1 /*
2  * Copyright (C) 2011 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #ifndef ART_RUNTIME_GC_SPACE_SPACE_TEST_H_
18 #define ART_RUNTIME_GC_SPACE_SPACE_TEST_H_
19 
20 #include <stdint.h>
21 #include <memory>
22 
23 #include "common_runtime_test.h"
24 #include "globals.h"
25 #include "mirror/array-inl.h"
26 #include "mirror/object-inl.h"
27 #include "scoped_thread_state_change.h"
28 #include "zygote_space.h"
29 
30 namespace art {
31 namespace gc {
32 namespace space {
33 
34 class SpaceTest : public CommonRuntimeTest {
35  public:
36   jobject byte_array_class_;
37 
SpaceTest()38   SpaceTest() : byte_array_class_(nullptr) {
39   }
40 
41   void AddSpace(ContinuousSpace* space, bool revoke = true) {
42     Heap* heap = Runtime::Current()->GetHeap();
43     if (revoke) {
44       heap->RevokeAllThreadLocalBuffers();
45     }
46     heap->AddSpace(space);
47     heap->SetSpaceAsDefault(space);
48   }
49 
GetByteArrayClass(Thread * self)50   mirror::Class* GetByteArrayClass(Thread* self) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
51     StackHandleScope<1> hs(self);
52     auto null_loader(hs.NewHandle<mirror::ClassLoader>(nullptr));
53     if (byte_array_class_ == nullptr) {
54       mirror::Class* byte_array_class =
55           Runtime::Current()->GetClassLinker()->FindClass(self, "[B", null_loader);
56       EXPECT_TRUE(byte_array_class != nullptr);
57       byte_array_class_ = self->GetJniEnv()->NewLocalRef(byte_array_class);
58       EXPECT_TRUE(byte_array_class_ != nullptr);
59     }
60     return reinterpret_cast<mirror::Class*>(self->DecodeJObject(byte_array_class_));
61   }
62 
Alloc(space::MallocSpace * alloc_space,Thread * self,size_t bytes,size_t * bytes_allocated,size_t * usable_size)63   mirror::Object* Alloc(space::MallocSpace* alloc_space, Thread* self, size_t bytes,
64                         size_t* bytes_allocated, size_t* usable_size)
65       SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
66     StackHandleScope<1> hs(self);
67     Handle<mirror::Class> byte_array_class(hs.NewHandle(GetByteArrayClass(self)));
68     mirror::Object* obj = alloc_space->Alloc(self, bytes, bytes_allocated, usable_size);
69     if (obj != nullptr) {
70       InstallClass(obj, byte_array_class.Get(), bytes);
71     }
72     return obj;
73   }
74 
AllocWithGrowth(space::MallocSpace * alloc_space,Thread * self,size_t bytes,size_t * bytes_allocated,size_t * usable_size)75   mirror::Object* AllocWithGrowth(space::MallocSpace* alloc_space, Thread* self, size_t bytes,
76                                   size_t* bytes_allocated, size_t* usable_size)
77       SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
78     StackHandleScope<1> hs(self);
79     Handle<mirror::Class> byte_array_class(hs.NewHandle(GetByteArrayClass(self)));
80     mirror::Object* obj = alloc_space->AllocWithGrowth(self, bytes, bytes_allocated, usable_size);
81     if (obj != nullptr) {
82       InstallClass(obj, byte_array_class.Get(), bytes);
83     }
84     return obj;
85   }
86 
InstallClass(mirror::Object * o,mirror::Class * byte_array_class,size_t size)87   void InstallClass(mirror::Object* o, mirror::Class* byte_array_class, size_t size)
88       SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
89     // Note the minimum size, which is the size of a zero-length byte array.
90     EXPECT_GE(size, SizeOfZeroLengthByteArray());
91     EXPECT_TRUE(byte_array_class != nullptr);
92     o->SetClass(byte_array_class);
93     if (kUseBakerOrBrooksReadBarrier) {
94       // Like the proper heap object allocation, install and verify
95       // the correct read barrier pointer.
