1 /*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #define ATRACE_TAG ATRACE_TAG_DALVIK
18
19 #include "thread.h"
20
21 #include <cutils/trace.h>
22 #include <pthread.h>
23 #include <signal.h>
24 #include <sys/resource.h>
25 #include <sys/time.h>
26
27 #include <algorithm>
28 #include <bitset>
29 #include <cerrno>
30 #include <iostream>
31 #include <list>
32
33 #include "arch/context.h"
34 #include "base/mutex.h"
35 #include "class_linker-inl.h"
36 #include "class_linker.h"
37 #include "debugger.h"
38 #include "dex_file-inl.h"
39 #include "entrypoints/entrypoint_utils.h"
40 #include "entrypoints/quick/quick_alloc_entrypoints.h"
41 #include "gc_map.h"
42 #include "gc/accounting/card_table-inl.h"
43 #include "gc/allocator/rosalloc.h"
44 #include "gc/heap.h"
45 #include "gc/space/space.h"
46 #include "handle_scope-inl.h"
47 #include "handle_scope.h"
48 #include "indirect_reference_table-inl.h"
49 #include "jni_internal.h"
50 #include "mirror/art_field-inl.h"
51 #include "mirror/art_method-inl.h"
52 #include "mirror/class_loader.h"
53 #include "mirror/class-inl.h"
54 #include "mirror/object_array-inl.h"
55 #include "mirror/stack_trace_element.h"
56 #include "monitor.h"
57 #include "object_lock.h"
58 #include "quick_exception_handler.h"
59 #include "quick/quick_method_frame_info.h"
60 #include "reflection.h"
61 #include "runtime.h"
62 #include "scoped_thread_state_change.h"
63 #include "ScopedLocalRef.h"
64 #include "ScopedUtfChars.h"
65 #include "stack.h"
66 #include "thread_list.h"
67 #include "thread-inl.h"
68 #include "utils.h"
69 #include "verifier/dex_gc_map.h"
70 #include "verify_object-inl.h"
71 #include "vmap_table.h"
72 #include "well_known_classes.h"
73
74 namespace art {
75
76 bool Thread::is_started_ = false;
77 pthread_key_t Thread::pthread_key_self_;
78 ConditionVariable* Thread::resume_cond_ = nullptr;
79 const size_t Thread::kStackOverflowImplicitCheckSize = GetStackOverflowReservedBytes(kRuntimeISA);
80
81 static const char* kThreadNameDuringStartup = "<native thread without managed peer>";
82
InitCardTable()83 void Thread::InitCardTable() {
84 tlsPtr_.card_table = Runtime::Current()->GetHeap()->GetCardTable()->GetBiasedBegin();
85 }
86
UnimplementedEntryPoint()87 static void UnimplementedEntryPoint() {
88 UNIMPLEMENTED(FATAL);
89 }
90
91 void InitEntryPoints(InterpreterEntryPoints* ipoints, JniEntryPoints* jpoints,
92 PortableEntryPoints* ppoints, QuickEntryPoints* qpoints);
93
InitTlsEntryPoints()94 void Thread::InitTlsEntryPoints() {
95 // Insert a placeholder so we can easily tell if we call an unimplemented entry point.
96 uintptr_t* begin = reinterpret_cast<uintptr_t*>(&tlsPtr_.interpreter_entrypoints);
97 uintptr_t* end = reinterpret_cast<uintptr_t*>(reinterpret_cast<uint8_t*>(begin) +
98 sizeof(tlsPtr_.quick_entrypoints));
99 for (uintptr_t* it = begin; it != end; ++it) {
100 *it = reinterpret_cast<uintptr_t>(UnimplementedEntryPoint);
101 }
102 InitEntryPoints(&tlsPtr_.interpreter_entrypoints, &tlsPtr_.jni_entrypoints,
103 &tlsPtr_.portable_entrypoints, &tlsPtr_.quick_entrypoints);
104 }
105
ResetQuickAllocEntryPointsForThread()106 void Thread::ResetQuickAllocEntryPointsForThread() {
107 ResetQuickAllocEntryPoints(&tlsPtr_.quick_entrypoints);
108 }
109
SetDeoptimizationShadowFrame(ShadowFrame * sf)110 void Thread::SetDeoptimizationShadowFrame(ShadowFrame* sf) {
111 tlsPtr_.deoptimization_shadow_frame = sf;
112 }
113
SetDeoptimizationReturnValue(const JValue & ret_val)114 void Thread::SetDeoptimizationReturnValue(const JValue& ret_val) {
115 tls64_.deoptimization_return_value.SetJ(ret_val.GetJ());
116 }
117
GetAndClearDeoptimizationShadowFrame(JValue * ret_val)118 ShadowFrame* Thread::GetAndClearDeoptimizationShadowFrame(JValue* ret_val) {
119 ShadowFrame* sf = tlsPtr_.deoptimization_shadow_frame;
120 tlsPtr_.deoptimization_shadow_frame = nullptr;
121 ret_val->SetJ(tls64_.deoptimization_return_value.GetJ());
122 return sf;
123 }
124
SetShadowFrameUnderConstruction(ShadowFrame * sf)125 void Thread::SetShadowFrameUnderConstruction(ShadowFrame* sf) {
126 sf->SetLink(tlsPtr_.shadow_frame_under_construction);
127 tlsPtr_.shadow_frame_under_construction = sf;
128 }
129
ClearShadowFrameUnderConstruction()130 void Thread::ClearShadowFrameUnderConstruction() {
131 CHECK_NE(static_cast<ShadowFrame*>(nullptr), tlsPtr_.shadow_frame_under_construction);
132 tlsPtr_.shadow_frame_under_construction = tlsPtr_.shadow_frame_under_construction->GetLink();
133 }
134
InitTid()135 void Thread::InitTid() {
136 tls32_.tid = ::art::GetTid();
137 }
138
InitAfterFork()139 void Thread::InitAfterFork() {
140 // One thread (us) survived the fork, but we have a new tid so we need to
141 // update the value stashed in this Thread*.
142 InitTid();
143 }
144
CreateCallback(void * arg)145 void* Thread::CreateCallback(void* arg) {
146 Thread* self = reinterpret_cast<Thread*>(arg);
147 Runtime* runtime = Runtime::Current();
148 if (runtime == nullptr) {
149 LOG(ERROR) << "Thread attaching to non-existent runtime: " << *self;
150 return nullptr;
151 }
152 {
153 // TODO: pass self to MutexLock - requires self to equal Thread::Current(), which is only true
154 // after self->Init().
155 MutexLock mu(nullptr, *Locks::runtime_shutdown_lock_);
156 // Check that if we got here we cannot be shutting down (as shutdown should never have started
157 // while threads are being born).
158 CHECK(!runtime->IsShuttingDownLocked());
159 self->Init(runtime->GetThreadList(), runtime->GetJavaVM());
160 Runtime::Current()->EndThreadBirth();
161 }
162 {
163 ScopedObjectAccess soa(self);
164
165 // Copy peer into self, deleting global reference when done.
