1 /*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "mark_sweep.h"
18
19 #include <functional>
20 #include <numeric>
21 #include <climits>
22 #include <vector>
23
24 #include "base/bounded_fifo.h"
25 #include "base/logging.h"
26 #include "base/macros.h"
27 #include "base/mutex-inl.h"
28 #include "base/timing_logger.h"
29 #include "gc/accounting/card_table-inl.h"
30 #include "gc/accounting/heap_bitmap-inl.h"
31 #include "gc/accounting/mod_union_table.h"
32 #include "gc/accounting/space_bitmap-inl.h"
33 #include "gc/heap.h"
34 #include "gc/reference_processor.h"
35 #include "gc/space/image_space.h"
36 #include "gc/space/large_object_space.h"
37 #include "gc/space/space-inl.h"
38 #include "mark_sweep-inl.h"
39 #include "mirror/art_field-inl.h"
40 #include "mirror/object-inl.h"
41 #include "runtime.h"
42 #include "scoped_thread_state_change.h"
43 #include "thread-inl.h"
44 #include "thread_list.h"
45
46 using ::art::mirror::Object;
47
48 namespace art {
49 namespace gc {
50 namespace collector {
51
52 // Performance options.
53 static constexpr bool kUseRecursiveMark = false;
54 static constexpr bool kUseMarkStackPrefetch = true;
55 static constexpr size_t kSweepArrayChunkFreeSize = 1024;
56 static constexpr bool kPreCleanCards = true;
57
58 // Parallelism options.
59 static constexpr bool kParallelCardScan = true;
60 static constexpr bool kParallelRecursiveMark = true;
61 // Don't attempt to parallelize mark stack processing unless the mark stack is at least n
62 // elements. This is temporary until we reduce the overhead caused by allocating tasks, etc.. Not
63 // having this can add overhead in ProcessReferences since we may end up doing many calls of
64 // ProcessMarkStack with very small mark stacks.
65 static constexpr size_t kMinimumParallelMarkStackSize = 128;
66 static constexpr bool kParallelProcessMarkStack = true;
67
68 // Profiling and information flags.
69 static constexpr bool kProfileLargeObjects = false;
70 static constexpr bool kMeasureOverhead = false;
71 static constexpr bool kCountTasks = false;
72 static constexpr bool kCountJavaLangRefs = false;
73 static constexpr bool kCountMarkedObjects = false;
74
75 // Turn off kCheckLocks when profiling the GC since it slows the GC down by up to 40%.
76 static constexpr bool kCheckLocks = kDebugLocking;
77 static constexpr bool kVerifyRootsMarked = kIsDebugBuild;
78
79 // If true, revoke the rosalloc thread-local buffers at the
80 // checkpoint, as opposed to during the pause.
81 static constexpr bool kRevokeRosAllocThreadLocalBuffersAtCheckpoint = true;
82
BindBitmaps()83 void MarkSweep::BindBitmaps() {
84 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
85 WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
86 // Mark all of the spaces we never collect as immune.
87 for (const auto& space : GetHeap()->GetContinuousSpaces()) {
88 if (space->GetGcRetentionPolicy() == space::kGcRetentionPolicyNeverCollect) {
89 CHECK(immune_region_.AddContinuousSpace(space)) << "Failed to add space " << *space;
90 }
91 }
92 }
93
MarkSweep(Heap * heap,bool is_concurrent,const std::string & name_prefix)94 MarkSweep::MarkSweep(Heap* heap, bool is_concurrent, const std::string& name_prefix)
95 : GarbageCollector(heap,
96 name_prefix +
97 (is_concurrent ? "concurrent mark sweep": "mark sweep")),
98 current_space_bitmap_(nullptr), mark_bitmap_(nullptr), mark_stack_(nullptr),
99 gc_barrier_(new Barrier(0)),
100 mark_stack_lock_("mark sweep mark stack lock", kMarkSweepMarkStackLock),
101 is_concurrent_(is_concurrent), live_stack_freeze_size_(0) {
102 std::string error_msg;
103 MemMap* mem_map = MemMap::MapAnonymous(
104 "mark sweep sweep array free buffer", nullptr,
105 RoundUp(kSweepArrayChunkFreeSize * sizeof(mirror::Object*), kPageSize),
106 PROT_READ | PROT_WRITE, false, &error_msg);
107 CHECK(mem_map != nullptr) << "Couldn't allocate sweep array free buffer: " << error_msg;
108 sweep_array_free_buffer_mem_map_.reset(mem_map);
109 }
110
InitializePhase()111 void MarkSweep::InitializePhase() {
112 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
113 mark_stack_ = heap_->GetMarkStack();
114 DCHECK(mark_stack_ != nullptr);
115 immune_region_.Reset();
116 class_count_.StoreRelaxed(0);
117 array_count_.StoreRelaxed(0);
118 other_count_.StoreRelaxed(0);
119 large_object_test_.StoreRelaxed(0);
120 large_object_mark_.StoreRelaxed(0);
121 overhead_time_ .StoreRelaxed(0);
122 work_chunks_created_.StoreRelaxed(0);
123 work_chunks_deleted_.StoreRelaxed(0);
124 reference_count_.StoreRelaxed(0);
125 mark_null_count_.StoreRelaxed(0);
126 mark_immune_count_.StoreRelaxed(0);
127 mark_fastpath_count_.StoreRelaxed(0);
128 mark_slowpath_count_.StoreRelaxed(0);
129 {
130 // TODO: I don't think we should need heap bitmap lock to Get the mark bitmap.
131 ReaderMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
132 mark_bitmap_ = heap_->GetMarkBitmap();
133 }
134 if (!GetCurrentIteration()->GetClearSoftReferences()) {
135 // Always clear soft references if a non-sticky collection.
136 GetCurrentIteration()->SetClearSoftReferences(GetGcType() != collector::kGcTypeSticky);
137 }
138 }
139
RunPhases()140 void MarkSweep::RunPhases() {
141 Thread* self = Thread::Current();
142 InitializePhase();
143 Locks::mutator_lock_->AssertNotHeld(self);
144 if (IsConcurrent()) {
145 GetHeap()->PreGcVerification(this);
146 {
147 ReaderMutexLock mu(self, *Locks::mutator_lock_);
148 MarkingPhase();
149 }
150 ScopedPause pause(this);
151 GetHeap()->PrePauseRosAllocVerification(this);
152 PausePhase();
153 RevokeAllThreadLocalBuffers();
154 } else {
155 ScopedPause pause(this);
156 GetHeap()->PreGcVerificationPaused(this);
157 MarkingPhase();
158 GetHeap()->PrePauseRosAllocVerification(this);
159 PausePhase();
160 RevokeAllThreadLocalBuffers();
161 }
162 {
163 // Sweeping always done concurrently, even for non concurrent mark sweep.
164 ReaderMutexLock mu(self, *Locks::mutator_lock_);
165 ReclaimPhase();
166 }
167 GetHeap()->PostGcVerification(this);
168 FinishPhase();
169 }
170
ProcessReferences(Thread * self)171 void MarkSweep::ProcessReferences(Thread* self) {
172 WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
173 GetHeap()->GetReferenceProcessor()->ProcessReferences(
174 true, GetTimings(), GetCurrentIteration()->GetClearSoftReferences(),
175 &HeapReferenceMarkedCallback, &MarkObjectCallback, &ProcessMarkStackCallback, this);
176 }
177
PausePhase()178 void MarkSweep::PausePhase() {
179 TimingLogger::ScopedTiming t("(Paused)PausePhase", GetTimings());
180 Thread* self = Thread::Current();
181 Locks::mutator_lock_->AssertExclusiveHeld(self);
182 if (IsConcurrent()) {
183 // Handle the dirty objects if we are a concurrent GC.
184 WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
185 // Re-mark root set.
