1 /*
2 * Copyright (C) 2013 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "semi_space-inl.h"
18
19 #include <functional>
20 #include <numeric>
21 #include <climits>
22 #include <vector>
23
24 #include "base/logging.h"
25 #include "base/macros.h"
26 #include "base/mutex-inl.h"
27 #include "base/timing_logger.h"
28 #include "gc/accounting/heap_bitmap-inl.h"
29 #include "gc/accounting/mod_union_table.h"
30 #include "gc/accounting/remembered_set.h"
31 #include "gc/accounting/space_bitmap-inl.h"
32 #include "gc/heap.h"
33 #include "gc/reference_processor.h"
34 #include "gc/space/bump_pointer_space.h"
35 #include "gc/space/bump_pointer_space-inl.h"
36 #include "gc/space/image_space.h"
37 #include "gc/space/large_object_space.h"
38 #include "gc/space/space-inl.h"
39 #include "indirect_reference_table.h"
40 #include "intern_table.h"
41 #include "jni_internal.h"
42 #include "mark_sweep-inl.h"
43 #include "monitor.h"
44 #include "mirror/reference-inl.h"
45 #include "mirror/object-inl.h"
46 #include "runtime.h"
47 #include "thread-inl.h"
48 #include "thread_list.h"
49
50 using ::art::mirror::Object;
51
52 namespace art {
53 namespace gc {
54 namespace collector {
55
56 static constexpr bool kProtectFromSpace = true;
57 static constexpr bool kStoreStackTraces = false;
58 static constexpr size_t kBytesPromotedThreshold = 4 * MB;
59 static constexpr size_t kLargeObjectBytesAllocatedThreshold = 16 * MB;
60
BindBitmaps()61 void SemiSpace::BindBitmaps() {
62 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
63 WriterMutexLock mu(self_, *Locks::heap_bitmap_lock_);
64 // Mark all of the spaces we never collect as immune.
65 for (const auto& space : GetHeap()->GetContinuousSpaces()) {
66 if (space->GetGcRetentionPolicy() == space::kGcRetentionPolicyNeverCollect ||
67 space->GetGcRetentionPolicy() == space::kGcRetentionPolicyFullCollect) {
68 CHECK(immune_region_.AddContinuousSpace(space)) << "Failed to add space " << *space;
69 } else if (space->GetLiveBitmap() != nullptr) {
70 if (space == to_space_ || collect_from_space_only_) {
71 if (collect_from_space_only_) {
72 // Bind the bitmaps of the main free list space and the non-moving space we are doing a
73 // bump pointer space only collection.
74 CHECK(space == GetHeap()->GetPrimaryFreeListSpace() ||
75 space == GetHeap()->GetNonMovingSpace());
76 }
77 CHECK(space->IsContinuousMemMapAllocSpace());
78 space->AsContinuousMemMapAllocSpace()->BindLiveToMarkBitmap();
79 }
80 }
81 }
82 if (collect_from_space_only_) {
83 // We won't collect the large object space if a bump pointer space only collection.
84 is_large_object_space_immune_ = true;
85 }
86 }
87
SemiSpace(Heap * heap,bool generational,const std::string & name_prefix)88 SemiSpace::SemiSpace(Heap* heap, bool generational, const std::string& name_prefix)
89 : GarbageCollector(heap,
90 name_prefix + (name_prefix.empty() ? "" : " ") + "marksweep + semispace"),
91 to_space_(nullptr),
92 from_space_(nullptr),
93 generational_(generational),
94 last_gc_to_space_end_(nullptr),
95 bytes_promoted_(0),
96 bytes_promoted_since_last_whole_heap_collection_(0),
97 large_object_bytes_allocated_at_last_whole_heap_collection_(0),
98 collect_from_space_only_(generational),
99 collector_name_(name_),
100 swap_semi_spaces_(true) {
101 }
102
RunPhases()103 void SemiSpace::RunPhases() {
104 Thread* self = Thread::Current();
105 InitializePhase();
106 // Semi-space collector is special since it is sometimes called with the mutators suspended
107 // during the zygote creation and collector transitions. If we already exclusively hold the
108 // mutator lock, then we can't lock it again since it will cause a deadlock.
109 if (Locks::mutator_lock_->IsExclusiveHeld(self)) {
110 GetHeap()->PreGcVerificationPaused(this);
111 GetHeap()->PrePauseRosAllocVerification(this);
112 MarkingPhase();
113 ReclaimPhase();
114 GetHeap()->PostGcVerificationPaused(this);
115 } else {
116 Locks::mutator_lock_->AssertNotHeld(self);
117 {
118 ScopedPause pause(this);
119 GetHeap()->PreGcVerificationPaused(this);
120 GetHeap()->PrePauseRosAllocVerification(this);
121 MarkingPhase();
122 }
123 {
124 ReaderMutexLock mu(self, *Locks::mutator_lock_);
125 ReclaimPhase();
126 }
127 GetHeap()->PostGcVerification(this);
128 }
129 FinishPhase();
130 }
131
InitializePhase()132 void SemiSpace::InitializePhase() {
133 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
134 mark_stack_ = heap_->GetMarkStack();
135 DCHECK(mark_stack_ != nullptr);
136 immune_region_.Reset();
137 is_large_object_space_immune_ = false;
138 saved_bytes_ = 0;
139 bytes_moved_ = 0;
140 objects_moved_ = 0;
141 self_ = Thread::Current();
142 CHECK(from_space_->CanMoveObjects()) << "Attempting to move from " << *from_space_;
143 // Set the initial bitmap.