166 CHECK(self->tlsPtr_.jpeer != nullptr);
167 self->tlsPtr_.opeer = soa.Decode<mirror::Object*>(self->tlsPtr_.jpeer);
168 self->GetJniEnv()->DeleteGlobalRef(self->tlsPtr_.jpeer);
169 self->tlsPtr_.jpeer = nullptr;
170 self->SetThreadName(self->GetThreadName(soa)->ToModifiedUtf8().c_str());
171
172 mirror::ArtField* priorityField = soa.DecodeField(WellKnownClasses::java_lang_Thread_priority);
173 self->SetNativePriority(priorityField->GetInt(self->tlsPtr_.opeer));
174 Dbg::PostThreadStart(self);
175
176 // Invoke the 'run' method of our java.lang.Thread.
177 mirror::Object* receiver = self->tlsPtr_.opeer;
178 jmethodID mid = WellKnownClasses::java_lang_Thread_run;
179 InvokeVirtualOrInterfaceWithJValues(soa, receiver, mid, nullptr);
180 }
181 // Detach and delete self.
182 Runtime::Current()->GetThreadList()->Unregister(self);
183
184 return nullptr;
185 }
186
FromManagedThread(const ScopedObjectAccessAlreadyRunnable & soa,mirror::Object * thread_peer)187 Thread* Thread::FromManagedThread(const ScopedObjectAccessAlreadyRunnable& soa,
188 mirror::Object* thread_peer) {
189 mirror::ArtField* f = soa.DecodeField(WellKnownClasses::java_lang_Thread_nativePeer);
190 Thread* result = reinterpret_cast<Thread*>(static_cast<uintptr_t>(f->GetLong(thread_peer)));
191 // Sanity check that if we have a result it is either suspended or we hold the thread_list_lock_
192 // to stop it from going away.
193 if (kIsDebugBuild) {
194 MutexLock mu(soa.Self(), *Locks::thread_suspend_count_lock_);
195 if (result != nullptr && !result->IsSuspended()) {
196 Locks::thread_list_lock_->AssertHeld(soa.Self());
197 }
198 }
199 return result;
200 }
201
FromManagedThread(const ScopedObjectAccessAlreadyRunnable & soa,jobject java_thread)202 Thread* Thread::FromManagedThread(const ScopedObjectAccessAlreadyRunnable& soa,
203 jobject java_thread) {
204 return FromManagedThread(soa, soa.Decode<mirror::Object*>(java_thread));
205 }
206
FixStackSize(size_t stack_size)207 static size_t FixStackSize(size_t stack_size) {
208 // A stack size of zero means "use the default".
209 if (stack_size == 0) {
210 stack_size = Runtime::Current()->GetDefaultStackSize();
211 }
212
213 // Dalvik used the bionic pthread default stack size for native threads,
214 // so include that here to support apps that expect large native stacks.
215 stack_size += 1 * MB;
216
217 // It's not possible to request a stack smaller than the system-defined PTHREAD_STACK_MIN.
218 if (stack_size < PTHREAD_STACK_MIN) {
219 stack_size = PTHREAD_STACK_MIN;
220 }
221
222 if (Runtime::Current()->ExplicitStackOverflowChecks()) {
223 // It's likely that callers are trying to ensure they have at least a certain amount of
224 // stack space, so we should add our reserved space on top of what they requested, rather
225 // than implicitly take it away from them.
226 stack_size += GetStackOverflowReservedBytes(kRuntimeISA);
227 } else {
228 // If we are going to use implicit stack checks, allocate space for the protected
229 // region at the bottom of the stack.
230 stack_size += Thread::kStackOverflowImplicitCheckSize +
231 GetStackOverflowReservedBytes(kRuntimeISA);
232 }
233
234 // Some systems require the stack size to be a multiple of the system page size, so round up.
235 stack_size = RoundUp(stack_size, kPageSize);
236
237 return stack_size;
238 }
239
240 // Global variable to prevent the compiler optimizing away the page reads for the stack.
241 byte dont_optimize_this;
242
243 // Install a protected region in the stack. This is used to trigger a SIGSEGV if a stack
244 // overflow is detected. It is located right below the stack_begin_.
245 //
246 // There is a little complexity here that deserves a special mention. On some
247 // architectures, the stack created using a VM_GROWSDOWN flag
248 // to prevent memory being allocated when it's not needed. This flag makes the
249 // kernel only allocate memory for the stack by growing down in memory. Because we
250 // want to put an mprotected region far away from that at the stack top, we need
251 // to make sure the pages for the stack are mapped in before we call mprotect. We do
252 // this by reading every page from the stack bottom (highest address) to the stack top.
253 // We then madvise this away.
InstallImplicitProtection()254 void Thread::InstallImplicitProtection() {
255 byte* pregion = tlsPtr_.stack_begin - kStackOverflowProtectedSize;
256 byte* stack_himem = tlsPtr_.stack_end;
257 byte* stack_top = reinterpret_cast<byte*>(reinterpret_cast<uintptr_t>(&stack_himem) &
258 ~(kPageSize - 1)); // Page containing current top of stack.
259
260 // First remove the protection on the protected region as will want to read and
261 // write it. This may fail (on the first attempt when the stack is not mapped)
262 // but we ignore that.
263 UnprotectStack();
264
265 // Map in the stack. This must be done by reading from the
266 // current stack pointer downwards as the stack may be mapped using VM_GROWSDOWN
267 // in the kernel. Any access more than a page below the current SP might cause
268 // a segv.
269
270 // Read every page from the high address to the low.
271 for (byte* p = stack_top; p >= pregion; p -= kPageSize) {
272 dont_optimize_this = *p;
273 }
274
275 VLOG(threads) << "installing stack protected region at " << std::hex <<
276 static_cast<void*>(pregion) << " to " <<
277 static_cast<void*>(pregion + kStackOverflowProtectedSize - 1);
278
279 // Protect the bottom of the stack to prevent read/write to it.
280 ProtectStack();
281
282 // Tell the kernel that we won't be needing these pages any more.
283 // NB. madvise will probably write zeroes into the memory (on linux it does).
284 uint32_t unwanted_size = stack_top - pregion - kPageSize;
285 madvise(pregion, unwanted_size, MADV_DONTNEED);
286 }
287
CreateNativeThread(JNIEnv * env,jobject java_peer,size_t stack_size,bool is_daemon)288 void Thread::CreateNativeThread(JNIEnv* env, jobject java_peer, size_t stack_size, bool is_daemon) {
289 CHECK(java_peer != nullptr);
290 Thread* self = static_cast<JNIEnvExt*>(env)->self;
291 Runtime* runtime = Runtime::Current();
292
293 // Atomically start the birth of the thread ensuring the runtime isn't shutting down.