186 ReMarkRoots();
187 // Scan dirty objects, this is only required if we are not doing concurrent GC.
188 RecursiveMarkDirtyObjects(true, accounting::CardTable::kCardDirty);
189 }
190 {
191 TimingLogger::ScopedTiming t2("SwapStacks", GetTimings());
192 WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
193 heap_->SwapStacks(self);
194 live_stack_freeze_size_ = heap_->GetLiveStack()->Size();
195 // Need to revoke all the thread local allocation stacks since we just swapped the allocation
196 // stacks and don't want anybody to allocate into the live stack.
197 RevokeAllThreadLocalAllocationStacks(self);
198 }
199 heap_->PreSweepingGcVerification(this);
200 // Disallow new system weaks to prevent a race which occurs when someone adds a new system
201 // weak before we sweep them. Since this new system weak may not be marked, the GC may
202 // incorrectly sweep it. This also fixes a race where interning may attempt to return a strong
203 // reference to a string that is about to be swept.
204 Runtime::Current()->DisallowNewSystemWeaks();
205 // Enable the reference processing slow path, needs to be done with mutators paused since there
206 // is no lock in the GetReferent fast path.
207 GetHeap()->GetReferenceProcessor()->EnableSlowPath();
208 }
209
PreCleanCards()210 void MarkSweep::PreCleanCards() {
211 // Don't do this for non concurrent GCs since they don't have any dirty cards.
212 if (kPreCleanCards && IsConcurrent()) {
213 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
214 Thread* self = Thread::Current();
215 CHECK(!Locks::mutator_lock_->IsExclusiveHeld(self));
216 // Process dirty cards and add dirty cards to mod union tables, also ages cards.
217 heap_->ProcessCards(GetTimings(), false);
218 // The checkpoint root marking is required to avoid a race condition which occurs if the
219 // following happens during a reference write:
220 // 1. mutator dirties the card (write barrier)
221 // 2. GC ages the card (the above ProcessCards call)
222 // 3. GC scans the object (the RecursiveMarkDirtyObjects call below)
223 // 4. mutator writes the value (corresponding to the write barrier in 1.)
224 // This causes the GC to age the card but not necessarily mark the reference which the mutator
225 // wrote into the object stored in the card.
226 // Having the checkpoint fixes this issue since it ensures that the card mark and the
227 // reference write are visible to the GC before the card is scanned (this is due to locks being
228 // acquired / released in the checkpoint code).
229 // The other roots are also marked to help reduce the pause.
230 MarkRootsCheckpoint(self, false);
231 MarkNonThreadRoots();
232 MarkConcurrentRoots(
233 static_cast<VisitRootFlags>(kVisitRootFlagClearRootLog | kVisitRootFlagNewRoots));
234 // Process the newly aged cards.
235 RecursiveMarkDirtyObjects(false, accounting::CardTable::kCardDirty - 1);
236 // TODO: Empty allocation stack to reduce the number of objects we need to test / mark as live
237 // in the next GC.
238 }
239 }
240
RevokeAllThreadLocalAllocationStacks(Thread * self)241 void MarkSweep::RevokeAllThreadLocalAllocationStacks(Thread* self) {
242 if (kUseThreadLocalAllocationStack) {
243 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
244 Locks::mutator_lock_->AssertExclusiveHeld(self);
245 heap_->RevokeAllThreadLocalAllocationStacks(self);
246 }
247 }
248
MarkingPhase()249 void MarkSweep::MarkingPhase() {
250 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
251 Thread* self = Thread::Current();
252 BindBitmaps();
253 FindDefaultSpaceBitmap();
254 // Process dirty cards and add dirty cards to mod union tables.
255 heap_->ProcessCards(GetTimings(), false);
256 WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
257 MarkRoots(self);
258 MarkReachableObjects();
259 // Pre-clean dirtied cards to reduce pauses.
260 PreCleanCards();
261 }
262
UpdateAndMarkModUnion()263 void MarkSweep::UpdateAndMarkModUnion() {
264 for (const auto& space : heap_->GetContinuousSpaces()) {
265 if (immune_region_.ContainsSpace(space)) {
266 const char* name = space->IsZygoteSpace() ? "UpdateAndMarkZygoteModUnionTable" :
267 "UpdateAndMarkImageModUnionTable";
268 TimingLogger::ScopedTiming t(name, GetTimings());
269 accounting::ModUnionTable* mod_union_table = heap_->FindModUnionTableFromSpace(space);
270 CHECK(mod_union_table != nullptr);
271 mod_union_table->UpdateAndMarkReferences(MarkHeapReferenceCallback, this);
272 }
273 }
274 }
275
MarkReachableObjects()276 void MarkSweep::MarkReachableObjects() {
277 UpdateAndMarkModUnion();
278 // Recursively mark all the non-image bits set in the mark bitmap.
279 RecursiveMark();
280 }
281
ReclaimPhase()282 void MarkSweep::ReclaimPhase() {
283 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
284 Thread* self = Thread::Current();
285 // Process the references concurrently.
286 ProcessReferences(self);
287 SweepSystemWeaks(self);
288 Runtime::Current()->AllowNewSystemWeaks();
289 {
290 WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
291 // Reclaim unmarked objects.
292 Sweep(false);
293 // Swap the live and mark bitmaps for each space which we modified space. This is an
294 // optimization that enables us to not clear live bits inside of the sweep. Only swaps unbound
295 // bitmaps.
296 SwapBitmaps();
297 // Unbind the live and mark bitmaps.
298 GetHeap()->UnBindBitmaps();
299 }
300 }
301
FindDefaultSpaceBitmap()302 void MarkSweep::FindDefaultSpaceBitmap() {
303 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
304 for (const auto& space : GetHeap()->GetContinuousSpaces()) {
305 accounting::ContinuousSpaceBitmap* bitmap = space->GetMarkBitmap();
306 // We want to have the main space instead of non moving if possible.
307 if (bitmap != nullptr &&
308 space->GetGcRetentionPolicy() == space::kGcRetentionPolicyAlwaysCollect) {
309 current_space_bitmap_ = bitmap;
310 // If we are not the non moving space exit the loop early since this will be good enough.
311 if (space != heap_->GetNonMovingSpace()) {
312 break;
313 }
314 }
315 }
316 CHECK(current_space_bitmap_ != nullptr) << "Could not find a default mark bitmap\n"
317 << heap_->DumpSpaces();
318 }
319
ExpandMarkStack()320 void MarkSweep::ExpandMarkStack() {
321 ResizeMarkStack(mark_stack_->Capacity() * 2);
322 }
323
ResizeMarkStack(size_t new_size)324 void MarkSweep::ResizeMarkStack(size_t new_size) {
325 // Rare case, no need to have Thread::Current be a parameter.
326 if (UNLIKELY(mark_stack_->Size() < mark_stack_->Capacity())) {
327 // Someone else acquired the lock and expanded the mark stack before us.
328 return;
329 }
330 std::vector<Object*> temp(mark_stack_->Begin(), mark_stack_->End());
331 CHECK_LE(mark_stack_->Size(), new_size);
332 mark_stack_->Resize(new_size);
333 for (const auto& obj : temp) {
334 mark_stack_->PushBack(obj);
335 }
336 }
337
MarkObjectNonNullParallel(Object * obj)338 inline void MarkSweep::MarkObjectNonNullParallel(Object* obj) {
339 DCHECK(obj != nullptr);
340 if (MarkObjectParallel(obj)) {
341 MutexLock mu(Thread::Current(), mark_stack_lock_);
342 if (UNLIKELY(mark_stack_->Size() >= mark_stack_->Capacity())) {
343 ExpandMarkStack();
344 }
345 // The object must be pushed on to the mark stack.
