1 /*
2 * Copyright (C) 2013 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #ifndef ART_RUNTIME_GC_HEAP_INL_H_
18 #define ART_RUNTIME_GC_HEAP_INL_H_
19
20 #include "heap.h"
21
22 #include "debugger.h"
23 #include "gc/accounting/card_table-inl.h"
24 #include "gc/collector/semi_space.h"
25 #include "gc/space/bump_pointer_space-inl.h"
26 #include "gc/space/dlmalloc_space-inl.h"
27 #include "gc/space/large_object_space.h"
28 #include "gc/space/rosalloc_space-inl.h"
29 #include "runtime.h"
30 #include "handle_scope-inl.h"
31 #include "thread.h"
32 #include "thread-inl.h"
33 #include "verify_object-inl.h"
34
35 namespace art {
36 namespace gc {
37
38 template <bool kInstrumented, bool kCheckLargeObject, typename PreFenceVisitor>
AllocObjectWithAllocator(Thread * self,mirror::Class * klass,size_t byte_count,AllocatorType allocator,const PreFenceVisitor & pre_fence_visitor)39 inline mirror::Object* Heap::AllocObjectWithAllocator(Thread* self, mirror::Class* klass,
40 size_t byte_count, AllocatorType allocator,
41 const PreFenceVisitor& pre_fence_visitor) {
42 if (kIsDebugBuild) {
43 CheckPreconditionsForAllocObject(klass, byte_count);
44 // Since allocation can cause a GC which will need to SuspendAll, make sure all allocations are
45 // done in the runnable state where suspension is expected.
46 CHECK_EQ(self->GetState(), kRunnable);
47 self->AssertThreadSuspensionIsAllowable();
48 }
49 // Need to check that we arent the large object allocator since the large object allocation code
50 // path this function. If we didn't check we would have an infinite loop.
51 mirror::Object* obj;
52 if (kCheckLargeObject && UNLIKELY(ShouldAllocLargeObject(klass, byte_count))) {
53 obj = AllocLargeObject<kInstrumented, PreFenceVisitor>(self, &klass, byte_count,
54 pre_fence_visitor);
55 if (obj != nullptr) {
56 return obj;
57 } else {
58 // There should be an OOM exception, since we are retrying, clear it.
59 self->ClearException();
60 }
61 // If the large object allocation failed, try to use the normal spaces (main space,
62 // non moving space). This can happen if there is significant virtual address space
63 // fragmentation.
64 }
65 AllocationTimer alloc_timer(this, &obj);
66 size_t bytes_allocated;
67 size_t usable_size;
68 size_t new_num_bytes_allocated = 0;
69 if (allocator == kAllocatorTypeTLAB) {
70 byte_count = RoundUp(byte_count, space::BumpPointerSpace::kAlignment);
71 }
72 // If we have a thread local allocation we don't need to update bytes allocated.
73 if (allocator == kAllocatorTypeTLAB && byte_count <= self->TlabSize()) {
74 obj = self->AllocTlab(byte_count);
75 DCHECK(obj != nullptr) << "AllocTlab can't fail";
76 obj->SetClass(klass);
77 if (kUseBakerOrBrooksReadBarrier) {
78 if (kUseBrooksReadBarrier) {
79 obj->SetReadBarrierPointer(obj);
80 }
81 obj->AssertReadBarrierPointer();
82 }
83 bytes_allocated = byte_count;
84 usable_size = bytes_allocated;
85 pre_fence_visitor(obj, usable_size);
86 QuasiAtomic::ThreadFenceForConstructor();
87 } else {
88 obj = TryToAllocate<kInstrumented, false>(self, allocator, byte_count, &bytes_allocated,
89 &usable_size);
90 if (UNLIKELY(obj == nullptr)) {
91 bool is_current_allocator = allocator == GetCurrentAllocator();
92 obj = AllocateInternalWithGc(self, allocator, byte_count, &bytes_allocated, &usable_size,
93 &klass);
94 if (obj == nullptr) {
95 bool after_is_current_allocator = allocator == GetCurrentAllocator();
96 // If there is a pending exception, fail the allocation right away since the next one
97 // could cause OOM and abort the runtime.