294 bool thread_start_during_shutdown = false;
295 {
296 MutexLock mu(self, *Locks::runtime_shutdown_lock_);
297 if (runtime->IsShuttingDownLocked()) {
298 thread_start_during_shutdown = true;
299 } else {
300 runtime->StartThreadBirth();
301 }
302 }
303 if (thread_start_during_shutdown) {
304 ScopedLocalRef<jclass> error_class(env, env->FindClass("java/lang/InternalError"));
305 env->ThrowNew(error_class.get(), "Thread starting during runtime shutdown");
306 return;
307 }
308
309 Thread* child_thread = new Thread(is_daemon);
310 // Use global JNI ref to hold peer live while child thread starts.
311 child_thread->tlsPtr_.jpeer = env->NewGlobalRef(java_peer);
312 stack_size = FixStackSize(stack_size);
313
314 // Thread.start is synchronized, so we know that nativePeer is 0, and know that we're not racing to
315 // assign it.
316 env->SetLongField(java_peer, WellKnownClasses::java_lang_Thread_nativePeer,
317 reinterpret_cast<jlong>(child_thread));
318
319 pthread_t new_pthread;
320 pthread_attr_t attr;
321 CHECK_PTHREAD_CALL(pthread_attr_init, (&attr), "new thread");
322 CHECK_PTHREAD_CALL(pthread_attr_setdetachstate, (&attr, PTHREAD_CREATE_DETACHED), "PTHREAD_CREATE_DETACHED");
323 CHECK_PTHREAD_CALL(pthread_attr_setstacksize, (&attr, stack_size), stack_size);
324 int pthread_create_result = pthread_create(&new_pthread, &attr, Thread::CreateCallback, child_thread);
325 CHECK_PTHREAD_CALL(pthread_attr_destroy, (&attr), "new thread");
326
327 if (pthread_create_result != 0) {
328 // pthread_create(3) failed, so clean up.
329 {
330 MutexLock mu(self, *Locks::runtime_shutdown_lock_);
331 runtime->EndThreadBirth();
332 }
333 // Manually delete the global reference since Thread::Init will not have been run.
334 env->DeleteGlobalRef(child_thread->tlsPtr_.jpeer);
335 child_thread->tlsPtr_.jpeer = nullptr;
336 delete child_thread;
337 child_thread = nullptr;
338 // TODO: remove from thread group?
339 env->SetLongField(java_peer, WellKnownClasses::java_lang_Thread_nativePeer, 0);
340 {
341 std::string msg(StringPrintf("pthread_create (%s stack) failed: %s",
342 PrettySize(stack_size).c_str(), strerror(pthread_create_result)));
343 ScopedObjectAccess soa(env);
344 soa.Self()->ThrowOutOfMemoryError(msg.c_str());
345 }
346 }
347 }
348
Init(ThreadList * thread_list,JavaVMExt * java_vm)349 void Thread::Init(ThreadList* thread_list, JavaVMExt* java_vm) {
350 // This function does all the initialization that must be run by the native thread it applies to.
351 // (When we create a new thread from managed code, we allocate the Thread* in Thread::Create so
352 // we can handshake with the corresponding native thread when it's ready.) Check this native
353 // thread hasn't been through here already...
354 CHECK(Thread::Current() == nullptr);
355 SetUpAlternateSignalStack();
356 InitCpu();
357 InitTlsEntryPoints();
358 RemoveSuspendTrigger();
359 InitCardTable();
360 InitTid();
361 // Set pthread_self_ ahead of pthread_setspecific, that makes Thread::Current function, this
362 // avoids pthread_self_ ever being invalid when discovered from Thread::Current().
363 tlsPtr_.pthread_self = pthread_self();
364 CHECK(is_started_);
365 CHECK_PTHREAD_CALL(pthread_setspecific, (Thread::pthread_key_self_, this), "attach self");
366 DCHECK_EQ(Thread::Current(), this);
367
368 tls32_.thin_lock_thread_id = thread_list->AllocThreadId(this);
369 InitStackHwm();
370
371 tlsPtr_.jni_env = new JNIEnvExt(this, java_vm);
372 thread_list->Register(this);
373 }
374
Attach(const char * thread_name,bool as_daemon,jobject thread_group,bool create_peer)375 Thread* Thread::Attach(const char* thread_name, bool as_daemon, jobject thread_group,
376 bool create_peer) {
377 Thread* self;
378 Runtime* runtime = Runtime::Current();
379 if (runtime == nullptr) {
380 LOG(ERROR) << "Thread attaching to non-existent runtime: " << thread_name;
381 return nullptr;
382 }
383 {
384 MutexLock mu(nullptr, *Locks::runtime_shutdown_lock_);
385 if (runtime->IsShuttingDownLocked()) {
386 LOG(ERROR) << "Thread attaching while runtime is shutting down: " << thread_name;
387 return nullptr;
388 } else {
389 Runtime::Current()->StartThreadBirth();
390 self = new Thread(as_daemon);
391 self->Init(runtime->GetThreadList(), runtime->GetJavaVM());
392 Runtime::Current()->EndThreadBirth();
393 }
394 }
395
396 CHECK_NE(self->GetState(), kRunnable);
397 self->SetState(kNative);
398
399 // If we're the main thread, ClassLinker won't be created until after we're attached,
400 // so that thread needs a two-stage attach. Regular threads don't need this hack.
401 // In the compiler, all threads need this hack, because no-one's going to be getting
402 // a native peer!
403 if (create_peer) {
404 self->CreatePeer(thread_name, as_daemon, thread_group);
405 } else {
406 // These aren't necessary, but they improve diagnostics for unit tests & command-line tools.
407 if (thread_name != nullptr) {
408 self->tlsPtr_.name->assign(thread_name);
409 ::art::SetThreadName(thread_name);
410 } else if (self->GetJniEnv()->check_jni) {
411 LOG(WARNING) << *Thread::Current() << " attached without supplying a name";
412 }
413 }
414
415 {
416 ScopedObjectAccess soa(self);
417 Dbg::PostThreadStart(self);
418 }
419
420 return self;
421 }
422
CreatePeer(const char * name,bool as_daemon,jobject thread_group)423 void Thread::CreatePeer(const char* name, bool as_daemon, jobject thread_group) {
424 Runtime* runtime = Runtime::Current();
425 CHECK(runtime->IsStarted());
426 JNIEnv* env = tlsPtr_.jni_env;
427
428 if (thread_group == nullptr) {
429 thread_group = runtime->GetMainThreadGroup();
430 }
431 ScopedLocalRef<jobject> thread_name(env, env->NewStringUTF(name));
432 if (name != nullptr && thread_name.get() == nullptr) {
433 CHECK(IsExceptionPending());
434 return;
435 }
436 jint thread_priority = GetNativePriority();
437 jboolean thread_is_daemon = as_daemon;
438
439 ScopedLocalRef<jobject> peer(env, env->AllocObject(WellKnownClasses::java_lang_Thread));
440 if (peer.get() == nullptr) {
441 CHECK(IsExceptionPending());
442 return;
443 }
444 {
445 ScopedObjectAccess soa(this);
446 tlsPtr_.opeer = soa.Decode<mirror::Object*>(peer.get());
447 }
448 env->CallNonvirtualVoidMethod(peer.get(),
449 WellKnownClasses::java_lang_Thread,
450 WellKnownClasses::java_lang_Thread_init,
451 thread_group, thread_name.get(), thread_priority, thread_is_daemon);
452 AssertNoPendingException();
453
454 Thread* self = this;
455 DCHECK_EQ(self, Thread::Current());
456 env->SetLongField(peer.get(), WellKnownClasses::java_lang_Thread_nativePeer,
457 reinterpret_cast<jlong>(self));
458
459 ScopedObjectAccess soa(self);
460 StackHandleScope<1> hs(self);
461 Handle<mirror::String> peer_thread_name(hs.NewHandle(GetThreadName(soa)));
462 if (peer_thread_name.Get() == nullptr) {
463 // The Thread constructor should have set the Thread.name to a
464 // non-null value. However, because we can run without code
465 // available (in the compiler, in tests), we manually assign the
466 // fields the constructor should have set.