346 mark_stack_->PushBack(obj);
347 }
348 }
349
MarkObjectCallback(mirror::Object * obj,void * arg)350 mirror::Object* MarkSweep::MarkObjectCallback(mirror::Object* obj, void* arg) {
351 MarkSweep* mark_sweep = reinterpret_cast<MarkSweep*>(arg);
352 mark_sweep->MarkObject(obj);
353 return obj;
354 }
355
MarkHeapReferenceCallback(mirror::HeapReference<mirror::Object> * ref,void * arg)356 void MarkSweep::MarkHeapReferenceCallback(mirror::HeapReference<mirror::Object>* ref, void* arg) {
357 reinterpret_cast<MarkSweep*>(arg)->MarkObject(ref->AsMirrorPtr());
358 }
359
HeapReferenceMarkedCallback(mirror::HeapReference<mirror::Object> * ref,void * arg)360 bool MarkSweep::HeapReferenceMarkedCallback(mirror::HeapReference<mirror::Object>* ref, void* arg) {
361 return reinterpret_cast<MarkSweep*>(arg)->IsMarked(ref->AsMirrorPtr());
362 }
363
364 class MarkSweepMarkObjectSlowPath {
365 public:
MarkSweepMarkObjectSlowPath(MarkSweep * mark_sweep)366 explicit MarkSweepMarkObjectSlowPath(MarkSweep* mark_sweep) : mark_sweep_(mark_sweep) {
367 }
368
operator ()(const Object * obj) const369 void operator()(const Object* obj) const ALWAYS_INLINE {
370 if (kProfileLargeObjects) {
371 // TODO: Differentiate between marking and testing somehow.
372 ++mark_sweep_->large_object_test_;
373 ++mark_sweep_->large_object_mark_;
374 }
375 space::LargeObjectSpace* large_object_space = mark_sweep_->GetHeap()->GetLargeObjectsSpace();
376 if (UNLIKELY(obj == nullptr || !IsAligned<kPageSize>(obj) ||
377 (kIsDebugBuild && !large_object_space->Contains(obj)))) {
378 LOG(ERROR) << "Tried to mark " << obj << " not contained by any spaces";
379 LOG(ERROR) << "Attempting see if it's a bad root";
380 mark_sweep_->VerifyRoots();
381 LOG(FATAL) << "Can't mark invalid object";
382 }
383 }
384
385 private:
386 MarkSweep* const mark_sweep_;
387 };
388
MarkObjectNonNull(Object * obj)389 inline void MarkSweep::MarkObjectNonNull(Object* obj) {
390 DCHECK(obj != nullptr);
391 if (kUseBakerOrBrooksReadBarrier) {
392 // Verify all the objects have the correct pointer installed.
393 obj->AssertReadBarrierPointer();
394 }
395 if (immune_region_.ContainsObject(obj)) {
396 if (kCountMarkedObjects) {
397 ++mark_immune_count_;
398 }
399 DCHECK(mark_bitmap_->Test(obj));
400 } else if (LIKELY(current_space_bitmap_->HasAddress(obj))) {
401 if (kCountMarkedObjects) {
402 ++mark_fastpath_count_;
403 }
404 if (UNLIKELY(!current_space_bitmap_->Set(obj))) {
405 PushOnMarkStack(obj); // This object was not previously marked.
406 }
407 } else {
408 if (kCountMarkedObjects) {
409 ++mark_slowpath_count_;
410 }
411 MarkSweepMarkObjectSlowPath visitor(this);
412 // TODO: We already know that the object is not in the current_space_bitmap_ but MarkBitmap::Set
413 // will check again.
414 if (!mark_bitmap_->Set(obj, visitor)) {
415 PushOnMarkStack(obj); // Was not already marked, push.
416 }
417 }
418 }
419
PushOnMarkStack(Object * obj)420 inline void MarkSweep::PushOnMarkStack(Object* obj) {
421 if (UNLIKELY(mark_stack_->Size() >= mark_stack_->Capacity())) {
422 // Lock is not needed but is here anyways to please annotalysis.
423 MutexLock mu(Thread::Current(), mark_stack_lock_);
424 ExpandMarkStack();
425 }
426 // The object must be pushed on to the mark stack.
427 mark_stack_->PushBack(obj);
428 }
429
MarkObjectParallel(const Object * obj)430 inline bool MarkSweep::MarkObjectParallel(const Object* obj) {
431 DCHECK(obj != nullptr);
432 if (kUseBakerOrBrooksReadBarrier) {
433 // Verify all the objects have the correct pointer installed.
434 obj->AssertReadBarrierPointer();
435 }
436 if (immune_region_.ContainsObject(obj)) {
437 DCHECK(IsMarked(obj));
438 return false;
439 }
440 // Try to take advantage of locality of references within a space, failing this find the space
441 // the hard way.
442 accounting::ContinuousSpaceBitmap* object_bitmap = current_space_bitmap_;
443 if (LIKELY(object_bitmap->HasAddress(obj))) {
444 return !object_bitmap->AtomicTestAndSet(obj);
445 }
446 MarkSweepMarkObjectSlowPath visitor(this);
447 return !mark_bitmap_->AtomicTestAndSet(obj, visitor);
448 }
449
450 // Used to mark objects when processing the mark stack. If an object is null, it is not marked.
MarkObject(Object * obj)451 inline void MarkSweep::MarkObject(Object* obj) {
452 if (obj != nullptr) {
453 MarkObjectNonNull(obj);
454 } else if (kCountMarkedObjects) {
455 ++mark_null_count_;
456 }
457 }
458
MarkRootParallelCallback(Object ** root,void * arg,const RootInfo &)459 void MarkSweep::MarkRootParallelCallback(Object** root, void* arg, const RootInfo& /*root_info*/) {
460 reinterpret_cast<MarkSweep*>(arg)->MarkObjectNonNullParallel(*root);
461 }
462
VerifyRootMarked(Object ** root,void * arg,const RootInfo &)463 void MarkSweep::VerifyRootMarked(Object** root, void* arg, const RootInfo& /*root_info*/) {
464 CHECK(reinterpret_cast<MarkSweep*>(arg)->IsMarked(*root));
465 }
466
MarkRootCallback(Object ** root,void * arg,const RootInfo &)467 void MarkSweep::MarkRootCallback(Object** root, void* arg, const RootInfo& /*root_info*/) {
468 reinterpret_cast<MarkSweep*>(arg)->MarkObjectNonNull(*root);
469 }
470
VerifyRootCallback(Object ** root,void * arg,const RootInfo & root_info)471 void MarkSweep::VerifyRootCallback(Object** root, void* arg, const RootInfo& root_info) {
472 reinterpret_cast<MarkSweep*>(arg)->VerifyRoot(*root, root_info);
473 }
474
VerifyRoot(const Object * root,const RootInfo & root_info)475 void MarkSweep::VerifyRoot(const Object* root, const RootInfo& root_info) {
476 // See if the root is on any space bitmap.
477 if (heap_->GetLiveBitmap()->GetContinuousSpaceBitmap(root) == nullptr) {
478 space::LargeObjectSpace* large_object_space = GetHeap()->GetLargeObjectsSpace();
479 if (!large_object_space->Contains(root)) {
480 LOG(ERROR) << "Found invalid root: " << root << " ";
481 root_info.Describe(LOG(ERROR));
482 }
483 }
484 }
485
VerifyRoots()486 void MarkSweep::VerifyRoots() {
487 Runtime::Current()->GetThreadList()->VisitRoots(VerifyRootCallback, this);
488 }
489
MarkRoots(Thread * self)490 void MarkSweep::MarkRoots(Thread* self) {
491 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
492 if (Locks::mutator_lock_->IsExclusiveHeld(self)) {
493 // If we exclusively hold the mutator lock, all threads must be suspended.
494 Runtime::Current()->VisitRoots(MarkRootCallback, this);
495 RevokeAllThreadLocalAllocationStacks(self);
496 } else {
497 MarkRootsCheckpoint(self, kRevokeRosAllocThreadLocalBuffersAtCheckpoint);
498 // At this point the live stack should no longer have any mutators which push into it.