96       if (kUseBrooksReadBarrier) {
97         o->SetReadBarrierPointer(o);
98       }
99       o->AssertReadBarrierPointer();
100     }
101     mirror::Array* arr = o->AsArray<kVerifyNone>();
102     size_t header_size = SizeOfZeroLengthByteArray();
103     int32_t length = size - header_size;
104     arr->SetLength(length);
105     EXPECT_EQ(arr->SizeOf<kVerifyNone>(), size);
106   }
107 
SizeOfZeroLengthByteArray()108   static size_t SizeOfZeroLengthByteArray() {
109     return mirror::Array::DataOffset(Primitive::ComponentSize(Primitive::kPrimByte)).Uint32Value();
110   }
111 
112   typedef MallocSpace* (*CreateSpaceFn)(const std::string& name, size_t initial_size, size_t growth_limit,
113                                         size_t capacity, byte* requested_begin);
114   void InitTestBody(CreateSpaceFn create_space);
115   void ZygoteSpaceTestBody(CreateSpaceFn create_space);
116   void AllocAndFreeTestBody(CreateSpaceFn create_space);
117   void AllocAndFreeListTestBody(CreateSpaceFn create_space);
118 
119   void SizeFootPrintGrowthLimitAndTrimBody(MallocSpace* space, intptr_t object_size,
120                                            int round, size_t growth_limit);
121   void SizeFootPrintGrowthLimitAndTrimDriver(size_t object_size, CreateSpaceFn create_space);
122 };
123 
test_rand(size_t * seed)124 static inline size_t test_rand(size_t* seed) {
125   *seed = *seed * 1103515245 + 12345;
126   return *seed;
127 }
128 
InitTestBody(CreateSpaceFn create_space)129 void SpaceTest::InitTestBody(CreateSpaceFn create_space) {
130   {
131     // Init < max == growth
132     std::unique_ptr<Space> space(create_space("test", 16 * MB, 32 * MB, 32 * MB, nullptr));
133     EXPECT_TRUE(space.get() != nullptr);
134   }
135   {
136     // Init == max == growth
137     std::unique_ptr<Space> space(create_space("test", 16 * MB, 16 * MB, 16 * MB, nullptr));
138     EXPECT_TRUE(space.get() != nullptr);
139   }
140   {
141     // Init > max == growth
142     std::unique_ptr<Space> space(create_space("test", 32 * MB, 16 * MB, 16 * MB, nullptr));
143     EXPECT_TRUE(space.get() == nullptr);
144   }
145   {
146     // Growth == init < max
147     std::unique_ptr<Space> space(create_space("test", 16 * MB, 16 * MB, 32 * MB, nullptr));
148     EXPECT_TRUE(space.get() != nullptr);
149   }
150   {
151     // Growth < init < max
152     std::unique_ptr<Space> space(create_space("test", 16 * MB, 8 * MB, 32 * MB, nullptr));
153     EXPECT_TRUE(space.get() == nullptr);
154   }
155   {
156     // Init < growth < max
157     std::unique_ptr<Space> space(create_space("test", 8 * MB, 16 * MB, 32 * MB, nullptr));
158     EXPECT_TRUE(space.get() != nullptr);
159   }
160   {
161     // Init < max < growth
162     std::unique_ptr<Space> space(create_space("test", 8 * MB, 32 * MB, 16 * MB, nullptr));
163     EXPECT_TRUE(space.get() == nullptr);
164   }
165 }
166 
167 // TODO: This test is not very good, we should improve it.
168 // The test should do more allocations before the creation of the ZygoteSpace, and then do
169 // allocations after the ZygoteSpace is created. The test should also do some GCs to ensure that
170 // the GC works with the ZygoteSpace.
ZygoteSpaceTestBody(CreateSpaceFn create_space)171 void SpaceTest::ZygoteSpaceTestBody(CreateSpaceFn create_space) {
172   size_t dummy;
173   MallocSpace* space(create_space("test", 4 * MB, 16 * MB, 16 * MB, nullptr));
174   ASSERT_TRUE(space != nullptr);
175 
176   // Make space findable to the heap, will also delete space when runtime is cleaned up
177   AddSpace(space);
178   Thread* self = Thread::Current();
179   ScopedObjectAccess soa(self);
180 
181   // Succeeds, fits without adjusting the footprint limit.