467 if (runtime->IsActiveTransaction()) {
468 InitPeer<true>(soa, thread_is_daemon, thread_group, thread_name.get(), thread_priority);
469 } else {
470 InitPeer<false>(soa, thread_is_daemon, thread_group, thread_name.get(), thread_priority);
471 }
472 peer_thread_name.Assign(GetThreadName(soa));
473 }
474 // 'thread_name' may have been null, so don't trust 'peer_thread_name' to be non-null.
475 if (peer_thread_name.Get() != nullptr) {
476 SetThreadName(peer_thread_name->ToModifiedUtf8().c_str());
477 }
478 }
479
480 template<bool kTransactionActive>
InitPeer(ScopedObjectAccess & soa,jboolean thread_is_daemon,jobject thread_group,jobject thread_name,jint thread_priority)481 void Thread::InitPeer(ScopedObjectAccess& soa, jboolean thread_is_daemon, jobject thread_group,
482 jobject thread_name, jint thread_priority) {
483 soa.DecodeField(WellKnownClasses::java_lang_Thread_daemon)->
484 SetBoolean<kTransactionActive>(tlsPtr_.opeer, thread_is_daemon);
485 soa.DecodeField(WellKnownClasses::java_lang_Thread_group)->
486 SetObject<kTransactionActive>(tlsPtr_.opeer, soa.Decode<mirror::Object*>(thread_group));
487 soa.DecodeField(WellKnownClasses::java_lang_Thread_name)->
488 SetObject<kTransactionActive>(tlsPtr_.opeer, soa.Decode<mirror::Object*>(thread_name));
489 soa.DecodeField(WellKnownClasses::java_lang_Thread_priority)->
490 SetInt<kTransactionActive>(tlsPtr_.opeer, thread_priority);
491 }
492
SetThreadName(const char * name)493 void Thread::SetThreadName(const char* name) {
494 tlsPtr_.name->assign(name);
495 ::art::SetThreadName(name);
496 Dbg::DdmSendThreadNotification(this, CHUNK_TYPE("THNM"));
497 }
498
InitStackHwm()499 void Thread::InitStackHwm() {
500 void* read_stack_base;
501 size_t read_stack_size;
502 size_t read_guard_size;
503 GetThreadStack(tlsPtr_.pthread_self, &read_stack_base, &read_stack_size, &read_guard_size);
504
505 // This is included in the SIGQUIT output, but it's useful here for thread debugging.
506 VLOG(threads) << StringPrintf("Native stack is at %p (%s with %s guard)",
507 read_stack_base,
508 PrettySize(read_stack_size).c_str(),
509 PrettySize(read_guard_size).c_str());
510
511 tlsPtr_.stack_begin = reinterpret_cast<byte*>(read_stack_base);
512 tlsPtr_.stack_size = read_stack_size;
513
514 // The minimum stack size we can cope with is the overflow reserved bytes (typically
515 // 8K) + the protected region size (4K) + another page (4K). Typically this will
516 // be 8+4+4 = 16K. The thread won't be able to do much with this stack even the GC takes
517 // between 8K and 12K.
518 uint32_t min_stack = GetStackOverflowReservedBytes(kRuntimeISA) + kStackOverflowProtectedSize
519 + 4 * KB;
520 if (read_stack_size <= min_stack) {
521 LOG(FATAL) << "Attempt to attach a thread with a too-small stack (" << read_stack_size
522 << " bytes)";
523 }
524
525 // TODO: move this into the Linux GetThreadStack implementation.
526 #if !defined(__APPLE__)
527 // If we're the main thread, check whether we were run with an unlimited stack. In that case,
528 // glibc will have reported a 2GB stack for our 32-bit process, and our stack overflow detection
529 // will be broken because we'll die long before we get close to 2GB.
530 bool is_main_thread = (::art::GetTid() == getpid());
531 if (is_main_thread) {
532 rlimit stack_limit;
533 if (getrlimit(RLIMIT_STACK, &stack_limit) == -1) {
534 PLOG(FATAL) << "getrlimit(RLIMIT_STACK) failed";
535 }
536 if (stack_limit.rlim_cur == RLIM_INFINITY) {
537 // Find the default stack size for new threads...
538 pthread_attr_t default_attributes;
539 size_t default_stack_size;
540 CHECK_PTHREAD_CALL(pthread_attr_init, (&default_attributes), "default stack size query");
541 CHECK_PTHREAD_CALL(pthread_attr_getstacksize, (&default_attributes, &default_stack_size),
542 "default stack size query");
543 CHECK_PTHREAD_CALL(pthread_attr_destroy, (&default_attributes), "default stack size query");
544
545 // ...and use that as our limit.
546 size_t old_stack_size = read_stack_size;
547 tlsPtr_.stack_size = default_stack_size;
548 tlsPtr_.stack_begin += (old_stack_size - default_stack_size);
549 VLOG(threads) << "Limiting unlimited stack (reported as " << PrettySize(old_stack_size) << ")"
550 << " to " << PrettySize(default_stack_size)
551 << " with base " << reinterpret_cast<void*>(tlsPtr_.stack_begin);
552 }
553 }
554 #endif
555
556 // Set stack_end_ to the bottom of the stack saving space of stack overflows
557
558 Runtime* runtime = Runtime::Current();
559 bool implicit_stack_check = !runtime->ExplicitStackOverflowChecks() && !runtime->IsCompiler();
560 ResetDefaultStackEnd();
561
562 // Install the protected region if we are doing implicit overflow checks.
563 if (implicit_stack_check) {
564 // The thread might have protected region at the bottom. We need
565 // to install our own region so we need to move the limits
566 // of the stack to make room for it.
567
568 tlsPtr_.stack_begin += read_guard_size + kStackOverflowProtectedSize;
569 tlsPtr_.stack_end += read_guard_size + kStackOverflowProtectedSize;
570 tlsPtr_.stack_size -= read_guard_size;
571
572 InstallImplicitProtection();
573 }
574
575 // Sanity check.