144 to_space_live_bitmap_ = to_space_->GetLiveBitmap();
145 {
146 // TODO: I don't think we should need heap bitmap lock to Get the mark bitmap.
147 ReaderMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
148 mark_bitmap_ = heap_->GetMarkBitmap();
149 }
150 if (generational_) {
151 promo_dest_space_ = GetHeap()->GetPrimaryFreeListSpace();
152 }
153 fallback_space_ = GetHeap()->GetNonMovingSpace();
154 }
155
ProcessReferences(Thread * self)156 void SemiSpace::ProcessReferences(Thread* self) {
157 WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
158 GetHeap()->GetReferenceProcessor()->ProcessReferences(
159 false, GetTimings(), GetCurrentIteration()->GetClearSoftReferences(),
160 &HeapReferenceMarkedCallback, &MarkObjectCallback, &ProcessMarkStackCallback, this);
161 }
162
MarkingPhase()163 void SemiSpace::MarkingPhase() {
164 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
165 CHECK(Locks::mutator_lock_->IsExclusiveHeld(self_));
166 if (kStoreStackTraces) {
167 Locks::mutator_lock_->AssertExclusiveHeld(self_);
168 // Store the stack traces into the runtime fault string in case we Get a heap corruption
169 // related crash later.
170 ThreadState old_state = self_->SetStateUnsafe(kRunnable);
171 std::ostringstream oss;
172 Runtime* runtime = Runtime::Current();
173 runtime->GetThreadList()->DumpForSigQuit(oss);
174 runtime->GetThreadList()->DumpNativeStacks(oss);
175 runtime->SetFaultMessage(oss.str());
176 CHECK_EQ(self_->SetStateUnsafe(old_state), kRunnable);
177 }
178 // Revoke the thread local buffers since the GC may allocate into a RosAllocSpace and this helps
179 // to prevent fragmentation.
180 RevokeAllThreadLocalBuffers();
181 if (generational_) {
182 if (GetCurrentIteration()->GetGcCause() == kGcCauseExplicit ||
183 GetCurrentIteration()->GetGcCause() == kGcCauseForNativeAlloc ||
184 GetCurrentIteration()->GetClearSoftReferences()) {
185 // If an explicit, native allocation-triggered, or last attempt
186 // collection, collect the whole heap.
187 collect_from_space_only_ = false;
188 }
189 if (!collect_from_space_only_) {
190 VLOG(heap) << "Whole heap collection";
191 name_ = collector_name_ + " whole";
192 } else {
193 VLOG(heap) << "Bump pointer space only collection";
194 name_ = collector_name_ + " bps";
195 }
196 }
197
198 if (!collect_from_space_only_) {
199 // If non-generational, always clear soft references.
200 // If generational, clear soft references if a whole heap collection.
201 GetCurrentIteration()->SetClearSoftReferences(true);
202 }
203 Locks::mutator_lock_->AssertExclusiveHeld(self_);
204 if (generational_) {
205 // If last_gc_to_space_end_ is out of the bounds of the from-space
206 // (the to-space from last GC), then point it to the beginning of
207 // the from-space. For example, the very first GC or the
208 // pre-zygote compaction.
209 if (!from_space_->HasAddress(reinterpret_cast<mirror::Object*>(last_gc_to_space_end_))) {
210 last_gc_to_space_end_ = from_space_->Begin();
211 }
212 // Reset this before the marking starts below.
213 bytes_promoted_ = 0;
214 }
215 // Assume the cleared space is already empty.
216 BindBitmaps();
217 // Process dirty cards and add dirty cards to mod-union tables.
218 heap_->ProcessCards(GetTimings(), kUseRememberedSet && generational_);
219 // Clear the whole card table since we can not Get any additional dirty cards during the
220 // paused GC. This saves memory but only works for pause the world collectors.
221 t.NewTiming("ClearCardTable");
222 heap_->GetCardTable()->ClearCardTable();
223 // Need to do this before the checkpoint since we don't want any threads to add references to
224 // the live stack during the recursive mark.
225 if (kUseThreadLocalAllocationStack) {
226 TimingLogger::ScopedTiming t("RevokeAllThreadLocalAllocationStacks", GetTimings());
227 heap_->RevokeAllThreadLocalAllocationStacks(self_);
228 }
229 heap_->SwapStacks(self_);
230 {
231 WriterMutexLock mu(self_, *Locks::heap_bitmap_lock_);
232 MarkRoots();
233 // Recursively mark remaining objects.