499 MarkNonThreadRoots();
500 MarkConcurrentRoots(
501 static_cast<VisitRootFlags>(kVisitRootFlagAllRoots | kVisitRootFlagStartLoggingNewRoots));
502 }
503 }
504
MarkNonThreadRoots()505 void MarkSweep::MarkNonThreadRoots() {
506 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
507 Runtime::Current()->VisitNonThreadRoots(MarkRootCallback, this);
508 }
509
MarkConcurrentRoots(VisitRootFlags flags)510 void MarkSweep::MarkConcurrentRoots(VisitRootFlags flags) {
511 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
512 // Visit all runtime roots and clear dirty flags.
513 Runtime::Current()->VisitConcurrentRoots(MarkRootCallback, this, flags);
514 }
515
516 class ScanObjectVisitor {
517 public:
ScanObjectVisitor(MarkSweep * const mark_sweep)518 explicit ScanObjectVisitor(MarkSweep* const mark_sweep) ALWAYS_INLINE
519 : mark_sweep_(mark_sweep) {}
520
operator ()(Object * obj) const521 void operator()(Object* obj) const ALWAYS_INLINE SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
522 EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) {
523 if (kCheckLocks) {
524 Locks::mutator_lock_->AssertSharedHeld(Thread::Current());
525 Locks::heap_bitmap_lock_->AssertExclusiveHeld(Thread::Current());
526 }
527 mark_sweep_->ScanObject(obj);
528 }
529
530 private:
531 MarkSweep* const mark_sweep_;
532 };
533
534 class DelayReferenceReferentVisitor {
535 public:
DelayReferenceReferentVisitor(MarkSweep * collector)536 explicit DelayReferenceReferentVisitor(MarkSweep* collector) : collector_(collector) {
537 }
538
operator ()(mirror::Class * klass,mirror::Reference * ref) const539 void operator()(mirror::Class* klass, mirror::Reference* ref) const
540 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
541 EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) {
542 collector_->DelayReferenceReferent(klass, ref);
543 }
544
545 private:
546 MarkSweep* const collector_;
547 };
548
549 template <bool kUseFinger = false>
550 class MarkStackTask : public Task {
551 public:
MarkStackTask(ThreadPool * thread_pool,MarkSweep * mark_sweep,size_t mark_stack_size,Object ** mark_stack)552 MarkStackTask(ThreadPool* thread_pool, MarkSweep* mark_sweep, size_t mark_stack_size,
553 Object** mark_stack)
554 : mark_sweep_(mark_sweep),
555 thread_pool_(thread_pool),
556 mark_stack_pos_(mark_stack_size) {
557 // We may have to copy part of an existing mark stack when another mark stack overflows.
558 if (mark_stack_size != 0) {
559 DCHECK(mark_stack != NULL);
560 // TODO: Check performance?
561 std::copy(mark_stack, mark_stack + mark_stack_size, mark_stack_);
562 }
563 if (kCountTasks) {
564 ++mark_sweep_->work_chunks_created_;
565 }
566 }
567
568 static const size_t kMaxSize = 1 * KB;
569
570 protected:
571 class MarkObjectParallelVisitor {
572 public:
MarkObjectParallelVisitor(MarkStackTask<kUseFinger> * chunk_task,MarkSweep * mark_sweep)573 explicit MarkObjectParallelVisitor(MarkStackTask<kUseFinger>* chunk_task,
574 MarkSweep* mark_sweep) ALWAYS_INLINE
575 : chunk_task_(chunk_task), mark_sweep_(mark_sweep) {}
576
operator ()(Object * obj,MemberOffset offset,bool) const577 void operator()(Object* obj, MemberOffset offset, bool /* static */) const ALWAYS_INLINE
578 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
579 mirror::Object* ref = obj->GetFieldObject<mirror::Object>(offset);
580 if (ref != nullptr && mark_sweep_->MarkObjectParallel(ref)) {
581 if (kUseFinger) {
582 android_memory_barrier();
583 if (reinterpret_cast<uintptr_t>(ref) >=
584 static_cast<uintptr_t>(mark_sweep_->atomic_finger_.LoadRelaxed())) {
585 return;
586 }
587 }
588 chunk_task_->MarkStackPush(ref);
589 }
590 }
591
592 private:
593 MarkStackTask<kUseFinger>* const chunk_task_;
594 MarkSweep* const mark_sweep_;
595 };
596
597 class ScanObjectParallelVisitor {
598 public:
ScanObjectParallelVisitor(MarkStackTask<kUseFinger> * chunk_task)599 explicit ScanObjectParallelVisitor(MarkStackTask<kUseFinger>* chunk_task) ALWAYS_INLINE
600 : chunk_task_(chunk_task) {}
601
602 // No thread safety analysis since multiple threads will use this visitor.
operator ()(Object * obj) const603 void operator()(Object* obj) const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
604 EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) {
605 MarkSweep* const mark_sweep = chunk_task_->mark_sweep_;
606 MarkObjectParallelVisitor mark_visitor(chunk_task_, mark_sweep);
607 DelayReferenceReferentVisitor ref_visitor(mark_sweep);
608 mark_sweep->ScanObjectVisit(obj, mark_visitor, ref_visitor);
609 }
610
611 private:
612 MarkStackTask<kUseFinger>* const chunk_task_;
613 };
614
~MarkStackTask()615 virtual ~MarkStackTask() {
616 // Make sure that we have cleared our mark stack.
617 DCHECK_EQ(mark_stack_pos_, 0U);
618 if (kCountTasks) {
619 ++mark_sweep_->work_chunks_deleted_;
620 }
621 }
622
623 MarkSweep* const mark_sweep_;
624 ThreadPool* const thread_pool_;
625 // Thread local mark stack for this task.
626 Object* mark_stack_[kMaxSize];
627 // Mark stack position.
628 size_t mark_stack_pos_;
629
MarkStackPush(Object * obj)630 void MarkStackPush(Object* obj) ALWAYS_INLINE {
631 if (UNLIKELY(mark_stack_pos_ == kMaxSize)) {
632 // Mark stack overflow, give 1/2 the stack to the thread pool as a new work task.
633 mark_stack_pos_ /= 2;
634 auto* task = new MarkStackTask(thread_pool_, mark_sweep_, kMaxSize - mark_stack_pos_,
635 mark_stack_ + mark_stack_pos_);
636 thread_pool_->AddTask(Thread::Current(), task);
637 }
638 DCHECK(obj != nullptr);
639 DCHECK_LT(mark_stack_pos_, kMaxSize);
640 mark_stack_[mark_stack_pos_++] = obj;
641 }
642
Finalize()643 virtual void Finalize() {
644 delete this;
645 }
646
647 // Scans all of the objects
Run(Thread * self)648 virtual void Run(Thread* self) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
649 EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) {
650 ScanObjectParallelVisitor visitor(this);
651 // TODO: Tune this.