98 if (!self->IsExceptionPending() && is_current_allocator && !after_is_current_allocator) {
99 // If the allocator changed, we need to restart the allocation.
100 return AllocObject<kInstrumented>(self, klass, byte_count, pre_fence_visitor);
101 }
102 return nullptr;
103 }
104 }
105 DCHECK_GT(bytes_allocated, 0u);
106 DCHECK_GT(usable_size, 0u);
107 obj->SetClass(klass);
108 if (kUseBakerOrBrooksReadBarrier) {
109 if (kUseBrooksReadBarrier) {
110 obj->SetReadBarrierPointer(obj);
111 }
112 obj->AssertReadBarrierPointer();
113 }
114 if (collector::SemiSpace::kUseRememberedSet && UNLIKELY(allocator == kAllocatorTypeNonMoving)) {
115 // (Note this if statement will be constant folded away for the
116 // fast-path quick entry points.) Because SetClass() has no write
117 // barrier, if a non-moving space allocation, we need a write
118 // barrier as the class pointer may point to the bump pointer
119 // space (where the class pointer is an "old-to-young" reference,
120 // though rare) under the GSS collector with the remembered set
121 // enabled. We don't need this for kAllocatorTypeRosAlloc/DlMalloc
122 // cases because we don't directly allocate into the main alloc
123 // space (besides promotions) under the SS/GSS collector.
124 WriteBarrierField(obj, mirror::Object::ClassOffset(), klass);
125 }
126 pre_fence_visitor(obj, usable_size);
127 new_num_bytes_allocated =
128 static_cast<size_t>(num_bytes_allocated_.FetchAndAddSequentiallyConsistent(bytes_allocated))
129 + bytes_allocated;
130 }
131 if (kIsDebugBuild && Runtime::Current()->IsStarted()) {
132 CHECK_LE(obj->SizeOf(), usable_size);
133 }
134 // TODO: Deprecate.
135 if (kInstrumented) {
136 if (Runtime::Current()->HasStatsEnabled()) {
137 RuntimeStats* thread_stats = self->GetStats();
138 ++thread_stats->allocated_objects;
139 thread_stats->allocated_bytes += bytes_allocated;
140 RuntimeStats* global_stats = Runtime::Current()->GetStats();
141 ++global_stats->allocated_objects;
142 global_stats->allocated_bytes += bytes_allocated;
143 }
144 } else {
145 DCHECK(!Runtime::Current()->HasStatsEnabled());
146 }
147 if (AllocatorHasAllocationStack(allocator)) {
148 PushOnAllocationStack(self, &obj);
149 }
150 if (kInstrumented) {
151 if (Dbg::IsAllocTrackingEnabled()) {
152 Dbg::RecordAllocation(klass, bytes_allocated);
153 }
154 } else {
155 DCHECK(!Dbg::IsAllocTrackingEnabled());
156 }
157 // IsConcurrentGc() isn't known at compile time so we can optimize by not checking it for
158 // the BumpPointer or TLAB allocators. This is nice since it allows the entire if statement to be
159 // optimized out. And for the other allocators, AllocatorMayHaveConcurrentGC is a constant since
160 // the allocator_type should be constant propagated.
161 if (AllocatorMayHaveConcurrentGC(allocator) && IsGcConcurrent()) {
162 CheckConcurrentGC(self, new_num_bytes_allocated, &obj);
163 }
164 VerifyObject(obj);
165 self->VerifyStack();
166 return obj;
167 }
168
169 // The size of a thread-local allocation stack in the number of references.