234 MarkReachableObjects();
235 }
236 ProcessReferences(self_);
237 {
238 ReaderMutexLock mu(self_, *Locks::heap_bitmap_lock_);
239 SweepSystemWeaks();
240 }
241 // Revoke buffers before measuring how many objects were moved since the TLABs need to be revoked
242 // before they are properly counted.
243 RevokeAllThreadLocalBuffers();
244 // Record freed memory.
245 const int64_t from_bytes = from_space_->GetBytesAllocated();
246 const int64_t to_bytes = bytes_moved_;
247 const uint64_t from_objects = from_space_->GetObjectsAllocated();
248 const uint64_t to_objects = objects_moved_;
249 CHECK_LE(to_objects, from_objects);
250 // Note: Freed bytes can be negative if we copy form a compacted space to a free-list backed
251 // space.
252 RecordFree(ObjectBytePair(from_objects - to_objects, from_bytes - to_bytes));
253 // Clear and protect the from space.
254 from_space_->Clear();
255 VLOG(heap) << "Protecting from_space_: " << *from_space_;
256 from_space_->GetMemMap()->Protect(kProtectFromSpace ? PROT_NONE : PROT_READ);
257 heap_->PreSweepingGcVerification(this);
258 if (swap_semi_spaces_) {
259 heap_->SwapSemiSpaces();
260 }
261 }
262
263 class SemiSpaceScanObjectVisitor {
264 public:
SemiSpaceScanObjectVisitor(SemiSpace * ss)265 explicit SemiSpaceScanObjectVisitor(SemiSpace* ss) : semi_space_(ss) {}
operator ()(Object * obj) const266 void operator()(Object* obj) const EXCLUSIVE_LOCKS_REQUIRED(Locks::mutator_lock_,
267 Locks::heap_bitmap_lock_) {
268 DCHECK(obj != nullptr);
269 semi_space_->ScanObject(obj);
270 }
271 private:
272 SemiSpace* const semi_space_;
273 };
274
275 // Used to verify that there's no references to the from-space.
276 class SemiSpaceVerifyNoFromSpaceReferencesVisitor {
277 public:
SemiSpaceVerifyNoFromSpaceReferencesVisitor(space::ContinuousMemMapAllocSpace * from_space)278 explicit SemiSpaceVerifyNoFromSpaceReferencesVisitor(space::ContinuousMemMapAllocSpace* from_space) :
279 from_space_(from_space) {}
280
operator ()(Object * obj,MemberOffset offset,bool) const281 void operator()(Object* obj, MemberOffset offset, bool /* is_static */) const
282 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) ALWAYS_INLINE {
283 mirror::Object* ref = obj->GetFieldObject<mirror::Object>(offset);
284 if (from_space_->HasAddress(ref)) {
285 Runtime::Current()->GetHeap()->DumpObject(LOG(INFO), obj);
286 LOG(FATAL) << ref << " found in from space";
287 }
288 }
289 private:
290 space::ContinuousMemMapAllocSpace* from_space_;
291 };
292
VerifyNoFromSpaceReferences(Object * obj)293 void SemiSpace::VerifyNoFromSpaceReferences(Object* obj) {
294 DCHECK(!from_space_->HasAddress(obj)) << "Scanning object " << obj << " in from space";
295 SemiSpaceVerifyNoFromSpaceReferencesVisitor visitor(from_space_);
296 obj->VisitReferences<kMovingClasses>(visitor, VoidFunctor());
297 }
298
299 class SemiSpaceVerifyNoFromSpaceReferencesObjectVisitor {
300 public:
SemiSpaceVerifyNoFromSpaceReferencesObjectVisitor(SemiSpace * ss)301 explicit SemiSpaceVerifyNoFromSpaceReferencesObjectVisitor(SemiSpace* ss) : semi_space_(ss) {}
operator ()(Object * obj) const302 void operator()(Object* obj) const
303 SHARED_LOCKS_REQUIRED(Locks::heap_bitmap_lock_, Locks::mutator_lock_) {
304 DCHECK(obj != nullptr);
305 semi_space_->VerifyNoFromSpaceReferences(obj);
306 }
307 private:
308 SemiSpace* const semi_space_;
309 };
310
MarkReachableObjects()311 void SemiSpace::MarkReachableObjects() {
312 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
313 {
314 TimingLogger::ScopedTiming t2("MarkStackAsLive", GetTimings());
315 accounting::ObjectStack* live_stack = heap_->GetLiveStack();
316 heap_->MarkAllocStackAsLive(live_stack);
317 live_stack->Reset();
318 }
319 for (auto& space : heap_->GetContinuousSpaces()) {
320 // If the space is immune then we need to mark the references to other spaces.
321 accounting::ModUnionTable* table = heap_->FindModUnionTableFromSpace(space);
322 if (table != nullptr) {
323 // TODO: Improve naming.