652 static const size_t kFifoSize = 4;
653 BoundedFifoPowerOfTwo<Object*, kFifoSize> prefetch_fifo;
654 for (;;) {
655 Object* obj = nullptr;
656 if (kUseMarkStackPrefetch) {
657 while (mark_stack_pos_ != 0 && prefetch_fifo.size() < kFifoSize) {
658 Object* obj = mark_stack_[--mark_stack_pos_];
659 DCHECK(obj != nullptr);
660 __builtin_prefetch(obj);
661 prefetch_fifo.push_back(obj);
662 }
663 if (UNLIKELY(prefetch_fifo.empty())) {
664 break;
665 }
666 obj = prefetch_fifo.front();
667 prefetch_fifo.pop_front();
668 } else {
669 if (UNLIKELY(mark_stack_pos_ == 0)) {
670 break;
671 }
672 obj = mark_stack_[--mark_stack_pos_];
673 }
674 DCHECK(obj != nullptr);
675 visitor(obj);
676 }
677 }
678 };
679
680 class CardScanTask : public MarkStackTask<false> {
681 public:
CardScanTask(ThreadPool * thread_pool,MarkSweep * mark_sweep,accounting::ContinuousSpaceBitmap * bitmap,byte * begin,byte * end,byte minimum_age,size_t mark_stack_size,Object ** mark_stack_obj)682 CardScanTask(ThreadPool* thread_pool, MarkSweep* mark_sweep,
683 accounting::ContinuousSpaceBitmap* bitmap,
684 byte* begin, byte* end, byte minimum_age, size_t mark_stack_size,
685 Object** mark_stack_obj)
686 : MarkStackTask<false>(thread_pool, mark_sweep, mark_stack_size, mark_stack_obj),
687 bitmap_(bitmap),
688 begin_(begin),
689 end_(end),
690 minimum_age_(minimum_age) {
691 }
692
693 protected:
694 accounting::ContinuousSpaceBitmap* const bitmap_;
695 byte* const begin_;
696 byte* const end_;
697 const byte minimum_age_;
698
Finalize()699 virtual void Finalize() {
700 delete this;
701 }
702
Run(Thread * self)703 virtual void Run(Thread* self) NO_THREAD_SAFETY_ANALYSIS {
704 ScanObjectParallelVisitor visitor(this);
705 accounting::CardTable* card_table = mark_sweep_->GetHeap()->GetCardTable();
706 size_t cards_scanned = card_table->Scan(bitmap_, begin_, end_, visitor, minimum_age_);
707 VLOG(heap) << "Parallel scanning cards " << reinterpret_cast<void*>(begin_) << " - "
708 << reinterpret_cast<void*>(end_) << " = " << cards_scanned;
709 // Finish by emptying our local mark stack.
710 MarkStackTask::Run(self);
711 }
712 };
713
GetThreadCount(bool paused) const714 size_t MarkSweep::GetThreadCount(bool paused) const {
715 if (heap_->GetThreadPool() == nullptr || !heap_->CareAboutPauseTimes()) {
716 return 1;
717 }
718 if (paused) {
719 return heap_->GetParallelGCThreadCount() + 1;
720 } else {
721 return heap_->GetConcGCThreadCount() + 1;
722 }
723 }
724
ScanGrayObjects(bool paused,byte minimum_age)725 void MarkSweep::ScanGrayObjects(bool paused, byte minimum_age) {
726 accounting::CardTable* card_table = GetHeap()->GetCardTable();
727 ThreadPool* thread_pool = GetHeap()->GetThreadPool();
728 size_t thread_count = GetThreadCount(paused);
729 // The parallel version with only one thread is faster for card scanning, TODO: fix.
730 if (kParallelCardScan && thread_count > 1) {
731 Thread* self = Thread::Current();
732 // Can't have a different split for each space since multiple spaces can have their cards being
733 // scanned at the same time.
734 TimingLogger::ScopedTiming t(paused ? "(Paused)ScanGrayObjects" : __FUNCTION__,
735 GetTimings());
736 // Try to take some of the mark stack since we can pass this off to the worker tasks.
737 Object** mark_stack_begin = mark_stack_->Begin();
738 Object** mark_stack_end = mark_stack_->End();
739 const size_t mark_stack_size = mark_stack_end - mark_stack_begin;
740 // Estimated number of work tasks we will create.
741 const size_t mark_stack_tasks = GetHeap()->GetContinuousSpaces().size() * thread_count;
742 DCHECK_NE(mark_stack_tasks, 0U);
743 const size_t mark_stack_delta = std::min(CardScanTask::kMaxSize / 2,
744 mark_stack_size / mark_stack_tasks + 1);
745 for (const auto& space : GetHeap()->GetContinuousSpaces()) {
746 if (space->GetMarkBitmap() == nullptr) {
747 continue;
748 }
749 byte* card_begin = space->Begin();
750 byte* card_end = space->End();
751 // Align up the end address. For example, the image space's end
752 // may not be card-size-aligned.
753 card_end = AlignUp(card_end, accounting::CardTable::kCardSize);
754 DCHECK(IsAligned<accounting::CardTable::kCardSize>(card_begin));
755 DCHECK(IsAligned<accounting::CardTable::kCardSize>(card_end));
756 // Calculate how many bytes of heap we will scan,
757 const size_t address_range = card_end - card_begin;
758 // Calculate how much address range each task gets.
759 const size_t card_delta = RoundUp(address_range / thread_count + 1,
760 accounting::CardTable::kCardSize);
761 // Create the worker tasks for this space.
762 while (card_begin != card_end) {
763 // Add a range of cards.
764 size_t addr_remaining = card_end - card_begin;
765 size_t card_increment = std::min(card_delta, addr_remaining);
766 // Take from the back of the mark stack.
767 size_t mark_stack_remaining = mark_stack_end - mark_stack_begin;
768 size_t mark_stack_increment = std::min(mark_stack_delta, mark_stack_remaining);
769 mark_stack_end -= mark_stack_increment;
770 mark_stack_->PopBackCount(static_cast<int32_t>(mark_stack_increment));
771 DCHECK_EQ(mark_stack_end, mark_stack_->End());
772 // Add the new task to the thread pool.
773 auto* task = new CardScanTask(thread_pool, this, space->GetMarkBitmap(), card_begin,
774 card_begin + card_increment, minimum_age,
775 mark_stack_increment, mark_stack_end);
776 thread_pool->AddTask(self, task);
777 card_begin += card_increment;
778 }
779 }
780
781 // Note: the card scan below may dirty new cards (and scan them)
782 // as a side effect when a Reference object is encountered and
783 // queued during the marking. See b/11465268.
784 thread_pool->SetMaxActiveWorkers(thread_count - 1);
785 thread_pool->StartWorkers(self);
786 thread_pool->Wait(self, true, true);
787 thread_pool->StopWorkers(self);
788 } else {
789 for (const auto& space : GetHeap()->GetContinuousSpaces()) {
790 if (space->GetMarkBitmap() != nullptr) {
791 // Image spaces are handled properly since live == marked for them.
792 const char* name = nullptr;
793 switch (space->GetGcRetentionPolicy()) {
794 case space::kGcRetentionPolicyNeverCollect:
795 name = paused ? "(Paused)ScanGrayImageSpaceObjects" : "ScanGrayImageSpaceObjects";
796 break;
797 case space::kGcRetentionPolicyFullCollect:
798 name = paused ? "(Paused)ScanGrayZygoteSpaceObjects" : "ScanGrayZygoteSpaceObjects";
799 break;
800 case space::kGcRetentionPolicyAlwaysCollect:
801 name = paused ? "(Paused)ScanGrayAllocSpaceObjects" : "ScanGrayAllocSpaceObjects";
802 break;
803 default:
804 LOG(FATAL) << "Unreachable";
805 }
806 TimingLogger::ScopedTiming t(name, GetTimings());
807 ScanObjectVisitor visitor(this);
808 card_table->Scan(space->GetMarkBitmap(), space->Begin(), space->End(), visitor,
809 minimum_age);
810 }
811 }
812 }
813 }
814
815 class RecursiveMarkTask : public MarkStackTask<false> {
816 public:
RecursiveMarkTask(ThreadPool * thread_pool,MarkSweep * mark_sweep,accounting::ContinuousSpaceBitmap * bitmap,uintptr_t begin,uintptr_t end)817 RecursiveMarkTask(ThreadPool* thread_pool, MarkSweep* mark_sweep,
818 accounting::ContinuousSpaceBitmap* bitmap, uintptr_t begin, uintptr_t end)
819 : MarkStackTask<false>(thread_pool, mark_sweep, 0, NULL), bitmap_(bitmap), begin_(begin),
820 end_(end) {
821 }
822
823 protected:
824 accounting::ContinuousSpaceBitmap* const bitmap_;
825 const uintptr_t begin_;
826 const uintptr_t end_;
827
Finalize()828 virtual void Finalize() {
829 delete this;
830 }
831
832 // Scans all of the objects
Run(Thread * self)833 virtual void Run(Thread* self) NO_THREAD_SAFETY_ANALYSIS {
834 ScanObjectParallelVisitor visitor(this);
835 bitmap_->VisitMarkedRange(begin_, end_, visitor);
836 // Finish by emptying our local mark stack.