170 static constexpr size_t kThreadLocalAllocationStackSize = 128;
171
PushOnAllocationStack(Thread * self,mirror::Object ** obj)172 inline void Heap::PushOnAllocationStack(Thread* self, mirror::Object** obj) {
173 if (kUseThreadLocalAllocationStack) {
174 if (UNLIKELY(!self->PushOnThreadLocalAllocationStack(*obj))) {
175 PushOnThreadLocalAllocationStackWithInternalGC(self, obj);
176 }
177 } else if (UNLIKELY(!allocation_stack_->AtomicPushBack(*obj))) {
178 PushOnAllocationStackWithInternalGC(self, obj);
179 }
180 }
181
182 template <bool kInstrumented, typename PreFenceVisitor>
AllocLargeObject(Thread * self,mirror::Class ** klass,size_t byte_count,const PreFenceVisitor & pre_fence_visitor)183 inline mirror::Object* Heap::AllocLargeObject(Thread* self, mirror::Class** klass,
184 size_t byte_count,
185 const PreFenceVisitor& pre_fence_visitor) {
186 // Save and restore the class in case it moves.
187 StackHandleScope<1> hs(self);
188 auto klass_wrapper = hs.NewHandleWrapper(klass);
189 return AllocObjectWithAllocator<kInstrumented, false, PreFenceVisitor>(self, *klass, byte_count,
190 kAllocatorTypeLOS,
191 pre_fence_visitor);
192 }
193
194 template <const bool kInstrumented, const bool kGrow>
TryToAllocate(Thread * self,AllocatorType allocator_type,size_t alloc_size,size_t * bytes_allocated,size_t * usable_size)195 inline mirror::Object* Heap::TryToAllocate(Thread* self, AllocatorType allocator_type,
196 size_t alloc_size, size_t* bytes_allocated,
197 size_t* usable_size) {
198 if (allocator_type != kAllocatorTypeTLAB &&
199 UNLIKELY(IsOutOfMemoryOnAllocation<kGrow>(allocator_type, alloc_size))) {
200 return nullptr;
201 }
202 mirror::Object* ret;
203 switch (allocator_type) {
204 case kAllocatorTypeBumpPointer: {
205 DCHECK(bump_pointer_space_ != nullptr);
206 alloc_size = RoundUp(alloc_size, space::BumpPointerSpace::kAlignment);
207 ret = bump_pointer_space_->AllocNonvirtual(alloc_size);
208 if (LIKELY(ret != nullptr)) {
209 *bytes_allocated = alloc_size;
210 *usable_size = alloc_size;
211 }
212 break;
213 }
214 case kAllocatorTypeRosAlloc: {
215 if (kInstrumented && UNLIKELY(running_on_valgrind_)) {
216 // If running on valgrind, we should be using the instrumented path.
217 ret = rosalloc_space_->Alloc(self, alloc_size, bytes_allocated, usable_size);
218 } else {
219 DCHECK(!running_on_valgrind_);
220 ret = rosalloc_space_->AllocNonvirtual(self, alloc_size, bytes_allocated, usable_size);
221 }
222 break;
223 }
224 case kAllocatorTypeDlMalloc: {
225 if (kInstrumented && UNLIKELY(running_on_valgrind_)) {
226 // If running on valgrind, we should be using the instrumented path.
227 ret = dlmalloc_space_->Alloc(self, alloc_size, bytes_allocated, usable_size);
228 } else {
229 DCHECK(!running_on_valgrind_);
230 ret = dlmalloc_space_->AllocNonvirtual(self, alloc_size, bytes_allocated, usable_size);
231 }
232 break;
233 }
234 case kAllocatorTypeNonMoving: {
235 ret = non_moving_space_->Alloc(self, alloc_size, bytes_allocated, usable_size);
236 break;
237 }
238 case kAllocatorTypeLOS: {
239 ret = large_object_space_->Alloc(self, alloc_size, bytes_allocated, usable_size);
240 // Note that the bump pointer spaces aren't necessarily next to
241 // the other continuous spaces like the non-moving alloc space or
242 // the zygote space.
243 DCHECK(ret == nullptr || large_object_space_->Contains(ret));
244 break;
245 }
246 case kAllocatorTypeTLAB: {
247 DCHECK_ALIGNED(alloc_size, space::BumpPointerSpace::kAlignment);
248 if (UNLIKELY(self->TlabSize() < alloc_size)) {
249 const size_t new_tlab_size = alloc_size + kDefaultTLABSize;
250 if (UNLIKELY(IsOutOfMemoryOnAllocation<kGrow>(allocator_type, new_tlab_size))) {
251 return nullptr;
252 }
253 // Try allocating a new thread local buffer, if the allocaiton fails the space must be
254 // full so return nullptr.
