(self, cookie, nullptr, lock);
1694 } else {
1695 artQuickGenericJniEndJNINonRef(self, cookie, lock);
1696 }
1697
1698 return GetTwoWordFailureValue();
1699 }
1700 // Note that the native code pointer will be automatically set by artFindNativeMethod().
1701 }
1702
1703 // Return native code addr(lo) and bottom of alloca address(hi).
1704 return GetTwoWordSuccessValue(reinterpret_cast<uintptr_t>(visitor.GetBottomOfUsedArea()),
1705 reinterpret_cast<uintptr_t>(nativeCode));
1706 }
1707
1708 /*
1709 * Is called after the native JNI code. Responsible for cleanup (handle scope, saved state) and
1710 * unlocking.
1711 */
artQuickGenericJniEndTrampoline(Thread * self,jvalue result,uint64_t result_f)1712 extern "C" uint64_t artQuickGenericJniEndTrampoline(Thread* self, jvalue result, uint64_t result_f)
1713 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1714 StackReference<mirror::ArtMethod>* sp = self->GetManagedStack()->GetTopQuickFrame();
1715 uint32_t* sp32 = reinterpret_cast<uint32_t*>(sp);
1716 mirror::ArtMethod* called = sp->AsMirrorPtr();
1717 uint32_t cookie = *(sp32 - 1);
1718
1719 jobject lock = nullptr;
1720 if (called->IsSynchronized()) {
1721 HandleScope* table = reinterpret_cast<HandleScope*>(reinterpret_cast<uint8_t*>(sp)
1722 + sizeof(StackReference<mirror::ArtMethod>));
1723 lock = table->GetHandle(0).ToJObject();
1724 }
1725
1726 char return_shorty_char = called->GetShorty()[0];
1727
1728 if (return_shorty_char == 'L') {
1729 return artQuickGenericJniEndJNIRef(self, cookie, result.l, lock);
1730 } else {
1731 artQuickGenericJniEndJNINonRef(self, cookie, lock);
1732
1733 switch (return_shorty_char) {
1734 case 'F': {
1735 if (kRuntimeISA == kX86) {
1736 // Convert back the result to float.
1737 double d = bit_cast<uint64_t, double>(result_f);
1738 return bit_cast<float, uint32_t>(static_cast<float>(d));
1739 } else {
1740 return result_f;
1741 }
1742 }
1743 case 'D':
1744 return result_f;
1745 case 'Z':
1746 return result.z;
1747 case 'B':
1748 return result.b;
1749 case 'C':
1750 return result.c;
1751 case 'S':
1752 return result.s;
1753 case 'I':
1754 return result.i;
1755 case 'J':
1756 return result.j;
1757 case 'V':
1758 return 0;
1759 default:
1760 LOG(FATAL) << "Unexpected return shorty character " << return_shorty_char;
1761 return 0;
1762 }
1763 }
1764 }
1765
1766 // We use TwoWordReturn to optimize scalar returns. We use the hi value for code, and the lo value
1767 // for the method pointer.
1768 //
1769 // It is valid to use this, as at the usage points here (returns from C functions) we are assuming
1770 // to hold the mutator lock (see SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) annotations).
1771
1772 template<InvokeType type, bool access_check>
1773 static TwoWordReturn artInvokeCommon(uint32_t method_idx, mirror::Object* this_object,
1774 mirror::ArtMethod* caller_method,
1775 Thread* self, StackReference<mirror::ArtMethod>* sp);
1776
1777 template<InvokeType type, bool access_check>
artInvokeCommon(uint32_t method_idx,mirror::Object * this_object,mirror::ArtMethod * caller_method,Thread * self,StackReference<mirror::ArtMethod> * sp)1778 static TwoWordReturn artInvokeCommon(uint32_t method_idx, mirror::Object* this_object,
1779 mirror::ArtMethod* caller_method,
1780 Thread* self, StackReference<mirror::ArtMethod>* sp) {
1781 mirror::ArtMethod* method = FindMethodFast(method_idx, this_object, caller_method, access_check,
1782 type);
1783 if (UNLIKELY(method == nullptr)) {
1784 FinishCalleeSaveFrameSetup(self, sp, Runtime::kRefsAndArgs);
1785 const DexFile* dex_file = caller_method->GetDeclaringClass()->GetDexCache()->GetDexFile();
1786 uint32_t shorty_len;
1787 const char* shorty = dex_file->GetMethodShorty(dex_file->GetMethodId(method_idx), &shorty_len);
1788 {
1789 // Remember the args in case a GC happens in FindMethodFromCode.