324 TimingLogger::ScopedTiming t2(
325 space->IsZygoteSpace() ? "UpdateAndMarkZygoteModUnionTable" :
326 "UpdateAndMarkImageModUnionTable",
327 GetTimings());
328 table->UpdateAndMarkReferences(MarkHeapReferenceCallback, this);
329 DCHECK(GetHeap()->FindRememberedSetFromSpace(space) == nullptr);
330 } else if (collect_from_space_only_ && space->GetLiveBitmap() != nullptr) {
331 // If the space has no mod union table (the non-moving space and main spaces when the bump
332 // pointer space only collection is enabled,) then we need to scan its live bitmap or dirty
333 // cards as roots (including the objects on the live stack which have just marked in the live
334 // bitmap above in MarkAllocStackAsLive().)
335 DCHECK(space == heap_->GetNonMovingSpace() || space == heap_->GetPrimaryFreeListSpace())
336 << "Space " << space->GetName() << " "
337 << "generational_=" << generational_ << " "
338 << "collect_from_space_only_=" << collect_from_space_only_;
339 accounting::RememberedSet* rem_set = GetHeap()->FindRememberedSetFromSpace(space);
340 CHECK_EQ(rem_set != nullptr, kUseRememberedSet);
341 if (rem_set != nullptr) {
342 TimingLogger::ScopedTiming t2("UpdateAndMarkRememberedSet", GetTimings());
343 rem_set->UpdateAndMarkReferences(MarkHeapReferenceCallback, DelayReferenceReferentCallback,
344 from_space_, this);
345 if (kIsDebugBuild) {
346 // Verify that there are no from-space references that
347 // remain in the space, that is, the remembered set (and the
348 // card table) didn't miss any from-space references in the
349 // space.
350 accounting::ContinuousSpaceBitmap* live_bitmap = space->GetLiveBitmap();
351 SemiSpaceVerifyNoFromSpaceReferencesObjectVisitor visitor(this);
352 live_bitmap->VisitMarkedRange(reinterpret_cast<uintptr_t>(space->Begin()),
353 reinterpret_cast<uintptr_t>(space->End()),
354 visitor);
355 }
356 } else {
357 TimingLogger::ScopedTiming t2("VisitLiveBits", GetTimings());
358 accounting::ContinuousSpaceBitmap* live_bitmap = space->GetLiveBitmap();
359 SemiSpaceScanObjectVisitor visitor(this);
360 live_bitmap->VisitMarkedRange(reinterpret_cast<uintptr_t>(space->Begin()),
361 reinterpret_cast<uintptr_t>(space->End()),
362 visitor);
363 }
364 }
365 }
366
367 CHECK_EQ(is_large_object_space_immune_, collect_from_space_only_);
368 if (is_large_object_space_immune_) {
369 TimingLogger::ScopedTiming t("VisitLargeObjects", GetTimings());
370 DCHECK(collect_from_space_only_);
371 // Delay copying the live set to the marked set until here from
372 // BindBitmaps() as the large objects on the allocation stack may
373 // be newly added to the live set above in MarkAllocStackAsLive().
374 GetHeap()->GetLargeObjectsSpace()->CopyLiveToMarked();
375
376 // When the large object space is immune, we need to scan the
377 // large object space as roots as they contain references to their
378 // classes (primitive array classes) that could move though they
379 // don't contain any other references.
380 space::LargeObjectSpace* large_object_space = GetHeap()->GetLargeObjectsSpace();
381 accounting::LargeObjectBitmap* large_live_bitmap = large_object_space->GetLiveBitmap();
382 SemiSpaceScanObjectVisitor visitor(this);
383 large_live_bitmap->VisitMarkedRange(reinterpret_cast<uintptr_t>(large_object_space->Begin()),
384 reinterpret_cast<uintptr_t>(large_object_space->End()),
385 visitor);
386 }
387 // Recursively process the mark stack.
388 ProcessMarkStack();
389 }
390
ReclaimPhase()391 void SemiSpace::ReclaimPhase() {
392 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
393 WriterMutexLock mu(self_, *Locks::heap_bitmap_lock_);
394 // Reclaim unmarked objects.
395 Sweep(false);
396 // Swap the live and mark bitmaps for each space which we modified space. This is an
397 // optimization that enables us to not clear live bits inside of the sweep. Only swaps unbound
398 // bitmaps.
399 SwapBitmaps();
400 // Unbind the live and mark bitmaps.
401 GetHeap()->UnBindBitmaps();
402 if (saved_bytes_ > 0) {
403 VLOG(heap) << "Avoided dirtying " << PrettySize(saved_bytes_);
404 }
405 if (generational_) {
406 // Record the end (top) of the to space so we can distinguish
407 // between objects that were allocated since the last GC and the
408 // older objects.