182   size_t ptr1_bytes_allocated, ptr1_usable_size;
183   StackHandleScope<3> hs(soa.Self());
184   Handle<mirror::Object> ptr1(
185       hs.NewHandle(Alloc(space, self, 1 * MB, &ptr1_bytes_allocated, &ptr1_usable_size)));
186   EXPECT_TRUE(ptr1.Get() != nullptr);
187   EXPECT_LE(1U * MB, ptr1_bytes_allocated);
188   EXPECT_LE(1U * MB, ptr1_usable_size);
189   EXPECT_LE(ptr1_usable_size, ptr1_bytes_allocated);
190 
191   // Fails, requires a higher footprint limit.
192   mirror::Object* ptr2 = Alloc(space, self, 8 * MB, &dummy, nullptr);
193   EXPECT_TRUE(ptr2 == nullptr);
194 
195   // Succeeds, adjusts the footprint.
196   size_t ptr3_bytes_allocated, ptr3_usable_size;
197   Handle<mirror::Object> ptr3(
198       hs.NewHandle(AllocWithGrowth(space, self, 8 * MB, &ptr3_bytes_allocated, &ptr3_usable_size)));
199   EXPECT_TRUE(ptr3.Get() != nullptr);
200   EXPECT_LE(8U * MB, ptr3_bytes_allocated);
201   EXPECT_LE(8U * MB, ptr3_usable_size);
202   EXPECT_LE(ptr3_usable_size, ptr3_bytes_allocated);
203 
204   // Fails, requires a higher footprint limit.
205   mirror::Object* ptr4 = space->Alloc(self, 8 * MB, &dummy, nullptr);
206   EXPECT_TRUE(ptr4 == nullptr);
207 
208   // Also fails, requires a higher allowed footprint.
209   mirror::Object* ptr5 = space->AllocWithGrowth(self, 8 * MB, &dummy, nullptr);
210   EXPECT_TRUE(ptr5 == nullptr);
211 
212   // Release some memory.
213   size_t free3 = space->AllocationSize(ptr3.Get(), nullptr);
214   EXPECT_EQ(free3, ptr3_bytes_allocated);
215   EXPECT_EQ(free3, space->Free(self, ptr3.Assign(nullptr)));
216   EXPECT_LE(8U * MB, free3);
217 
218   // Succeeds, now that memory has been freed.
219   size_t ptr6_bytes_allocated, ptr6_usable_size;
220   Handle<mirror::Object> ptr6(
221       hs.NewHandle(AllocWithGrowth(space, self, 9 * MB, &ptr6_bytes_allocated, &ptr6_usable_size)));
222   EXPECT_TRUE(ptr6.Get() != nullptr);
223   EXPECT_LE(9U * MB, ptr6_bytes_allocated);
224   EXPECT_LE(9U * MB, ptr6_usable_size);
225   EXPECT_LE(ptr6_usable_size, ptr6_bytes_allocated);
226 
227   // Final clean up.
228   size_t free1 = space->AllocationSize(ptr1.Get(), nullptr);
229   space->Free(self, ptr1.Assign(nullptr));
230   EXPECT_LE(1U * MB, free1);
231 
232   // Make sure that the zygote space isn't directly at the start of the space.
233   EXPECT_TRUE(space->Alloc(self, 1U * MB, &dummy, nullptr) != nullptr);
234 
235   gc::Heap* heap = Runtime::Current()->GetHeap();
236   space::Space* old_space = space;
237   heap->RemoveSpace(old_space);
238   heap->RevokeAllThreadLocalBuffers();
239   space::ZygoteSpace* zygote_space = space->CreateZygoteSpace("alloc space",
240                                                               heap->IsLowMemoryMode(),
241                                                               &space);
242   delete old_space;
243   // Add the zygote space.
244   AddSpace(zygote_space, false);
245 
246   // Make space findable to the heap, will also delete space when runtime is cleaned up
247   AddSpace(space, false);
248 
249   // Succeeds, fits without adjusting the footprint limit.