1790 ScopedObjectAccessUnchecked soa(self->GetJniEnv());
1791 RememberForGcArgumentVisitor visitor(sp, type == kStatic, shorty, shorty_len, &soa);
1792 visitor.VisitArguments();
1793 method = FindMethodFromCode<type, access_check>(method_idx, &this_object, &caller_method,
1794 self);
1795 visitor.FixupReferences();
1796 }
1797
1798 if (UNLIKELY(method == NULL)) {
1799 CHECK(self->IsExceptionPending());
1800 return GetTwoWordFailureValue(); // Failure.
1801 }
1802 }
1803 DCHECK(!self->IsExceptionPending());
1804 const void* code = method->GetEntryPointFromQuickCompiledCode();
1805
1806 // When we return, the caller will branch to this address, so it had better not be 0!
1807 DCHECK(code != nullptr) << "Code was NULL in method: " << PrettyMethod(method)
1808 << " location: "
1809 << method->GetDexFile()->GetLocation();
1810
1811 return GetTwoWordSuccessValue(reinterpret_cast<uintptr_t>(code),
1812 reinterpret_cast<uintptr_t>(method));
1813 }
1814
1815 // Explicit artInvokeCommon template function declarations to please analysis tool.
1816 #define EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(type, access_check) \
1817 template SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) \
1818 TwoWordReturn artInvokeCommon<type, access_check>(uint32_t method_idx, \
1819 mirror::Object* this_object, \
1820 mirror::ArtMethod* caller_method, \
1821 Thread* self, \
1822 StackReference<mirror::ArtMethod>* sp) \
1823
1824 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kVirtual, false);
1825 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kVirtual, true);
1826 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kInterface, false);
1827 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kInterface, true);
1828 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kDirect, false);
1829 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kDirect, true);
1830 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kStatic, false);
1831 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kStatic, true);
1832 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kSuper, false);
1833 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kSuper, true);
1834 #undef EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL
1835
1836 // See comments in runtime_support_asm.S
artInvokeInterfaceTrampolineWithAccessCheck(uint32_t method_idx,mirror::Object * this_object,mirror::ArtMethod * caller_method,Thread * self,StackReference<mirror::ArtMethod> * sp)1837 extern "C" TwoWordReturn artInvokeInterfaceTrampolineWithAccessCheck(
1838 uint32_t method_idx, mirror::Object* this_object,
1839 mirror::ArtMethod* caller_method, Thread* self,
1840 StackReference<mirror::ArtMethod>* sp)
1841 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1842 return artInvokeCommon<kInterface, true>(method_idx, this_object,
1843 caller_method, self, sp);
1844 }
1845
artInvokeDirectTrampolineWithAccessCheck(uint32_t method_idx,mirror::Object * this_object,mirror::ArtMethod * caller_method,Thread * self,StackReference<mirror::ArtMethod> * sp)1846 extern "C" TwoWordReturn artInvokeDirectTrampolineWithAccessCheck(
1847 uint32_t method_idx, mirror::Object* this_object,
1848 mirror::ArtMethod* caller_method, Thread* self,
1849 StackReference<mirror::ArtMethod>* sp)
1850 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1851 return artInvokeCommon<kDirect, true>(method_idx, this_object, caller_method,
1852 self, sp);
1853 }
1854
artInvokeStaticTrampolineWithAccessCheck(uint32_t method_idx,mirror::Object * this_object,mirror::ArtMethod * caller_method,Thread * self,StackReference<mirror::ArtMethod> * sp)1855 extern "C" TwoWordReturn artInvokeStaticTrampolineWithAccessCheck(
1856 uint32_t method_idx, mirror::Object* this_object,
1857 mirror::ArtMethod* caller_method, Thread* self,
1858 StackReference<mirror::ArtMethod>* sp)
1859 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1860 return artInvokeCommon<kStatic, true>(method_idx, this_object, caller_method,
1861 self, sp);
1862 }
1863
artInvokeSuperTrampolineWithAccessCheck(uint32_t method_idx,mirror::Object * this_object,mirror::ArtMethod * caller_method,Thread * self,StackReference<mirror::ArtMethod> * sp)1864 extern "C" TwoWordReturn artInvokeSuperTrampolineWithAccessCheck(
1865 uint32_t method_idx, mirror::Object* this_object,
1866 mirror::ArtMethod* caller_method, Thread* self,
1867 StackReference<mirror::ArtMethod>* sp)
1868 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1869 return artInvokeCommon<kSuper, true>(method_idx, this_object, caller_method,
1870 self, sp);
1871 }
1872
artInvokeVirtualTrampolineWithAccessCheck(uint32_t method_idx,mirror::Object * this_object,mirror::ArtMethod * caller_method,Thread * self,StackReference<mirror::ArtMethod> * sp)1873 extern "C" TwoWordReturn artInvokeVirtualTrampolineWithAccessCheck(
1874 uint32_t method_idx, mirror::Object* this_object,
1875 mirror::ArtMethod* caller_method, Thread* self,
1876 StackReference<mirror::ArtMethod>* sp)
1877 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1878 return artInvokeCommon<kVirtual, true>(method_idx, this_object, caller_method,
1879 self, sp);
1880 }
1881
1882 // Determine target of interface dispatch. This object is known non-null.