409 last_gc_to_space_end_ = to_space_->End();
410 }
411 }
412
ResizeMarkStack(size_t new_size)413 void SemiSpace::ResizeMarkStack(size_t new_size) {
414 std::vector<Object*> temp(mark_stack_->Begin(), mark_stack_->End());
415 CHECK_LE(mark_stack_->Size(), new_size);
416 mark_stack_->Resize(new_size);
417 for (const auto& obj : temp) {
418 mark_stack_->PushBack(obj);
419 }
420 }
421
MarkStackPush(Object * obj)422 inline void SemiSpace::MarkStackPush(Object* obj) {
423 if (UNLIKELY(mark_stack_->Size() >= mark_stack_->Capacity())) {
424 ResizeMarkStack(mark_stack_->Capacity() * 2);
425 }
426 // The object must be pushed on to the mark stack.
427 mark_stack_->PushBack(obj);
428 }
429
CopyAvoidingDirtyingPages(void * dest,const void * src,size_t size)430 static inline size_t CopyAvoidingDirtyingPages(void* dest, const void* src, size_t size) {
431 if (LIKELY(size <= static_cast<size_t>(kPageSize))) {
432 // We will dirty the current page and somewhere in the middle of the next page. This means
433 // that the next object copied will also dirty that page.
434 // TODO: Worth considering the last object copied? We may end up dirtying one page which is
435 // not necessary per GC.
436 memcpy(dest, src, size);
437 return 0;
438 }
439 size_t saved_bytes = 0;
440 byte* byte_dest = reinterpret_cast<byte*>(dest);
441 if (kIsDebugBuild) {
442 for (size_t i = 0; i < size; ++i) {
443 CHECK_EQ(byte_dest[i], 0U);
444 }
445 }
446 // Process the start of the page. The page must already be dirty, don't bother with checking.
447 const byte* byte_src = reinterpret_cast<const byte*>(src);
448 const byte* limit = byte_src + size;
449 size_t page_remain = AlignUp(byte_dest, kPageSize) - byte_dest;
450 // Copy the bytes until the start of the next page.
451 memcpy(dest, src, page_remain);
452 byte_src += page_remain;
453 byte_dest += page_remain;
454 DCHECK_ALIGNED(reinterpret_cast<uintptr_t>(byte_dest), kPageSize);
455 DCHECK_ALIGNED(reinterpret_cast<uintptr_t>(byte_dest), sizeof(uintptr_t));
456 DCHECK_ALIGNED(reinterpret_cast<uintptr_t>(byte_src), sizeof(uintptr_t));
457 while (byte_src + kPageSize < limit) {
458 bool all_zero = true;
459 uintptr_t* word_dest = reinterpret_cast<uintptr_t*>(byte_dest);
460 const uintptr_t* word_src = reinterpret_cast<const uintptr_t*>(byte_src);
461 for (size_t i = 0; i < kPageSize / sizeof(*word_src); ++i) {
462 // Assumes the destination of the copy is all zeros.
463 if (word_src[i] != 0) {
464 all_zero = false;
465 word_dest[i] = word_src[i];
466 }
467 }
468 if (all_zero) {
469 // Avoided copying into the page since it was all zeros.
470 saved_bytes += kPageSize;
471 }
472 byte_src += kPageSize;
473 byte_dest += kPageSize;
474 }
475 // Handle the part of the page at the end.
476 memcpy(byte_dest, byte_src, limit - byte_src);
477 return saved_bytes;
478 }
479
MarkNonForwardedObject(mirror::Object * obj)480 mirror::Object* SemiSpace::MarkNonForwardedObject(mirror::Object* obj) {
481 const size_t object_size = obj->SizeOf();
482 size_t bytes_allocated;
483 mirror::Object* forward_address = nullptr;
484 if (generational_ && reinterpret_cast<byte*>(obj) < last_gc_to_space_end_) {
485 // If it's allocated before the last GC (older), move
486 // (pseudo-promote) it to the main free list space (as sort
487 // of an old generation.)
488 forward_address = promo_dest_space_->AllocThreadUnsafe(self_, object_size, &bytes_allocated,
489 nullptr);
490 if (UNLIKELY(forward_address == nullptr)) {
491 // If out of space, fall back to the to-space.
492 forward_address = to_space_->AllocThreadUnsafe(self_, object_size, &bytes_allocated, nullptr);
493 // No logic for marking the bitmap, so it must be null.
494 DCHECK(to_space_live_bitmap_ == nullptr);
495 } else {
496 bytes_promoted_ += bytes_allocated;
497 // Dirty the card at the destionation as it may contain
498 // references (including the class pointer) to the bump pointer
499 // space.
500 GetHeap()->WriteBarrierEveryFieldOf(forward_address);
501 // Handle the bitmaps marking.
502 accounting::ContinuousSpaceBitmap* live_bitmap = promo_dest_space_->GetLiveBitmap();
503 DCHECK(live_bitmap != nullptr);
504 accounting::ContinuousSpaceBitmap* mark_bitmap = promo_dest_space_->GetMarkBitmap();
505 DCHECK(mark_bitmap != nullptr);
506 DCHECK(!live_bitmap->Test(forward_address));
507 if (collect_from_space_only_) {
508 // If collecting the bump pointer spaces only, live_bitmap == mark_bitmap.