250   ptr1.Assign(Alloc(space, self, 1 * MB, &ptr1_bytes_allocated, &ptr1_usable_size));
251   EXPECT_TRUE(ptr1.Get() != nullptr);
252   EXPECT_LE(1U * MB, ptr1_bytes_allocated);
253   EXPECT_LE(1U * MB, ptr1_usable_size);
254   EXPECT_LE(ptr1_usable_size, ptr1_bytes_allocated);
255 
256   // Fails, requires a higher footprint limit.
257   ptr2 = Alloc(space, self, 8 * MB, &dummy, nullptr);
258   EXPECT_TRUE(ptr2 == nullptr);
259 
260   // Succeeds, adjusts the footprint.
261   ptr3.Assign(AllocWithGrowth(space, self, 2 * MB, &ptr3_bytes_allocated, &ptr3_usable_size));
262   EXPECT_TRUE(ptr3.Get() != nullptr);
263   EXPECT_LE(2U * MB, ptr3_bytes_allocated);
264   EXPECT_LE(2U * MB, ptr3_usable_size);
265   EXPECT_LE(ptr3_usable_size, ptr3_bytes_allocated);
266   space->Free(self, ptr3.Assign(nullptr));
267 
268   // Final clean up.
269   free1 = space->AllocationSize(ptr1.Get(), nullptr);
270   space->Free(self, ptr1.Assign(nullptr));
271   EXPECT_LE(1U * MB, free1);
272 }
273 
AllocAndFreeTestBody(CreateSpaceFn create_space)274 void SpaceTest::AllocAndFreeTestBody(CreateSpaceFn create_space) {
275   size_t dummy = 0;
276   MallocSpace* space(create_space("test", 4 * MB, 16 * MB, 16 * MB, nullptr));
277   ASSERT_TRUE(space != nullptr);
278   Thread* self = Thread::Current();
279   ScopedObjectAccess soa(self);
280 
281   // Make space findable to the heap, will also delete space when runtime is cleaned up
282   AddSpace(space);
283 
284   // Succeeds, fits without adjusting the footprint limit.
285   size_t ptr1_bytes_allocated, ptr1_usable_size;
286   StackHandleScope<3> hs(soa.Self());
287   Handle<mirror::Object> ptr1(
288       hs.NewHandle(Alloc(space, self, 1 * MB, &ptr1_bytes_allocated, &ptr1_usable_size)));
289   EXPECT_TRUE(ptr1.Get() != nullptr);
290   EXPECT_LE(1U * MB, ptr1_bytes_allocated);
291   EXPECT_LE(1U * MB, ptr1_usable_size);
292   EXPECT_LE(ptr1_usable_size, ptr1_bytes_allocated);
293 
294   // Fails, requires a higher footprint limit.
295   mirror::Object* ptr2 = Alloc(space, self, 8 * MB, &dummy, nullptr);
296   EXPECT_TRUE(ptr2 == nullptr);
297 
298   // Succeeds, adjusts the footprint.
299   size_t ptr3_bytes_allocated, ptr3_usable_size;
300   Handle<mirror::Object> ptr3(
301       hs.NewHandle(AllocWithGrowth(space, self, 8 * MB, &ptr3_bytes_allocated, &ptr3_usable_size)));
302   EXPECT_TRUE(ptr3.Get() != nullptr);
303   EXPECT_LE(8U * MB, ptr3_bytes_allocated);
304   EXPECT_LE(8U * MB, ptr3_usable_size);
305   EXPECT_LE(ptr3_usable_size, ptr3_bytes_allocated);
306 
307   // Fails, requires a higher footprint limit.
308   mirror::Object* ptr4 = Alloc(space, self, 8 * MB, &dummy, nullptr);
309   EXPECT_TRUE(ptr4 == nullptr);
310 
311   // Also fails, requires a higher allowed footprint.
312   mirror::Object* ptr5 = AllocWithGrowth(space, self, 8 * MB, &dummy, nullptr);
313   EXPECT_TRUE(ptr5 == nullptr);
314 
315   // Release some memory.
316   size_t free3 = space->AllocationSize(ptr3.Get(), nullptr);
317   EXPECT_EQ(free3, ptr3_bytes_allocated);
318   space->Free(self, ptr3.Assign(nullptr));
319   EXPECT_LE(8U * MB, free3);
320 
321   // Succeeds, now that memory has been freed.