576 int stack_variable;
577 CHECK_GT(&stack_variable, reinterpret_cast<void*>(tlsPtr_.stack_end));
578 }
579
ShortDump(std::ostream & os) const580 void Thread::ShortDump(std::ostream& os) const {
581 os << "Thread[";
582 if (GetThreadId() != 0) {
583 // If we're in kStarting, we won't have a thin lock id or tid yet.
584 os << GetThreadId()
585 << ",tid=" << GetTid() << ',';
586 }
587 os << GetState()
588 << ",Thread*=" << this
589 << ",peer=" << tlsPtr_.opeer
590 << ",\"" << *tlsPtr_.name << "\""
591 << "]";
592 }
593
Dump(std::ostream & os) const594 void Thread::Dump(std::ostream& os) const {
595 DumpState(os);
596 DumpStack(os);
597 }
598
GetThreadName(const ScopedObjectAccessAlreadyRunnable & soa) const599 mirror::String* Thread::GetThreadName(const ScopedObjectAccessAlreadyRunnable& soa) const {
600 mirror::ArtField* f = soa.DecodeField(WellKnownClasses::java_lang_Thread_name);
601 return (tlsPtr_.opeer != nullptr) ? reinterpret_cast<mirror::String*>(f->GetObject(tlsPtr_.opeer)) : nullptr;
602 }
603
GetThreadName(std::string & name) const604 void Thread::GetThreadName(std::string& name) const {
605 name.assign(*tlsPtr_.name);
606 }
607
GetCpuMicroTime() const608 uint64_t Thread::GetCpuMicroTime() const {
609 #if defined(HAVE_POSIX_CLOCKS)
610 clockid_t cpu_clock_id;
611 pthread_getcpuclockid(tlsPtr_.pthread_self, &cpu_clock_id);
612 timespec now;
613 clock_gettime(cpu_clock_id, &now);
614 return static_cast<uint64_t>(now.tv_sec) * UINT64_C(1000000) + now.tv_nsec / UINT64_C(1000);
615 #else
616 UNIMPLEMENTED(WARNING);
617 return -1;
618 #endif
619 }
620
621 // Attempt to rectify locks so that we dump thread list with required locks before exiting.
UnsafeLogFatalForSuspendCount(Thread * self,Thread * thread)622 static void UnsafeLogFatalForSuspendCount(Thread* self, Thread* thread) NO_THREAD_SAFETY_ANALYSIS {
623 LOG(ERROR) << *thread << " suspend count already zero.";
624 Locks::thread_suspend_count_lock_->Unlock(self);
625 if (!Locks::mutator_lock_->IsSharedHeld(self)) {
626 Locks::mutator_lock_->SharedTryLock(self);
627 if (!Locks::mutator_lock_->IsSharedHeld(self)) {
628 LOG(WARNING) << "Dumping thread list without holding mutator_lock_";
629 }
630 }
631 if (!Locks::thread_list_lock_->IsExclusiveHeld(self)) {
632 Locks::thread_list_lock_->TryLock(self);
633 if (!Locks::thread_list_lock_->IsExclusiveHeld(self)) {
634 LOG(WARNING) << "Dumping thread list without holding thread_list_lock_";
635 }
636 }
637 std::ostringstream ss;
638 Runtime::Current()->GetThreadList()->DumpLocked(ss);
639 LOG(FATAL) << ss.str();
640 }
641
ModifySuspendCount(Thread * self,int delta,bool for_debugger)642 void Thread::ModifySuspendCount(Thread* self, int delta, bool for_debugger) {
643 if (kIsDebugBuild) {
644 DCHECK(delta == -1 || delta == +1 || delta == -tls32_.debug_suspend_count)
645 << delta << " " << tls32_.debug_suspend_count << " " << this;
646 DCHECK_GE(tls32_.suspend_count, tls32_.debug_suspend_count) << this;
647 Locks::thread_suspend_count_lock_->AssertHeld(self);
648 if (this != self && !IsSuspended()) {
649 Locks::thread_list_lock_->AssertHeld(self);
650 }
651 }
652 if (UNLIKELY(delta < 0 && tls32_.suspend_count <= 0)) {
653 UnsafeLogFatalForSuspendCount(self, this);
654 return;
655 }
656
657 tls32_.suspend_count += delta;
658 if (for_debugger) {
659 tls32_.debug_suspend_count += delta;
660 }
661
662 if (tls32_.suspend_count == 0) {
663 AtomicClearFlag(kSuspendRequest);
664 } else {
665 AtomicSetFlag(kSuspendRequest);
666 TriggerSuspend();
667 }
668 }
669
RunCheckpointFunction()670 void Thread::RunCheckpointFunction() {
671 Closure *checkpoints[kMaxCheckpoints];
672
673 // Grab the suspend_count lock and copy the current set of
674 // checkpoints. Then clear the list and the flag. The RequestCheckpoint
675 // function will also grab this lock so we prevent a race between setting
676 // the kCheckpointRequest flag and clearing it.
677 {
678 MutexLock mu(this, *Locks::thread_suspend_count_lock_);
679 for (uint32_t i = 0; i < kMaxCheckpoints; ++i) {
680 checkpoints[i] = tlsPtr_.checkpoint_functions[i];
681 tlsPtr_.checkpoint_functions[i] = nullptr;
682 }
683 AtomicClearFlag(kCheckpointRequest);
684 }
685
686 // Outside the lock, run all the checkpoint functions that
687 // we collected.
688 bool found_checkpoint = false;
689 for (uint32_t i = 0; i < kMaxCheckpoints; ++i) {
690 if (checkpoints[i] != nullptr) {
691 ATRACE_BEGIN("Checkpoint function");
692 checkpoints[i]->Run(this);
693 ATRACE_END();
694 found_checkpoint = true;
695 }
696 }
697 CHECK(found_checkpoint);
698 }
699
RequestCheckpoint(Closure * function)700 bool Thread::RequestCheckpoint(Closure* function) {
701 union StateAndFlags old_state_and_flags;
702 old_state_and_flags.as_int = tls32_.state_and_flags.as_int;
703 if (old_state_and_flags.as_struct.state != kRunnable) {
704 return false; // Fail, thread is suspended and so can't run a checkpoint.
705 }
706
707 uint32_t available_checkpoint = kMaxCheckpoints;
708 for (uint32_t i = 0 ; i < kMaxCheckpoints; ++i) {
709 if (tlsPtr_.checkpoint_functions[i] == nullptr) {
710 available_checkpoint = i;
711 break;
712 }
713 }
714 if (available_checkpoint == kMaxCheckpoints) {
715 // No checkpoint functions available, we can't run a checkpoint
716 return false;
717 }
718 tlsPtr_.checkpoint_functions[available_checkpoint] = function;
719
720 // Checkpoint function installed now install flag bit.
721 // We must be runnable to request a checkpoint.