509 DCHECK_EQ(live_bitmap, mark_bitmap);
510
511 // If a bump pointer space only collection, delay the live
512 // bitmap marking of the promoted object until it's popped off
513 // the mark stack (ProcessMarkStack()). The rationale: we may
514 // be in the middle of scanning the objects in the promo
515 // destination space for
516 // non-moving-space-to-bump-pointer-space references by
517 // iterating over the marked bits of the live bitmap
518 // (MarkReachableObjects()). If we don't delay it (and instead
519 // mark the promoted object here), the above promo destination
520 // space scan could encounter the just-promoted object and
521 // forward the references in the promoted object's fields even
522 // through it is pushed onto the mark stack. If this happens,
523 // the promoted object would be in an inconsistent state, that
524 // is, it's on the mark stack (gray) but its fields are
525 // already forwarded (black), which would cause a
526 // DCHECK(!to_space_->HasAddress(obj)) failure below.
527 } else {
528 // Mark forward_address on the live bit map.
529 live_bitmap->Set(forward_address);
530 // Mark forward_address on the mark bit map.
531 DCHECK(!mark_bitmap->Test(forward_address));
532 mark_bitmap->Set(forward_address);
533 }
534 }
535 } else {
536 // If it's allocated after the last GC (younger), copy it to the to-space.
537 forward_address = to_space_->AllocThreadUnsafe(self_, object_size, &bytes_allocated, nullptr);
538 if (forward_address != nullptr && to_space_live_bitmap_ != nullptr) {
539 to_space_live_bitmap_->Set(forward_address);
540 }
541 }
542 // If it's still null, attempt to use the fallback space.
543 if (UNLIKELY(forward_address == nullptr)) {
544 forward_address = fallback_space_->AllocThreadUnsafe(self_, object_size, &bytes_allocated,
545 nullptr);
546 CHECK(forward_address != nullptr) << "Out of memory in the to-space and fallback space.";
547 accounting::ContinuousSpaceBitmap* bitmap = fallback_space_->GetLiveBitmap();
548 if (bitmap != nullptr) {
549 bitmap->Set(forward_address);
550 }
551 }
552 ++objects_moved_;
553 bytes_moved_ += bytes_allocated;
554 // Copy over the object and add it to the mark stack since we still need to update its
555 // references.
556 saved_bytes_ +=
557 CopyAvoidingDirtyingPages(reinterpret_cast<void*>(forward_address), obj, object_size);
558 if (kUseBakerOrBrooksReadBarrier) {
559 obj->AssertReadBarrierPointer();
560 if (kUseBrooksReadBarrier) {
561 DCHECK_EQ(forward_address->GetReadBarrierPointer(), obj);
562 forward_address->SetReadBarrierPointer(forward_address);
563 }
564 forward_address->AssertReadBarrierPointer();
565 }
566 DCHECK(to_space_->HasAddress(forward_address) ||
567 fallback_space_->HasAddress(forward_address) ||
568 (generational_ && promo_dest_space_->HasAddress(forward_address)))
569 << forward_address << "\n" << GetHeap()->DumpSpaces();
570 return forward_address;
571 }
572
ProcessMarkStackCallback(void * arg)573 void SemiSpace::ProcessMarkStackCallback(void* arg) {
574 reinterpret_cast<SemiSpace*>(arg)->ProcessMarkStack();
575 }
576
MarkObjectCallback(mirror::Object * root,void * arg)577 mirror::Object* SemiSpace::MarkObjectCallback(mirror::Object* root, void* arg) {
578 auto ref = StackReference<mirror::Object>::FromMirrorPtr(root);
579 reinterpret_cast<SemiSpace*>(arg)->MarkObject(&ref);
580 return ref.AsMirrorPtr();
581 }
582
MarkHeapReferenceCallback(mirror::HeapReference<mirror::Object> * obj_ptr,void * arg)583 void SemiSpace::MarkHeapReferenceCallback(mirror::HeapReference<mirror::Object>* obj_ptr,
584 void* arg) {
585 reinterpret_cast<SemiSpace*>(arg)->MarkObject(obj_ptr);
586 }
587
DelayReferenceReferentCallback(mirror::Class * klass,mirror::Reference * ref,void * arg)588 void SemiSpace::DelayReferenceReferentCallback(mirror::Class* klass, mirror::Reference* ref,
589 void* arg) {
590 reinterpret_cast<SemiSpace*>(arg)->DelayReferenceReferent(klass, ref);
591 }
592
MarkRootCallback(Object ** root,void * arg,const RootInfo &)593 void SemiSpace::MarkRootCallback(Object** root, void* arg, const RootInfo& /*root_info*/) {
594 auto ref = StackReference<mirror::Object>::FromMirrorPtr(*root);
595 reinterpret_cast<SemiSpace*>(arg)->MarkObject(&ref);
596 if (*root != ref.AsMirrorPtr()) {
597 *root = ref.AsMirrorPtr();
598 }
599 }
600
601 // Marks all objects in the root set.