artInvokeInterfaceTrampoline(mirror::ArtMethod * interface_method,mirror::Object * this_object,mirror::ArtMethod * caller_method,Thread * self,StackReference<mirror::ArtMethod> * sp)1883 extern "C" TwoWordReturn artInvokeInterfaceTrampoline(mirror::ArtMethod* interface_method,
1884 mirror::Object* this_object,
1885 mirror::ArtMethod* caller_method,
1886 Thread* self,
1887 StackReference<mirror::ArtMethod>* sp)
1888 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1889 mirror::ArtMethod* method;
1890 if (LIKELY(interface_method->GetDexMethodIndex() != DexFile::kDexNoIndex)) {
1891 method = this_object->GetClass()->FindVirtualMethodForInterface(interface_method);
1892 if (UNLIKELY(method == NULL)) {
1893 FinishCalleeSaveFrameSetup(self, sp, Runtime::kRefsAndArgs);
1894 ThrowIncompatibleClassChangeErrorClassForInterfaceDispatch(interface_method, this_object,
1895 caller_method);
1896 return GetTwoWordFailureValue(); // Failure.
1897 }
1898 } else {
1899 FinishCalleeSaveFrameSetup(self, sp, Runtime::kRefsAndArgs);
1900 DCHECK(interface_method == Runtime::Current()->GetResolutionMethod());
1901
1902 // Find the caller PC.
1903 constexpr size_t pc_offset = GetCalleeSavePCOffset(kRuntimeISA, Runtime::kRefsAndArgs);
1904 uintptr_t caller_pc = *reinterpret_cast<uintptr_t*>(reinterpret_cast<byte*>(sp) + pc_offset);
1905
1906 // Map the caller PC to a dex PC.
1907 uint32_t dex_pc = caller_method->ToDexPc(caller_pc);
1908 const DexFile::CodeItem* code = caller_method->GetCodeItem();
1909 CHECK_LT(dex_pc, code->insns_size_in_code_units_);
1910 const Instruction* instr = Instruction::At(&code->insns_[dex_pc]);
1911 Instruction::Code instr_code = instr->Opcode();
1912 CHECK(instr_code == Instruction::INVOKE_INTERFACE ||
1913 instr_code == Instruction::INVOKE_INTERFACE_RANGE)
1914 << "Unexpected call into interface trampoline: " << instr->DumpString(NULL);
1915 uint32_t dex_method_idx;
1916 if (instr_code == Instruction::INVOKE_INTERFACE) {
1917 dex_method_idx = instr->VRegB_35c();
1918 } else {
1919 DCHECK_EQ(instr_code, Instruction::INVOKE_INTERFACE_RANGE);
1920 dex_method_idx = instr->VRegB_3rc();
1921 }
1922
1923 const DexFile* dex_file = caller_method->GetDeclaringClass()->GetDexCache()
1924 ->GetDexFile();
1925 uint32_t shorty_len;
1926 const char* shorty = dex_file->GetMethodShorty(dex_file->GetMethodId(dex_method_idx),
1927 &shorty_len);
1928 {
1929 // Remember the args in case a GC happens in FindMethodFromCode.
1930 ScopedObjectAccessUnchecked soa(self->GetJniEnv());
1931 RememberForGcArgumentVisitor visitor(sp, false, shorty, shorty_len, &soa);
1932 visitor.VisitArguments();
1933 method = FindMethodFromCode<kInterface, false>(dex_method_idx, &this_object, &caller_method,
1934 self);
1935 visitor.FixupReferences();
1936 }
1937
1938 if (UNLIKELY(method == nullptr)) {
1939 CHECK(self->IsExceptionPending());
1940 return GetTwoWordFailureValue(); // Failure.
1941 }
1942 }
1943 const void* code = method->GetEntryPointFromQuickCompiledCode();
1944
1945 // When we return, the caller will branch to this address, so it had better not be 0!
1946 DCHECK(code != nullptr) << "Code was NULL in method: " << PrettyMethod(method)
1947 << " location: " << method->GetDexFile()->GetLocation();
1948
1949 return GetTwoWordSuccessValue(reinterpret_cast<uintptr_t>(code),
1950 reinterpret_cast<uintptr_t>(method));
1951 }
1952
1953 } // namespace art
1954