322   size_t ptr6_bytes_allocated, ptr6_usable_size;
323   Handle<mirror::Object> ptr6(
324       hs.NewHandle(AllocWithGrowth(space, self, 9 * MB, &ptr6_bytes_allocated, &ptr6_usable_size)));
325   EXPECT_TRUE(ptr6.Get() != nullptr);
326   EXPECT_LE(9U * MB, ptr6_bytes_allocated);
327   EXPECT_LE(9U * MB, ptr6_usable_size);
328   EXPECT_LE(ptr6_usable_size, ptr6_bytes_allocated);
329 
330   // Final clean up.
331   size_t free1 = space->AllocationSize(ptr1.Get(), nullptr);
332   space->Free(self, ptr1.Assign(nullptr));
333   EXPECT_LE(1U * MB, free1);
334 }
335 
AllocAndFreeListTestBody(CreateSpaceFn create_space)336 void SpaceTest::AllocAndFreeListTestBody(CreateSpaceFn create_space) {
337   MallocSpace* space(create_space("test", 4 * MB, 16 * MB, 16 * MB, nullptr));
338   ASSERT_TRUE(space != nullptr);
339 
340   // Make space findable to the heap, will also delete space when runtime is cleaned up
341   AddSpace(space);
342   Thread* self = Thread::Current();
343   ScopedObjectAccess soa(self);
344 
345   // Succeeds, fits without adjusting the max allowed footprint.
346   mirror::Object* lots_of_objects[1024];
347   for (size_t i = 0; i < arraysize(lots_of_objects); i++) {
348     size_t allocation_size, usable_size;
349     size_t size_of_zero_length_byte_array = SizeOfZeroLengthByteArray();
350     lots_of_objects[i] = Alloc(space, self, size_of_zero_length_byte_array, &allocation_size,
351                                &usable_size);
352     EXPECT_TRUE(lots_of_objects[i] != nullptr);
353     size_t computed_usable_size;
354     EXPECT_EQ(allocation_size, space->AllocationSize(lots_of_objects[i], &computed_usable_size));
355     EXPECT_EQ(usable_size, computed_usable_size);
356   }
357 
358   // Release memory.
359   space->FreeList(self, arraysize(lots_of_objects), lots_of_objects);
360 
361   // Succeeds, fits by adjusting the max allowed footprint.
362   for (size_t i = 0; i < arraysize(lots_of_objects); i++) {
363     size_t allocation_size, usable_size;
364     lots_of_objects[i] = AllocWithGrowth(space, self, 1024, &allocation_size, &usable_size);
365     EXPECT_TRUE(lots_of_objects[i] != nullptr);
366     size_t computed_usable_size;
367     EXPECT_EQ(allocation_size, space->AllocationSize(lots_of_objects[i], &computed_usable_size));
368     EXPECT_EQ(usable_size, computed_usable_size);
369   }
370 
371   // Release memory.
372   space->FreeList(self, arraysize(lots_of_objects), lots_of_objects);
373 }
374 
SizeFootPrintGrowthLimitAndTrimBody(MallocSpace * space,intptr_t object_size,int round,size_t growth_limit)375 void SpaceTest::SizeFootPrintGrowthLimitAndTrimBody(MallocSpace* space, intptr_t object_size,
376                                                     int round, size_t growth_limit) {
377   if (((object_size > 0 && object_size >= static_cast<intptr_t>(growth_limit))) ||
378       ((object_size < 0 && -object_size >= static_cast<intptr_t>(growth_limit)))) {
379     // No allocation can succeed
380     return;
381   }
382 
383   // The space's footprint equals amount of resources requested from system
384   size_t footprint = space->GetFootprint();
385 
386   // The space must at least have its book keeping allocated
387   EXPECT_GT(footprint, 0u);
388 
389   // But it shouldn't exceed the initial size
390   EXPECT_LE(footprint, growth_limit);
391 
392   // space's size shouldn't exceed the initial size
393   EXPECT_LE(space->Size(), growth_limit);
394 
395   // this invariant should always hold or else the space has grown to be larger than what the
396   // space believes its size is (which will break invariants)
397   EXPECT_GE(space->Size(), footprint);
398 
399   // Fill the space with lots of small objects up to the growth limit
400   size_t max_objects = (growth_limit / (object_size > 0 ? object_size : 8)) + 1;
401   std::unique_ptr<mirror::Object*[]> lots_of_objects(new mirror::Object*[max_objects]);
402   size_t last_object = 0;  // last object for which allocation succeeded
403   size_t amount_allocated = 0;  // amount of space allocated
404   Thread* self = Thread::Current();
405   ScopedObjectAccess soa(self);
406   size_t rand_seed = 123456789;
407   for (size_t i = 0; i < max_objects; i++) {
408     size_t alloc_fails = 0;  // number of failed allocations
409     size_t max_fails = 30;  // number of times we fail allocation before giving up
410     for (; alloc_fails < max_fails; alloc_fails++) {
411       size_t alloc_size;
412       if (object_size > 0) {
413         alloc_size = object_size;
414       } else {
415         alloc_size = test_rand(&rand_seed) % static_cast<size_t>(-object_size);
416         // Note the minimum size, which is the size of a zero-length byte array.