MarkRoots()602 void SemiSpace::MarkRoots() {
603 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
604 Runtime::Current()->VisitRoots(MarkRootCallback, this);
605 }
606
HeapReferenceMarkedCallback(mirror::HeapReference<mirror::Object> * object,void * arg)607 bool SemiSpace::HeapReferenceMarkedCallback(mirror::HeapReference<mirror::Object>* object,
608 void* arg) {
609 mirror::Object* obj = object->AsMirrorPtr();
610 mirror::Object* new_obj =
611 reinterpret_cast<SemiSpace*>(arg)->GetMarkedForwardAddress(obj);
612 if (new_obj == nullptr) {
613 return false;
614 }
615 if (new_obj != obj) {
616 // Write barrier is not necessary since it still points to the same object, just at a different
617 // address.
618 object->Assign(new_obj);
619 }
620 return true;
621 }
622
MarkedForwardingAddressCallback(mirror::Object * object,void * arg)623 mirror::Object* SemiSpace::MarkedForwardingAddressCallback(mirror::Object* object, void* arg) {
624 return reinterpret_cast<SemiSpace*>(arg)->GetMarkedForwardAddress(object);
625 }
626
SweepSystemWeaks()627 void SemiSpace::SweepSystemWeaks() {
628 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
629 Runtime::Current()->SweepSystemWeaks(MarkedForwardingAddressCallback, this);
630 }
631
ShouldSweepSpace(space::ContinuousSpace * space) const632 bool SemiSpace::ShouldSweepSpace(space::ContinuousSpace* space) const {
633 return space != from_space_ && space != to_space_;
634 }
635
Sweep(bool swap_bitmaps)636 void SemiSpace::Sweep(bool swap_bitmaps) {
637 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
638 DCHECK(mark_stack_->IsEmpty());
639 for (const auto& space : GetHeap()->GetContinuousSpaces()) {
640 if (space->IsContinuousMemMapAllocSpace()) {
641 space::ContinuousMemMapAllocSpace* alloc_space = space->AsContinuousMemMapAllocSpace();
642 if (!ShouldSweepSpace(alloc_space)) {
643 continue;
644 }
645 TimingLogger::ScopedTiming split(
646 alloc_space->IsZygoteSpace() ? "SweepZygoteSpace" : "SweepAllocSpace", GetTimings());
647 RecordFree(alloc_space->Sweep(swap_bitmaps));
648 }
649 }
650 if (!is_large_object_space_immune_) {
651 SweepLargeObjects(swap_bitmaps);
652 }
653 }
654
SweepLargeObjects(bool swap_bitmaps)655 void SemiSpace::SweepLargeObjects(bool swap_bitmaps) {
656 DCHECK(!is_large_object_space_immune_);
657 TimingLogger::ScopedTiming split("SweepLargeObjects", GetTimings());
658 RecordFreeLOS(heap_->GetLargeObjectsSpace()->Sweep(swap_bitmaps));
659 }
660
661 // Process the "referent" field in a java.lang.ref.Reference. If the referent has not yet been
662 // marked, put it on the appropriate list in the heap for later processing.
DelayReferenceReferent(mirror::Class * klass,mirror::Reference * reference)663 void SemiSpace::DelayReferenceReferent(mirror::Class* klass, mirror::Reference* reference) {
664 heap_->GetReferenceProcessor()->DelayReferenceReferent(klass, reference,
665 &HeapReferenceMarkedCallback, this);
666 }
667
668 class SemiSpaceMarkObjectVisitor {
669 public:
SemiSpaceMarkObjectVisitor(SemiSpace * collector)670 explicit SemiSpaceMarkObjectVisitor(SemiSpace* collector) : collector_(collector) {
671 }
672
operator ()(Object * obj,MemberOffset offset,bool) const673 void operator()(Object* obj, MemberOffset offset, bool /* is_static */) const ALWAYS_INLINE
674 EXCLUSIVE_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
675 // Object was already verified when we scanned it.
676 collector_->MarkObject(obj->GetFieldObjectReferenceAddr<kVerifyNone>(offset));
677 }
678
operator ()(mirror::Class * klass,mirror::Reference * ref) const679 void operator()(mirror::Class* klass, mirror::Reference* ref) const
680 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
681 EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) {
682 collector_->DelayReferenceReferent(klass, ref);
683 }
684
685 private:
686 SemiSpace* const collector_;
687 };
688
689 // Visit all of the references of an object and update.