722 DCHECK_EQ(old_state_and_flags.as_struct.state, kRunnable);
723 union StateAndFlags new_state_and_flags;
724 new_state_and_flags.as_int = old_state_and_flags.as_int;
725 new_state_and_flags.as_struct.flags |= kCheckpointRequest;
726 bool success =
727 tls32_.state_and_flags.as_atomic_int.CompareExchangeStrongSequentiallyConsistent(old_state_and_flags.as_int,
728 new_state_and_flags.as_int);
729 if (UNLIKELY(!success)) {
730 // The thread changed state before the checkpoint was installed.
731 CHECK_EQ(tlsPtr_.checkpoint_functions[available_checkpoint], function);
732 tlsPtr_.checkpoint_functions[available_checkpoint] = nullptr;
733 } else {
734 CHECK_EQ(ReadFlag(kCheckpointRequest), true);
735 TriggerSuspend();
736 }
737 return success;
738 }
739
FullSuspendCheck()740 void Thread::FullSuspendCheck() {
741 VLOG(threads) << this << " self-suspending";
742 ATRACE_BEGIN("Full suspend check");
743 // Make thread appear suspended to other threads, release mutator_lock_.
744 TransitionFromRunnableToSuspended(kSuspended);
745 // Transition back to runnable noting requests to suspend, re-acquire share on mutator_lock_.
746 TransitionFromSuspendedToRunnable();
747 ATRACE_END();
748 VLOG(threads) << this << " self-reviving";
749 }
750
DumpState(std::ostream & os,const Thread * thread,pid_t tid)751 void Thread::DumpState(std::ostream& os, const Thread* thread, pid_t tid) {
752 std::string group_name;
753 int priority;
754 bool is_daemon = false;
755 Thread* self = Thread::Current();
756
757 // Don't do this if we are aborting since the GC may have all the threads suspended. This will
758 // cause ScopedObjectAccessUnchecked to deadlock.
759 if (gAborting == 0 && self != nullptr && thread != nullptr && thread->tlsPtr_.opeer != nullptr) {
760 ScopedObjectAccessUnchecked soa(self);
761 priority = soa.DecodeField(WellKnownClasses::java_lang_Thread_priority)
762 ->GetInt(thread->tlsPtr_.opeer);
763 is_daemon = soa.DecodeField(WellKnownClasses::java_lang_Thread_daemon)
764 ->GetBoolean(thread->tlsPtr_.opeer);
765
766 mirror::Object* thread_group =
767 soa.DecodeField(WellKnownClasses::java_lang_Thread_group)->GetObject(thread->tlsPtr_.opeer);
768
769 if (thread_group != nullptr) {
770 mirror::ArtField* group_name_field =
771 soa.DecodeField(WellKnownClasses::java_lang_ThreadGroup_name);
772 mirror::String* group_name_string =
773 reinterpret_cast<mirror::String*>(group_name_field->GetObject(thread_group));
774 group_name = (group_name_string != nullptr) ? group_name_string->ToModifiedUtf8() : "<null>";
775 }
776 } else {
777 priority = GetNativePriority();
778 }
779
780 std::string scheduler_group_name(GetSchedulerGroupName(tid));
781 if (scheduler_group_name.empty()) {
782 scheduler_group_name = "default";
783 }
784
785 if (thread != nullptr) {
786 os << '"' << *thread->tlsPtr_.name << '"';
787 if (is_daemon) {
788 os << " daemon";
789 }
790 os << " prio=" << priority
791 << " tid=" << thread->GetThreadId()
792 << " " << thread->GetState();
793 if (thread->IsStillStarting()) {
794 os << " (still starting up)";
795 }
796 os << "\n";
797 } else {
798 os << '"' << ::art::GetThreadName(tid) << '"'
799 << " prio=" << priority
800 << " (not attached)\n";
801 }
802
803 if (thread != nullptr) {
804 MutexLock mu(self, *Locks::thread_suspend_count_lock_);
805 os << " | group=\"" << group_name << "\""
806 << " sCount=" << thread->tls32_.suspend_count
807 << " dsCount=" << thread->tls32_.debug_suspend_count
808 << " obj=" << reinterpret_cast<void*>(thread->tlsPtr_.opeer)
809 << " self=" << reinterpret_cast<const void*>(thread) << "\n";
810 }
811
812 os << " | sysTid=" << tid
813 << " nice=" << getpriority(PRIO_PROCESS, tid)
814 << " cgrp=" << scheduler_group_name;
815 if (thread != nullptr) {
816 int policy;
817 sched_param sp;
818 CHECK_PTHREAD_CALL(pthread_getschedparam, (thread->tlsPtr_.pthread_self, &policy, &sp),
819 __FUNCTION__);
820 os << " sched=" << policy << "/" << sp.sched_priority
821 << " handle=" << reinterpret_cast<void*>(thread->tlsPtr_.pthread_self);
822 }
823 os << "\n";
824
825 // Grab the scheduler stats for this thread.
826 std::string scheduler_stats;
827 if (ReadFileToString(StringPrintf("/proc/self/task/%d/schedstat", tid), &scheduler_stats)) {
828 scheduler_stats.resize(scheduler_stats.size() - 1); // Lose the trailing '\n'.
829 } else {
830 scheduler_stats = "0 0 0";
831 }
832
833 char native_thread_state = '?';
834 int utime = 0;
835 int stime = 0;
836 int task_cpu = 0;
837 GetTaskStats(tid, &native_thread_state, &utime, &stime, &task_cpu);
838
839 os << " | state=" << native_thread_state
840 << " schedstat=( " << scheduler_stats << " )"
841 << " utm=" << utime
842 << " stm=" << stime
843 << " core=" << task_cpu
844 << " HZ=" << sysconf(_SC_CLK_TCK) << "\n";
845 if (thread != nullptr) {
846 os << " | stack=" << reinterpret_cast<void*>(thread->tlsPtr_.stack_begin) << "-"
847 << reinterpret_cast<void*>(thread->tlsPtr_.stack_end) << " stackSize="
848 << PrettySize(thread->tlsPtr_.stack_size) << "\n";
849 // Dump the held mutexes.