417         size_t size_of_zero_length_byte_array = SizeOfZeroLengthByteArray();
418         if (alloc_size < size_of_zero_length_byte_array) {
419           alloc_size = size_of_zero_length_byte_array;
420         }
421       }
422       StackHandleScope<1> hs(soa.Self());
423       auto object(hs.NewHandle<mirror::Object>(nullptr));
424       size_t bytes_allocated = 0;
425       if (round <= 1) {
426         object.Assign(Alloc(space, self, alloc_size, &bytes_allocated, nullptr));
427       } else {
428         object.Assign(AllocWithGrowth(space, self, alloc_size, &bytes_allocated, nullptr));
429       }
430       footprint = space->GetFootprint();
431       EXPECT_GE(space->Size(), footprint);  // invariant
432       if (object.Get() != nullptr) {  // allocation succeeded
433         lots_of_objects[i] = object.Get();
434         size_t allocation_size = space->AllocationSize(object.Get(), nullptr);
435         EXPECT_EQ(bytes_allocated, allocation_size);
436         if (object_size > 0) {
437           EXPECT_GE(allocation_size, static_cast<size_t>(object_size));
438         } else {
439           EXPECT_GE(allocation_size, 8u);
440         }
441         amount_allocated += allocation_size;
442         break;
443       }
444     }
445     if (alloc_fails == max_fails) {
446       last_object = i;
447       break;
448     }
449   }
450   CHECK_NE(last_object, 0u);  // we should have filled the space
451   EXPECT_GT(amount_allocated, 0u);
452 
453   // We shouldn't have gone past the growth_limit
454   EXPECT_LE(amount_allocated, growth_limit);
455   EXPECT_LE(footprint, growth_limit);
456   EXPECT_LE(space->Size(), growth_limit);
457 
458   // footprint and size should agree with amount allocated
459   EXPECT_GE(footprint, amount_allocated);
460   EXPECT_GE(space->Size(), amount_allocated);
461 
462   // Release storage in a semi-adhoc manner
463   size_t free_increment = 96;
464   while (true) {
465     {
466       ScopedThreadStateChange tsc(self, kNative);
467       // Give the space a haircut.
468       space->Trim();
469     }
470 
471     // Bounds sanity
472     footprint = space->GetFootprint();
473     EXPECT_LE(amount_allocated, growth_limit);
474     EXPECT_GE(footprint, amount_allocated);
475     EXPECT_LE(footprint, growth_limit);
476     EXPECT_GE(space->Size(), amount_allocated);
477     EXPECT_LE(space->Size(), growth_limit);
478 
479     if (free_increment == 0) {
480       break;
481     }
482 
483     // Free some objects
484     for (size_t i = 0; i < last_object; i += free_increment) {
485       mirror::Object* object = lots_of_objects.get()[i];
486       if (object == nullptr) {
487         continue;
488       }
489       size_t allocation_size = space->AllocationSize(object, nullptr);
490       if (object_size > 0) {
491         EXPECT_GE(allocation_size, static_cast<size_t>(object_size));
492       } else {
493         EXPECT_GE(allocation_size, 8u);
494       }
495       space->Free(self, object);
496       lots_of_objects.get()[i] = nullptr;
497       amount_allocated -= allocation_size;
498       footprint = space->GetFootprint();
499       EXPECT_GE(space->Size(), footprint);  // invariant
500     }
501 
502     free_increment >>= 1;
503   }
504 
505   // The space has become empty here before allocating a large object
506   // below. For RosAlloc, revoke thread-local runs, which are kept
507   // even when empty for a performance reason, so that they won't
508   // cause the following large object allocation to fail due to
509   // potential fragmentation. Note they are normally revoked at each
510   // GC (but no GC here.)