ScanObject(Object * obj)690 void SemiSpace::ScanObject(Object* obj) {
691 DCHECK(!from_space_->HasAddress(obj)) << "Scanning object " << obj << " in from space";
692 SemiSpaceMarkObjectVisitor visitor(this);
693 obj->VisitReferences<kMovingClasses>(visitor, visitor);
694 }
695
696 // Scan anything that's on the mark stack.
ProcessMarkStack()697 void SemiSpace::ProcessMarkStack() {
698 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
699 accounting::ContinuousSpaceBitmap* live_bitmap = nullptr;
700 if (collect_from_space_only_) {
701 // If a bump pointer space only collection (and the promotion is
702 // enabled,) we delay the live-bitmap marking of promoted objects
703 // from MarkObject() until this function.
704 live_bitmap = promo_dest_space_->GetLiveBitmap();
705 DCHECK(live_bitmap != nullptr);
706 accounting::ContinuousSpaceBitmap* mark_bitmap = promo_dest_space_->GetMarkBitmap();
707 DCHECK(mark_bitmap != nullptr);
708 DCHECK_EQ(live_bitmap, mark_bitmap);
709 }
710 while (!mark_stack_->IsEmpty()) {
711 Object* obj = mark_stack_->PopBack();
712 if (collect_from_space_only_ && promo_dest_space_->HasAddress(obj)) {
713 // obj has just been promoted. Mark the live bitmap for it,
714 // which is delayed from MarkObject().
715 DCHECK(!live_bitmap->Test(obj));
716 live_bitmap->Set(obj);
717 }
718 ScanObject(obj);
719 }
720 }
721
GetMarkedForwardAddress(mirror::Object * obj) const722 inline Object* SemiSpace::GetMarkedForwardAddress(mirror::Object* obj) const
723 SHARED_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) {
724 // All immune objects are assumed marked.
725 if (from_space_->HasAddress(obj)) {
726 // Returns either the forwarding address or nullptr.
727 return GetForwardingAddressInFromSpace(obj);
728 } else if (collect_from_space_only_ || immune_region_.ContainsObject(obj) ||
729 to_space_->HasAddress(obj)) {
730 return obj; // Already forwarded, must be marked.
731 }
732 return mark_bitmap_->Test(obj) ? obj : nullptr;
733 }
734
SetToSpace(space::ContinuousMemMapAllocSpace * to_space)735 void SemiSpace::SetToSpace(space::ContinuousMemMapAllocSpace* to_space) {
736 DCHECK(to_space != nullptr);
737 to_space_ = to_space;
738 }
739
SetFromSpace(space::ContinuousMemMapAllocSpace * from_space)740 void SemiSpace::SetFromSpace(space::ContinuousMemMapAllocSpace* from_space) {
741 DCHECK(from_space != nullptr);
742 from_space_ = from_space;
743 }
744
FinishPhase()745 void SemiSpace::FinishPhase() {
746 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
747 // Null the "to" and "from" spaces since compacting from one to the other isn't valid until
748 // further action is done by the heap.
749 to_space_ = nullptr;
750 from_space_ = nullptr;
751 CHECK(mark_stack_->IsEmpty());
752 mark_stack_->Reset();
753 if (generational_) {
754 // Decide whether to do a whole heap collection or a bump pointer
755 // only space collection at the next collection by updating
756 // collect_from_space_only_.
757 if (collect_from_space_only_) {
758 // Disable collect_from_space_only_ if the bytes promoted since the
759 // last whole heap collection or the large object bytes
760 // allocated exceeds a threshold.
761 bytes_promoted_since_last_whole_heap_collection_ += bytes_promoted_;
762 bool bytes_promoted_threshold_exceeded =
763 bytes_promoted_since_last_whole_heap_collection_ >= kBytesPromotedThreshold;
764 uint64_t current_los_bytes_allocated = GetHeap()->GetLargeObjectsSpace()->GetBytesAllocated();
765 uint64_t last_los_bytes_allocated =
766 large_object_bytes_allocated_at_last_whole_heap_collection_;
767 bool large_object_bytes_threshold_exceeded =
768 current_los_bytes_allocated >=
769 last_los_bytes_allocated + kLargeObjectBytesAllocatedThreshold;
770 if (bytes_promoted_threshold_exceeded || large_object_bytes_threshold_exceeded) {
771 collect_from_space_only_ = false;
772 }
773 } else {
774 // Reset the counters.
775 bytes_promoted_since_last_whole_heap_collection_ = bytes_promoted_;
776 large_object_bytes_allocated_at_last_whole_heap_collection_ =
777 GetHeap()->GetLargeObjectsSpace()->GetBytesAllocated();
778 collect_from_space_only_ = true;
779 }
780 }
781 // Clear all of the spaces' mark bitmaps.
782 WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
783 heap_->ClearMarkedObjects();
784 }
785
RevokeAllThreadLocalBuffers()786 void SemiSpace::RevokeAllThreadLocalBuffers() {
787 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
788 GetHeap()->RevokeAllThreadLocalBuffers();
789 }
790
791 } // namespace collector
792 } // namespace gc
793 } // namespace art
794