837 MarkStackTask::Run(self);
838 }
839 };
840
841 // Populates the mark stack based on the set of marked objects and
842 // recursively marks until the mark stack is emptied.
RecursiveMark()843 void MarkSweep::RecursiveMark() {
844 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
845 // RecursiveMark will build the lists of known instances of the Reference classes. See
846 // DelayReferenceReferent for details.
847 if (kUseRecursiveMark) {
848 const bool partial = GetGcType() == kGcTypePartial;
849 ScanObjectVisitor scan_visitor(this);
850 auto* self = Thread::Current();
851 ThreadPool* thread_pool = heap_->GetThreadPool();
852 size_t thread_count = GetThreadCount(false);
853 const bool parallel = kParallelRecursiveMark && thread_count > 1;
854 mark_stack_->Reset();
855 for (const auto& space : GetHeap()->GetContinuousSpaces()) {
856 if ((space->GetGcRetentionPolicy() == space::kGcRetentionPolicyAlwaysCollect) ||
857 (!partial && space->GetGcRetentionPolicy() == space::kGcRetentionPolicyFullCollect)) {
858 current_space_bitmap_ = space->GetMarkBitmap();
859 if (current_space_bitmap_ == nullptr) {
860 continue;
861 }
862 if (parallel) {
863 // We will use the mark stack the future.
864 // CHECK(mark_stack_->IsEmpty());
865 // This function does not handle heap end increasing, so we must use the space end.
866 uintptr_t begin = reinterpret_cast<uintptr_t>(space->Begin());
867 uintptr_t end = reinterpret_cast<uintptr_t>(space->End());
868 atomic_finger_.StoreRelaxed(AtomicInteger::MaxValue());
869
870 // Create a few worker tasks.
871 const size_t n = thread_count * 2;
872 while (begin != end) {
873 uintptr_t start = begin;
874 uintptr_t delta = (end - begin) / n;
875 delta = RoundUp(delta, KB);
876 if (delta < 16 * KB) delta = end - begin;
877 begin += delta;
878 auto* task = new RecursiveMarkTask(thread_pool, this, current_space_bitmap_, start,
879 begin);
880 thread_pool->AddTask(self, task);
881 }
882 thread_pool->SetMaxActiveWorkers(thread_count - 1);
883 thread_pool->StartWorkers(self);
884 thread_pool->Wait(self, true, true);
885 thread_pool->StopWorkers(self);
886 } else {
887 // This function does not handle heap end increasing, so we must use the space end.
888 uintptr_t begin = reinterpret_cast<uintptr_t>(space->Begin());
889 uintptr_t end = reinterpret_cast<uintptr_t>(space->End());
890 current_space_bitmap_->VisitMarkedRange(begin, end, scan_visitor);
891 }
892 }
893 }
894 }
895 ProcessMarkStack(false);
896 }
897
IsMarkedCallback(mirror::Object * object,void * arg)898 mirror::Object* MarkSweep::IsMarkedCallback(mirror::Object* object, void* arg) {
899 if (reinterpret_cast<MarkSweep*>(arg)->IsMarked(object)) {
900 return object;
901 }
902 return nullptr;
903 }
904
RecursiveMarkDirtyObjects(bool paused,byte minimum_age)905 void MarkSweep::RecursiveMarkDirtyObjects(bool paused, byte minimum_age) {
906 ScanGrayObjects(paused, minimum_age);
907 ProcessMarkStack(paused);
908 }
909
ReMarkRoots()910 void MarkSweep::ReMarkRoots() {
911 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
912 Locks::mutator_lock_->AssertExclusiveHeld(Thread::Current());
913 Runtime::Current()->VisitRoots(
914 MarkRootCallback, this, static_cast<VisitRootFlags>(kVisitRootFlagNewRoots |
915 kVisitRootFlagStopLoggingNewRoots |
916 kVisitRootFlagClearRootLog));
917 if (kVerifyRootsMarked) {
918 TimingLogger::ScopedTiming t("(Paused)VerifyRoots", GetTimings());
919 Runtime::Current()->VisitRoots(VerifyRootMarked, this);
920 }
921 }
922
SweepSystemWeaks(Thread * self)923 void MarkSweep::SweepSystemWeaks(Thread* self) {
924 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
925 WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
926 Runtime::Current()->SweepSystemWeaks(IsMarkedCallback, this);
927 }
928
VerifySystemWeakIsLiveCallback(Object * obj,void * arg)929 mirror::Object* MarkSweep::VerifySystemWeakIsLiveCallback(Object* obj, void* arg) {
930 reinterpret_cast<MarkSweep*>(arg)->VerifyIsLive(obj);
931 // We don't actually want to sweep the object, so lets return "marked"
932 return obj;
933 }
934
VerifyIsLive(const Object * obj)935 void MarkSweep::VerifyIsLive(const Object* obj) {
936 if (!heap_->GetLiveBitmap()->Test(obj)) {
937 accounting::ObjectStack* allocation_stack = heap_->allocation_stack_.get();
938 CHECK(std::find(allocation_stack->Begin(), allocation_stack->End(), obj) !=
939 allocation_stack->End()) << "Found dead object " << obj << "\n" << heap_->DumpSpaces();
940 }
941 }
942
VerifySystemWeaks()943 void MarkSweep::VerifySystemWeaks() {
944 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
945 // Verify system weaks, uses a special object visitor which returns the input object.
946 Runtime::Current()->SweepSystemWeaks(VerifySystemWeakIsLiveCallback, this);
947 }
948
949 class CheckpointMarkThreadRoots : public Closure {
950 public:
CheckpointMarkThreadRoots(MarkSweep * mark_sweep,bool revoke_ros_alloc_thread_local_buffers_at_checkpoint)951 explicit CheckpointMarkThreadRoots(MarkSweep* mark_sweep,
952 bool revoke_ros_alloc_thread_local_buffers_at_checkpoint)
953 : mark_sweep_(mark_sweep),
954 revoke_ros_alloc_thread_local_buffers_at_checkpoint_(
955 revoke_ros_alloc_thread_local_buffers_at_checkpoint) {
956 }
957
Run(Thread * thread)958 virtual void Run(Thread* thread) OVERRIDE NO_THREAD_SAFETY_ANALYSIS {
959 ATRACE_BEGIN("Marking thread roots");
960 // Note: self is not necessarily equal to thread since thread may be suspended.
961 Thread* self = Thread::Current();
962 CHECK(thread == self || thread->IsSuspended() || thread->GetState() == kWaitingPerformingGc)
963 << thread->GetState() << " thread " << thread << " self " << self;
964 thread->VisitRoots(MarkSweep::MarkRootParallelCallback, mark_sweep_);
965 ATRACE_END();
966 if (revoke_ros_alloc_thread_local_buffers_at_checkpoint_) {
967 ATRACE_BEGIN("RevokeRosAllocThreadLocalBuffers");
968 mark_sweep_->GetHeap()->RevokeRosAllocThreadLocalBuffers(thread);
969 ATRACE_END();
970 }
971 mark_sweep_->GetBarrier().Pass(self);
972 }
973
974 private:
975 MarkSweep* const mark_sweep_;
976 const bool revoke_ros_alloc_thread_local_buffers_at_checkpoint_;
977 };
978
MarkRootsCheckpoint(Thread * self,bool revoke_ros_alloc_thread_local_buffers_at_checkpoint)979 void MarkSweep::MarkRootsCheckpoint(Thread* self,
980 bool revoke_ros_alloc_thread_local_buffers_at_checkpoint) {
981 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
982 CheckpointMarkThreadRoots check_point(this, revoke_ros_alloc_thread_local_buffers_at_checkpoint);
983 ThreadList* thread_list = Runtime::Current()->GetThreadList();
984 // Request the check point is run on all threads returning a count of the threads that must
985 // run through the barrier including self.