850 os << " | held mutexes=";
851 for (size_t i = 0; i < kLockLevelCount; ++i) {
852 if (i != kMonitorLock) {
853 BaseMutex* mutex = thread->GetHeldMutex(static_cast<LockLevel>(i));
854 if (mutex != nullptr) {
855 os << " \"" << mutex->GetName() << "\"";
856 if (mutex->IsReaderWriterMutex()) {
857 ReaderWriterMutex* rw_mutex = down_cast<ReaderWriterMutex*>(mutex);
858 if (rw_mutex->GetExclusiveOwnerTid() == static_cast<uint64_t>(tid)) {
859 os << "(exclusive held)";
860 } else {
861 os << "(shared held)";
862 }
863 }
864 }
865 }
866 }
867 os << "\n";
868 }
869 }
870
DumpState(std::ostream & os) const871 void Thread::DumpState(std::ostream& os) const {
872 Thread::DumpState(os, this, GetTid());
873 }
874
875 struct StackDumpVisitor : public StackVisitor {
StackDumpVisitorart::StackDumpVisitor876 StackDumpVisitor(std::ostream& os, Thread* thread, Context* context, bool can_allocate)
877 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
878 : StackVisitor(thread, context), os(os), thread(thread), can_allocate(can_allocate),
879 last_method(nullptr), last_line_number(0), repetition_count(0), frame_count(0) {
880 }
881
~StackDumpVisitorart::StackDumpVisitor882 virtual ~StackDumpVisitor() {
883 if (frame_count == 0) {
884 os << " (no managed stack frames)\n";
885 }
886 }
887
VisitFrameart::StackDumpVisitor888 bool VisitFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
889 mirror::ArtMethod* m = GetMethod();
890 if (m->IsRuntimeMethod()) {
891 return true;
892 }
893 const int kMaxRepetition = 3;
894 mirror::Class* c = m->GetDeclaringClass();
895 mirror::DexCache* dex_cache = c->GetDexCache();
896 int line_number = -1;
897 if (dex_cache != nullptr) { // be tolerant of bad input
898 const DexFile& dex_file = *dex_cache->GetDexFile();
899 line_number = dex_file.GetLineNumFromPC(m, GetDexPc(false));
900 }
901 if (line_number == last_line_number && last_method == m) {
902 ++repetition_count;
903 } else {
904 if (repetition_count >= kMaxRepetition) {
905 os << " ... repeated " << (repetition_count - kMaxRepetition) << " times\n";
906 }
907 repetition_count = 0;
908 last_line_number = line_number;
909 last_method = m;
910 }
911 if (repetition_count < kMaxRepetition) {
912 os << " at " << PrettyMethod(m, false);
913 if (m->IsNative()) {
914 os << "(Native method)";
915 } else {
916 const char* source_file(m->GetDeclaringClassSourceFile());
917 os << "(" << (source_file != nullptr ? source_file : "unavailable")
918 << ":" << line_number << ")";
919 }
920 os << "\n";
921 if (frame_count == 0) {
922 Monitor::DescribeWait(os, thread);
923 }
924 if (can_allocate) {
925 // Visit locks, but do not abort on errors. This would trigger a nested abort.
926 Monitor::VisitLocks(this, DumpLockedObject, &os, false);
927 }
928 }
929
930 ++frame_count;
931 return true;
932 }
933
DumpLockedObjectart::StackDumpVisitor934 static void DumpLockedObject(mirror::Object* o, void* context)
935 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
936 std::ostream& os = *reinterpret_cast<std::ostream*>(context);
937 os << " - locked ";
938 if (o == nullptr) {
939 os << "an unknown object";
940 } else {
941 if ((o->GetLockWord(false).GetState() == LockWord::kThinLocked) &&
942 Locks::mutator_lock_->IsExclusiveHeld(Thread::Current())) {
943 // Getting the identity hashcode here would result in lock inflation and suspension of the
944 // current thread, which isn't safe if this is the only runnable thread.
945 os << StringPrintf("<@addr=0x%" PRIxPTR "> (a %s)", reinterpret_cast<intptr_t>(o),
946 PrettyTypeOf(o).c_str());
947 } else {
948 os << StringPrintf("<0x%08x> (a %s)", o->IdentityHashCode(), PrettyTypeOf(o).c_str());
949 }
950 }
951 os << "\n";
952 }
953
954 std::ostream& os;
955 const Thread* thread;
956 const bool can_allocate;
957 mirror::ArtMethod* last_method;
958 int last_line_number;
959 int repetition_count;
960 int frame_count;
961 };
962
ShouldShowNativeStack(const Thread * thread)963 static bool ShouldShowNativeStack(const Thread* thread)
964 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
965 ThreadState state = thread->GetState();
966
967 // In native code somewhere in the VM (one of the kWaitingFor* states)? That's interesting.
968 if (state > kWaiting && state < kStarting) {
969 return true;
970 }
971
972 // In an Object.wait variant or Thread.sleep? That's not interesting.
973 if (state == kTimedWaiting || state == kSleeping || state == kWaiting) {
974 return false;
975 }
976
977 // Threads with no managed stack frames should be shown.
978 const ManagedStack* managed_stack = thread->GetManagedStack();
979 if (managed_stack == NULL || (managed_stack->GetTopQuickFrame() == NULL &&
980 managed_stack->GetTopShadowFrame() == NULL)) {
981 return true;
982 }
983
984 // In some other native method? That's interesting.
985 // We don't just check kNative because native methods will be in state kSuspended if they're
986 // calling back into the VM, or kBlocked if they're blocked on a monitor, or one of the
987 // thread-startup states if it's early enough in their life cycle (http://b/7432159).
988 mirror::ArtMethod* current_method = thread->GetCurrentMethod(nullptr);
989 return current_method != nullptr && current_method->IsNative();
990 }
991
DumpJavaStack(std::ostream & os) const992 void Thread::DumpJavaStack(std::ostream& os) const {
993 // Dumping the Java stack involves the verifier for locks. The verifier operates under the
994 // assumption that there is no exception pending on entry. Thus, stash any pending exception.
995 // TODO: Find a way to avoid const_cast.
996 StackHandleScope<3> scope(const_cast<Thread*>(this));
997 Handle<mirror::Throwable> exc;
998 Handle<mirror::Object> throw_location_this_object;
999 Handle<mirror::ArtMethod> throw_location_method;
1000 uint32_t throw_location_dex_pc;
1001 bool have_exception = false;
1002 if (IsExceptionPending()) {
1003 ThrowLocation exc_location;
1004 exc = scope.NewHandle(GetException(&exc_location));
1005 throw_location_this_object = scope.NewHandle(exc_location.GetThis());
1006 throw_location_method = scope.NewHandle(exc_location.GetMethod());
1007 throw_location_dex_pc = exc_location.GetDexPc();
1008 const_cast<Thread*>(this)->ClearException();
1009 have_exception = true;
1010 }
1011
1012 std::unique_ptr<Context> context(Context::Create());
1013 StackDumpVisitor dumper(os, const_cast<Thread*>(this), context.get(),
1014 !tls32_.throwing_OutOfMemoryError);
1015 dumper.WalkStack();
1016
1017 if (have_exception) {
1018 ThrowLocation exc_location(throw_location_this_object.Get(),
1019 throw_location_method.Get(),
1020 throw_location_dex_pc);
1021 const_cast<Thread*>(this)->SetException(exc_location, exc.Get());
1022 }
1023 }
1024
DumpStack(std::ostream & os) const1025 void Thread::DumpStack(std::ostream& os) const {
1026 // TODO: we call this code when dying but may not have suspended the thread ourself. The
1027 // IsSuspended check is therefore racy with the use for dumping (normally we inhibit
1028 // the race with the thread_suspend_count_lock_).