255 if (!bump_pointer_space_->AllocNewTlab(self, new_tlab_size)) {
256 return nullptr;
257 }
258 *bytes_allocated = new_tlab_size;
259 } else {
260 *bytes_allocated = 0;
261 }
262 // The allocation can't fail.
263 ret = self->AllocTlab(alloc_size);
264 DCHECK(ret != nullptr);
265 *usable_size = alloc_size;
266 break;
267 }
268 default: {
269 LOG(FATAL) << "Invalid allocator type";
270 ret = nullptr;
271 }
272 }
273 return ret;
274 }
275
AllocationTimer(Heap * heap,mirror::Object ** allocated_obj_ptr)276 inline Heap::AllocationTimer::AllocationTimer(Heap* heap, mirror::Object** allocated_obj_ptr)
277 : heap_(heap), allocated_obj_ptr_(allocated_obj_ptr) {
278 if (kMeasureAllocationTime) {
279 allocation_start_time_ = NanoTime() / kTimeAdjust;
280 }
281 }
282
~AllocationTimer()283 inline Heap::AllocationTimer::~AllocationTimer() {
284 if (kMeasureAllocationTime) {
285 mirror::Object* allocated_obj = *allocated_obj_ptr_;
286 // Only if the allocation succeeded, record the time.
287 if (allocated_obj != nullptr) {
288 uint64_t allocation_end_time = NanoTime() / kTimeAdjust;
289 heap_->total_allocation_time_.FetchAndAddSequentiallyConsistent(allocation_end_time - allocation_start_time_);
290 }
291 }
292 };
293
ShouldAllocLargeObject(mirror::Class * c,size_t byte_count)294 inline bool Heap::ShouldAllocLargeObject(mirror::Class* c, size_t byte_count) const {
295 // We need to have a zygote space or else our newly allocated large object can end up in the
296 // Zygote resulting in it being prematurely freed.
297 // We can only do this for primitive objects since large objects will not be within the card table
298 // range. This also means that we rely on SetClass not dirtying the object's card.
299 return byte_count >= large_object_threshold_ && c->IsPrimitiveArray();
300 }
301
302 template <bool kGrow>
IsOutOfMemoryOnAllocation(AllocatorType allocator_type,size_t alloc_size)303 inline bool Heap::IsOutOfMemoryOnAllocation(AllocatorType allocator_type, size_t alloc_size) {
304 size_t new_footprint = num_bytes_allocated_.LoadSequentiallyConsistent() + alloc_size;
305 if (UNLIKELY(new_footprint > max_allowed_footprint_)) {
306 if (UNLIKELY(new_footprint > growth_limit_)) {
307 return true;
308 }
309 if (!AllocatorMayHaveConcurrentGC(allocator_type) || !IsGcConcurrent()) {
310 if (!kGrow) {
311 return true;
312 }
313 // TODO: Grow for allocation is racy, fix it.
314 VLOG(heap) << "Growing heap from " << PrettySize(max_allowed_footprint_) << " to "
315 << PrettySize(new_footprint) << " for a " << PrettySize(alloc_size) << " allocation";
316 max_allowed_footprint_ = new_footprint;
317 }
318 }
319 return false;
320 }
321
CheckConcurrentGC(Thread * self,size_t new_num_bytes_allocated,mirror::Object ** obj)322 inline void Heap::CheckConcurrentGC(Thread* self, size_t new_num_bytes_allocated,
323 mirror::Object** obj) {
324 if (UNLIKELY(new_num_bytes_allocated >= concurrent_start_bytes_)) {
325 RequestConcurrentGCAndSaveObject(self, obj);
326 }
327 }
328
329 } // namespace gc
330 } // namespace art
331
332 #endif // ART_RUNTIME_GC_HEAP_INL_H_
333