986 size_t barrier_count = thread_list->RunCheckpoint(&check_point);
987 // Release locks then wait for all mutator threads to pass the barrier.
988 // TODO: optimize to not release locks when there are no threads to wait for.
989 Locks::heap_bitmap_lock_->ExclusiveUnlock(self);
990 Locks::mutator_lock_->SharedUnlock(self);
991 {
992 ScopedThreadStateChange tsc(self, kWaitingForCheckPointsToRun);
993 gc_barrier_->Increment(self, barrier_count);
994 }
995 Locks::mutator_lock_->SharedLock(self);
996 Locks::heap_bitmap_lock_->ExclusiveLock(self);
997 }
998
SweepArray(accounting::ObjectStack * allocations,bool swap_bitmaps)999 void MarkSweep::SweepArray(accounting::ObjectStack* allocations, bool swap_bitmaps) {
1000 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
1001 Thread* self = Thread::Current();
1002 mirror::Object** chunk_free_buffer = reinterpret_cast<mirror::Object**>(
1003 sweep_array_free_buffer_mem_map_->BaseBegin());
1004 size_t chunk_free_pos = 0;
1005 ObjectBytePair freed;
1006 ObjectBytePair freed_los;
1007 // How many objects are left in the array, modified after each space is swept.
1008 Object** objects = allocations->Begin();
1009 size_t count = allocations->Size();
1010 // Change the order to ensure that the non-moving space last swept as an optimization.
1011 std::vector<space::ContinuousSpace*> sweep_spaces;
1012 space::ContinuousSpace* non_moving_space = nullptr;
1013 for (space::ContinuousSpace* space : heap_->GetContinuousSpaces()) {
1014 if (space->IsAllocSpace() && !immune_region_.ContainsSpace(space) &&
1015 space->GetLiveBitmap() != nullptr) {
1016 if (space == heap_->GetNonMovingSpace()) {
1017 non_moving_space = space;
1018 } else {
1019 sweep_spaces.push_back(space);
1020 }
1021 }
1022 }
1023 // Unlikely to sweep a significant amount of non_movable objects, so we do these after the after
1024 // the other alloc spaces as an optimization.
1025 if (non_moving_space != nullptr) {
1026 sweep_spaces.push_back(non_moving_space);
1027 }
1028 // Start by sweeping the continuous spaces.
1029 for (space::ContinuousSpace* space : sweep_spaces) {
1030 space::AllocSpace* alloc_space = space->AsAllocSpace();
1031 accounting::ContinuousSpaceBitmap* live_bitmap = space->GetLiveBitmap();
1032 accounting::ContinuousSpaceBitmap* mark_bitmap = space->GetMarkBitmap();
1033 if (swap_bitmaps) {
1034 std::swap(live_bitmap, mark_bitmap);
1035 }
1036 Object** out = objects;
1037 for (size_t i = 0; i < count; ++i) {
1038 Object* obj = objects[i];
1039 if (kUseThreadLocalAllocationStack && obj == nullptr) {
1040 continue;
1041 }
1042 if (space->HasAddress(obj)) {
1043 // This object is in the space, remove it from the array and add it to the sweep buffer
1044 // if needed.
1045 if (!mark_bitmap->Test(obj)) {
1046 if (chunk_free_pos >= kSweepArrayChunkFreeSize) {
1047 TimingLogger::ScopedTiming t("FreeList", GetTimings());
1048 freed.objects += chunk_free_pos;
1049 freed.bytes += alloc_space->FreeList(self, chunk_free_pos, chunk_free_buffer);
1050 chunk_free_pos = 0;
1051 }
1052 chunk_free_buffer[chunk_free_pos++] = obj;
1053 }
1054 } else {
1055 *(out++) = obj;
1056 }
1057 }
1058 if (chunk_free_pos > 0) {
1059 TimingLogger::ScopedTiming t("FreeList", GetTimings());
1060 freed.objects += chunk_free_pos;
1061 freed.bytes += alloc_space->FreeList(self, chunk_free_pos, chunk_free_buffer);
1062 chunk_free_pos = 0;
1063 }
1064 // All of the references which space contained are no longer in the allocation stack, update
1065 // the count.
1066 count = out - objects;
1067 }
1068 // Handle the large object space.
1069 space::LargeObjectSpace* large_object_space = GetHeap()->GetLargeObjectsSpace();
1070 accounting::LargeObjectBitmap* large_live_objects = large_object_space->GetLiveBitmap();
1071 accounting::LargeObjectBitmap* large_mark_objects = large_object_space->GetMarkBitmap();
1072 if (swap_bitmaps) {
1073 std::swap(large_live_objects, large_mark_objects);
1074 }
1075 for (size_t i = 0; i < count; ++i) {
1076 Object* obj = objects[i];
1077 // Handle large objects.
1078 if (kUseThreadLocalAllocationStack && obj == nullptr) {
1079 continue;
1080 }
1081 if (!large_mark_objects->Test(obj)) {
1082 ++freed_los.objects;
1083 freed_los.bytes += large_object_space->Free(self, obj);
1084 }
1085 }
1086 {
1087 TimingLogger::ScopedTiming t("RecordFree", GetTimings());
1088 RecordFree(freed);
1089 RecordFreeLOS(freed_los);
1090 t.NewTiming("ResetStack");
1091 allocations->Reset();
1092 }
1093 sweep_array_free_buffer_mem_map_->MadviseDontNeedAndZero();
1094 }
1095
Sweep(bool swap_bitmaps)1096 void MarkSweep::Sweep(bool swap_bitmaps) {
1097 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
1098 // Ensure that nobody inserted items in the live stack after we swapped the stacks.
1099 CHECK_GE(live_stack_freeze_size_, GetHeap()->GetLiveStack()->Size());
1100 {
1101 TimingLogger::ScopedTiming t2("MarkAllocStackAsLive", GetTimings());
1102 // Mark everything allocated since the last as GC live so that we can sweep concurrently,
1103 // knowing that new allocations won't be marked as live.
1104 accounting::ObjectStack* live_stack = heap_->GetLiveStack();
1105 heap_->MarkAllocStackAsLive(live_stack);
1106 live_stack->Reset();
1107 DCHECK(mark_stack_->IsEmpty());
1108 }
1109 for (const auto& space : GetHeap()->GetContinuousSpaces()) {
1110 if (space->IsContinuousMemMapAllocSpace()) {
1111 space::ContinuousMemMapAllocSpace* alloc_space = space->AsContinuousMemMapAllocSpace();
1112 TimingLogger::ScopedTiming split(
1113 alloc_space->IsZygoteSpace() ? "SweepZygoteSpace" : "SweepMallocSpace", GetTimings());
1114 RecordFree(alloc_space->Sweep(swap_bitmaps));
1115 }
1116 }
1117 SweepLargeObjects(swap_bitmaps);
1118 }
1119
SweepLargeObjects(bool swap_bitmaps)1120 void MarkSweep::SweepLargeObjects(bool swap_bitmaps) {
1121 TimingLogger::ScopedTiming split(__FUNCTION__, GetTimings());
1122 RecordFreeLOS(heap_->GetLargeObjectsSpace()->Sweep(swap_bitmaps));
1123 }
1124
1125 // Process the "referent" field in a java.lang.ref.Reference. If the referent has not yet been
1126 // marked, put it on the appropriate list in the heap for later processing.