511   space->RevokeAllThreadLocalBuffers();
512 
513   // All memory was released, try a large allocation to check freed memory is being coalesced
514   StackHandleScope<1> hs(soa.Self());
515   auto large_object(hs.NewHandle<mirror::Object>(nullptr));
516   size_t three_quarters_space = (growth_limit / 2) + (growth_limit / 4);
517   size_t bytes_allocated = 0;
518   if (round <= 1) {
519     large_object.Assign(Alloc(space, self, three_quarters_space, &bytes_allocated, nullptr));
520   } else {
521     large_object.Assign(AllocWithGrowth(space, self, three_quarters_space, &bytes_allocated,
522                                         nullptr));
523   }
524   EXPECT_TRUE(large_object.Get() != nullptr);
525 
526   // Sanity check footprint
527   footprint = space->GetFootprint();
528   EXPECT_LE(footprint, growth_limit);
529   EXPECT_GE(space->Size(), footprint);
530   EXPECT_LE(space->Size(), growth_limit);
531 
532   // Clean up
533   space->Free(self, large_object.Assign(nullptr));
534 
535   // Sanity check footprint
536   footprint = space->GetFootprint();
537   EXPECT_LE(footprint, growth_limit);
538   EXPECT_GE(space->Size(), footprint);
539   EXPECT_LE(space->Size(), growth_limit);
540 }
541 
SizeFootPrintGrowthLimitAndTrimDriver(size_t object_size,CreateSpaceFn create_space)542 void SpaceTest::SizeFootPrintGrowthLimitAndTrimDriver(size_t object_size, CreateSpaceFn create_space) {
543   if (object_size < SizeOfZeroLengthByteArray()) {
544     // Too small for the object layout/model.
545     return;
546   }
547   size_t initial_size = 4 * MB;
548   size_t growth_limit = 8 * MB;
549   size_t capacity = 16 * MB;
550   MallocSpace* space(create_space("test", initial_size, growth_limit, capacity, nullptr));
551   ASSERT_TRUE(space != nullptr);
552 
553   // Basic sanity
554   EXPECT_EQ(space->Capacity(), growth_limit);
555   EXPECT_EQ(space->NonGrowthLimitCapacity(), capacity);
556 
557   // Make space findable to the heap, will also delete space when runtime is cleaned up
558   AddSpace(space);
559 
560   // In this round we don't allocate with growth and therefore can't grow past the initial size.
561   // This effectively makes the growth_limit the initial_size, so assert this.