DelayReferenceReferent(mirror::Class * klass,mirror::Reference * ref)1127 void MarkSweep::DelayReferenceReferent(mirror::Class* klass, mirror::Reference* ref) {
1128 if (kCountJavaLangRefs) {
1129 ++reference_count_;
1130 }
1131 heap_->GetReferenceProcessor()->DelayReferenceReferent(klass, ref, &HeapReferenceMarkedCallback,
1132 this);
1133 }
1134
1135 class MarkObjectVisitor {
1136 public:
MarkObjectVisitor(MarkSweep * const mark_sweep)1137 explicit MarkObjectVisitor(MarkSweep* const mark_sweep) ALWAYS_INLINE : mark_sweep_(mark_sweep) {
1138 }
1139
operator ()(Object * obj,MemberOffset offset,bool) const1140 void operator()(Object* obj, MemberOffset offset, bool /* is_static */) const
1141 ALWAYS_INLINE SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
1142 EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) {
1143 if (kCheckLocks) {
1144 Locks::mutator_lock_->AssertSharedHeld(Thread::Current());
1145 Locks::heap_bitmap_lock_->AssertExclusiveHeld(Thread::Current());
1146 }
1147 mark_sweep_->MarkObject(obj->GetFieldObject<mirror::Object>(offset));
1148 }
1149
1150 private:
1151 MarkSweep* const mark_sweep_;
1152 };
1153
1154 // Scans an object reference. Determines the type of the reference
1155 // and dispatches to a specialized scanning routine.
ScanObject(Object * obj)1156 void MarkSweep::ScanObject(Object* obj) {
1157 MarkObjectVisitor mark_visitor(this);
1158 DelayReferenceReferentVisitor ref_visitor(this);
1159 ScanObjectVisit(obj, mark_visitor, ref_visitor);
1160 }
1161
ProcessMarkStackCallback(void * arg)1162 void MarkSweep::ProcessMarkStackCallback(void* arg) {
1163 reinterpret_cast<MarkSweep*>(arg)->ProcessMarkStack(false);
1164 }
1165
ProcessMarkStackParallel(size_t thread_count)1166 void MarkSweep::ProcessMarkStackParallel(size_t thread_count) {
1167 Thread* self = Thread::Current();
1168 ThreadPool* thread_pool = GetHeap()->GetThreadPool();
1169 const size_t chunk_size = std::min(mark_stack_->Size() / thread_count + 1,
1170 static_cast<size_t>(MarkStackTask<false>::kMaxSize));
1171 CHECK_GT(chunk_size, 0U);
1172 // Split the current mark stack up into work tasks.
1173 for (mirror::Object **it = mark_stack_->Begin(), **end = mark_stack_->End(); it < end; ) {
1174 const size_t delta = std::min(static_cast<size_t>(end - it), chunk_size);
1175 thread_pool->AddTask(self, new MarkStackTask<false>(thread_pool, this, delta, it));
1176 it += delta;
1177 }
1178 thread_pool->SetMaxActiveWorkers(thread_count - 1);
1179 thread_pool->StartWorkers(self);
1180 thread_pool->Wait(self, true, true);
1181 thread_pool->StopWorkers(self);
1182 mark_stack_->Reset();
1183 CHECK_EQ(work_chunks_created_.LoadSequentiallyConsistent(),
1184 work_chunks_deleted_.LoadSequentiallyConsistent())
1185 << " some of the work chunks were leaked";
1186 }
1187
1188 // Scan anything that's on the mark stack.
ProcessMarkStack(bool paused)1189 void MarkSweep::ProcessMarkStack(bool paused) {
1190 TimingLogger::ScopedTiming t(paused ? "(Paused)ProcessMarkStack" : __FUNCTION__, GetTimings());
1191 size_t thread_count = GetThreadCount(paused);
1192 if (kParallelProcessMarkStack && thread_count > 1 &&
1193 mark_stack_->Size() >= kMinimumParallelMarkStackSize) {
1194 ProcessMarkStackParallel(thread_count);
1195 } else {
1196 // TODO: Tune this.
1197 static const size_t kFifoSize = 4;
1198 BoundedFifoPowerOfTwo<Object*, kFifoSize> prefetch_fifo;
1199 for (;;) {
1200 Object* obj = NULL;
1201 if (kUseMarkStackPrefetch) {
1202 while (!mark_stack_->IsEmpty() && prefetch_fifo.size() < kFifoSize) {
1203 Object* obj = mark_stack_->PopBack();
1204 DCHECK(obj != NULL);
1205 __builtin_prefetch(obj);
1206 prefetch_fifo.push_back(obj);
1207 }
1208 if (prefetch_fifo.empty()) {
1209 break;
1210 }
1211 obj = prefetch_fifo.front();
1212 prefetch_fifo.pop_front();
1213 } else {
1214 if (mark_stack_->IsEmpty()) {
1215 break;
1216 }
1217 obj = mark_stack_->PopBack();
1218 }
1219 DCHECK(obj != nullptr);
1220 ScanObject(obj);
1221 }
1222 }
1223 }
1224
IsMarked(const Object * object) const1225 inline bool MarkSweep::IsMarked(const Object* object) const {
1226 if (immune_region_.ContainsObject(object)) {
1227 return true;
1228 }
1229 if (current_space_bitmap_->HasAddress(object)) {
1230 return current_space_bitmap_->Test(object);
1231 }
1232 return mark_bitmap_->Test(object);
1233 }
1234
FinishPhase()1235 void MarkSweep::FinishPhase() {
1236 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
1237 if (kCountScannedTypes) {
1238 VLOG(gc) << "MarkSweep scanned classes=" << class_count_.LoadRelaxed()
1239 << " arrays=" << array_count_.LoadRelaxed() << " other=" << other_count_.LoadRelaxed();
1240 }
1241 if (kCountTasks) {
1242 VLOG(gc) << "Total number of work chunks allocated: " << work_chunks_created_.LoadRelaxed();
1243 }
1244 if (kMeasureOverhead) {
1245 VLOG(gc) << "Overhead time " << PrettyDuration(overhead_time_.LoadRelaxed());
1246 }
1247 if (kProfileLargeObjects) {
1248 VLOG(gc) << "Large objects tested " << large_object_test_.LoadRelaxed()
1249 << " marked " << large_object_mark_.LoadRelaxed();
1250 }
1251 if (kCountJavaLangRefs) {
1252 VLOG(gc) << "References scanned " << reference_count_.LoadRelaxed();
1253 }
1254 if (kCountMarkedObjects) {
1255 VLOG(gc) << "Marked: null=" << mark_null_count_.LoadRelaxed()
1256 << " immune=" << mark_immune_count_.LoadRelaxed()
1257 << " fastpath=" << mark_fastpath_count_.LoadRelaxed()
1258 << " slowpath=" << mark_slowpath_count_.LoadRelaxed();
1259 }
1260 CHECK(mark_stack_->IsEmpty()); // Ensure that the mark stack is empty.
1261 mark_stack_->Reset();
1262 WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
1263 heap_->ClearMarkedObjects();
1264 }
1265
RevokeAllThreadLocalBuffers()1266 void MarkSweep::RevokeAllThreadLocalBuffers() {
1267 if (kRevokeRosAllocThreadLocalBuffersAtCheckpoint && IsConcurrent()) {
1268 // If concurrent, rosalloc thread-local buffers are revoked at the
1269 // thread checkpoint. Bump pointer space thread-local buffers must
1270 // not be in use.
1271 GetHeap()->AssertAllBumpPointerSpaceThreadLocalBuffersAreRevoked();
1272 } else {
1273 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
1274 GetHeap()->RevokeAllThreadLocalBuffers();
1275 }
1276 }
1277
1278 } // namespace collector
1279 } // namespace gc
1280 } // namespace art
1281