562   SizeFootPrintGrowthLimitAndTrimBody(space, object_size, 1, initial_size);
563   SizeFootPrintGrowthLimitAndTrimBody(space, object_size, 2, growth_limit);
564   // Remove growth limit
565   space->ClearGrowthLimit();
566   EXPECT_EQ(space->Capacity(), capacity);
567   SizeFootPrintGrowthLimitAndTrimBody(space, object_size, 3, capacity);
568 }
569 
570 #define TEST_SizeFootPrintGrowthLimitAndTrimStatic(name, spaceName, spaceFn, size) \
571   TEST_F(spaceName##StaticTest, SizeFootPrintGrowthLimitAndTrim_AllocationsOf_##name) { \
572     SizeFootPrintGrowthLimitAndTrimDriver(size, spaceFn); \
573   }
574 
575 #define TEST_SizeFootPrintGrowthLimitAndTrimRandom(name, spaceName, spaceFn, size) \
576   TEST_F(spaceName##RandomTest, SizeFootPrintGrowthLimitAndTrim_RandomAllocationsWithMax_##name) { \
577     SizeFootPrintGrowthLimitAndTrimDriver(-size, spaceFn); \
578   }
579 
580 #define TEST_SPACE_CREATE_FN_BASE(spaceName, spaceFn) \
581   class spaceName##BaseTest : public SpaceTest { \
582   }; \
583   \
584   TEST_F(spaceName##BaseTest, Init) { \
585     InitTestBody(spaceFn); \
586   } \
587   TEST_F(spaceName##BaseTest, ZygoteSpace) { \
588     ZygoteSpaceTestBody(spaceFn); \
589   } \
590   TEST_F(spaceName##BaseTest, AllocAndFree) { \
591     AllocAndFreeTestBody(spaceFn); \
592   } \
593   TEST_F(spaceName##BaseTest, AllocAndFreeList) { \
594     AllocAndFreeListTestBody(spaceFn); \
595   }
596 
597 #define TEST_SPACE_CREATE_FN_STATIC(spaceName, spaceFn) \
598   class spaceName##StaticTest : public SpaceTest { \
599   }; \
600   \
601   TEST_SizeFootPrintGrowthLimitAndTrimStatic(12B, spaceName, spaceFn, 12) \
602   TEST_SizeFootPrintGrowthLimitAndTrimStatic(16B, spaceName, spaceFn, 16) \
603   TEST_SizeFootPrintGrowthLimitAndTrimStatic(24B, spaceName, spaceFn, 24) \
604   TEST_SizeFootPrintGrowthLimitAndTrimStatic(32B, spaceName, spaceFn, 32) \
605   TEST_SizeFootPrintGrowthLimitAndTrimStatic(64B, spaceName, spaceFn, 64) \
606   TEST_SizeFootPrintGrowthLimitAndTrimStatic(128B, spaceName, spaceFn, 128) \
607   TEST_SizeFootPrintGrowthLimitAndTrimStatic(1KB, spaceName, spaceFn, 1 * KB) \
608   TEST_SizeFootPrintGrowthLimitAndTrimStatic(4KB, spaceName, spaceFn, 4 * KB) \
609   TEST_SizeFootPrintGrowthLimitAndTrimStatic(1MB, spaceName, spaceFn, 1 * MB) \
610   TEST_SizeFootPrintGrowthLimitAndTrimStatic(4MB, spaceName, spaceFn, 4 * MB) \
611   TEST_SizeFootPrintGrowthLimitAndTrimStatic(8MB, spaceName, spaceFn, 8 * MB)
612 
613 #define TEST_SPACE_CREATE_FN_RANDOM(spaceName, spaceFn) \
614   class spaceName##RandomTest : public SpaceTest { \
615   }; \
616   \
617   TEST_SizeFootPrintGrowthLimitAndTrimRandom(16B, spaceName, spaceFn, 16) \
618   TEST_SizeFootPrintGrowthLimitAndTrimRandom(24B, spaceName, spaceFn, 24) \
619   TEST_SizeFootPrintGrowthLimitAndTrimRandom(32B, spaceName, spaceFn, 32) \
620   TEST_SizeFootPrintGrowthLimitAndTrimRandom(64B, spaceName, spaceFn, 64) \
621   TEST_SizeFootPrintGrowthLimitAndTrimRandom(128B, spaceName, spaceFn, 128) \
622   TEST_SizeFootPrintGrowthLimitAndTrimRandom(1KB, spaceName, spaceFn, 1 * KB) \
623   TEST_SizeFootPrintGrowthLimitAndTrimRandom(4KB, spaceName, spaceFn, 4 * KB) \
624   TEST_SizeFootPrintGrowthLimitAndTrimRandom(1MB, spaceName, spaceFn, 1 * MB) \
625   TEST_SizeFootPrintGrowthLimitAndTrimRandom(4MB, spaceName, spaceFn, 4 * MB) \
626   TEST_SizeFootPrintGrowthLimitAndTrimRandom(8MB, spaceName, spaceFn, 8 * MB)
627 
628 }  // namespace space
629 }  // namespace gc
630 }  // namespace art
631 
632 #endif  // ART_RUNTIME_GC_SPACE_SPACE_TEST_H_
633