1029 bool dump_for_abort = (gAborting > 0);
1030 bool safe_to_dump = (this == Thread::Current() || IsSuspended());
1031 if (!kIsDebugBuild) {
1032 // We always want to dump the stack for an abort, however, there is no point dumping another
1033 // thread's stack in debug builds where we'll hit the not suspended check in the stack walk.
1034 safe_to_dump = (safe_to_dump || dump_for_abort);
1035 }
1036 if (safe_to_dump) {
1037 // If we're currently in native code, dump that stack before dumping the managed stack.
1038 if (dump_for_abort || ShouldShowNativeStack(this)) {
1039 DumpKernelStack(os, GetTid(), " kernel: ", false);
1040 DumpNativeStack(os, GetTid(), " native: ", GetCurrentMethod(nullptr, !dump_for_abort));
1041 }
1042 DumpJavaStack(os);
1043 } else {
1044 os << "Not able to dump stack of thread that isn't suspended";
1045 }
1046 }
1047
ThreadExitCallback(void * arg)1048 void Thread::ThreadExitCallback(void* arg) {
1049 Thread* self = reinterpret_cast<Thread*>(arg);
1050 if (self->tls32_.thread_exit_check_count == 0) {
1051 LOG(WARNING) << "Native thread exiting without having called DetachCurrentThread (maybe it's "
1052 "going to use a pthread_key_create destructor?): " << *self;
1053 CHECK(is_started_);
1054 CHECK_PTHREAD_CALL(pthread_setspecific, (Thread::pthread_key_self_, self), "reattach self");
1055 self->tls32_.thread_exit_check_count = 1;
1056 } else {
1057 LOG(FATAL) << "Native thread exited without calling DetachCurrentThread: " << *self;
1058 }
1059 }
1060
Startup()1061 void Thread::Startup() {
1062 CHECK(!is_started_);
1063 is_started_ = true;
1064 {
1065 // MutexLock to keep annotalysis happy.
1066 //
1067 // Note we use nullptr for the thread because Thread::Current can
1068 // return garbage since (is_started_ == true) and
1069 // Thread::pthread_key_self_ is not yet initialized.
1070 // This was seen on glibc.
1071 MutexLock mu(nullptr, *Locks::thread_suspend_count_lock_);
1072 resume_cond_ = new ConditionVariable("Thread resumption condition variable",
1073 *Locks::thread_suspend_count_lock_);
1074 }
1075
1076 // Allocate a TLS slot.
1077 CHECK_PTHREAD_CALL(pthread_key_create, (&Thread::pthread_key_self_, Thread::ThreadExitCallback), "self key");
1078
1079 // Double-check the TLS slot allocation.
1080 if (pthread_getspecific(pthread_key_self_) != nullptr) {
1081 LOG(FATAL) << "Newly-created pthread TLS slot is not nullptr";
1082 }
1083 }
1084
FinishStartup()1085 void Thread::FinishStartup() {
1086 Runtime* runtime = Runtime::Current();
1087 CHECK(runtime->IsStarted());
1088
1089 // Finish attaching the main thread.
1090 ScopedObjectAccess soa(Thread::Current());
1091 Thread::Current()->CreatePeer("main", false, runtime->GetMainThreadGroup());
1092
1093 Runtime::Current()->GetClassLinker()->RunRootClinits();
1094 }
1095
Shutdown()1096 void Thread::Shutdown() {
1097 CHECK(is_started_);
1098 is_started_ = false;
1099 CHECK_PTHREAD_CALL(pthread_key_delete, (Thread::pthread_key_self_), "self key");
1100 MutexLock mu(Thread::Current(), *Locks::thread_suspend_count_lock_);
1101 if (resume_cond_ != nullptr) {
1102 delete resume_cond_;
1103 resume_cond_ = nullptr;
1104 }
1105 }
1106
Thread(bool daemon)1107 Thread::Thread(bool daemon) : tls32_(daemon), wait_monitor_(nullptr), interrupted_(false) {
1108 wait_mutex_ = new Mutex("a thread wait mutex");
1109 wait_cond_ = new ConditionVariable("a thread wait condition variable", *wait_mutex_);
1110 tlsPtr_.debug_invoke_req = new DebugInvokeReq;
1111 tlsPtr_.single_step_control = new SingleStepControl;
1112 tlsPtr_.instrumentation_stack = new std::deque<instrumentation::InstrumentationStackFrame>;
1113 tlsPtr_.name = new std::string(kThreadNameDuringStartup);
1114 tlsPtr_.nested_signal_state = static_cast<jmp_buf*>(malloc(sizeof(jmp_buf)));
1115
1116 CHECK_EQ((sizeof(Thread) % 4), 0U) << sizeof(Thread);
1117 tls32_.state_and_flags.as_struct.flags = 0;
1118 tls32_.state_and_flags.as_struct.state = kNative;
1119 memset(&tlsPtr_.held_mutexes[0], 0, sizeof(tlsPtr_.held_mutexes));
1120 std::fill(tlsPtr_.rosalloc_runs,
1121 tlsPtr_.rosalloc_runs + kNumRosAllocThreadLocalSizeBrackets,
1122 gc::allocator::RosAlloc::GetDedicatedFullRun());
1123 for (uint32_t i = 0; i < kMaxCheckpoints; ++i) {
1124 tlsPtr_.checkpoint_functions[i] = nullptr;
1125 }
1126 }
1127
IsStillStarting() const1128 bool Thread::IsStillStarting() const {
1129 // You might think you can check whether the state is kStarting, but for much of thread startup,
1130 // the thread is in kNative; it might also be in kVmWait.
1131 // You might think you can check whether the peer is nullptr, but the peer is actually created and
1132 // assigned fairly early on, and needs to be.
1133 // It turns out that the last thing to change is the thread name; that's a good proxy for "has
1134 // this thread _ever_ entered kRunnable".
1135 return (tlsPtr_.jpeer == nullptr && tlsPtr_.opeer == nullptr) ||
1136 (*tlsPtr_.name == kThreadNameDuringStartup);
1137 }
1138
AssertNoPendingException() const1139 void Thread::AssertNoPendingException() const {
1140 if (UNLIKELY(IsExceptionPending())) {
1141 ScopedObjectAccess soa(Thread::Current());
1142 mirror::Throwable* exception = GetException(nullptr);
1143 LOG(FATAL) << "No pending exception expected: " << exception->Dump();
1144 }
1145 }
1146
AssertNoPendingExceptionForNewException(const char * msg) const1147 void Thread::AssertNoPendingExceptionForNewException(const char* msg) const {
1148 if (UNLIKELY(IsExceptionPending())) {
1149 ScopedObjectAccess soa(Thread::Current());
1150 mirror::Throwable* exception = GetException(nullptr);
1151 LOG(FATAL) << "Throwing new exception '" << msg << "' with unexpected pending exception: "
1152 << exception->Dump();
1153 }
1154 }
1155
MonitorExitVisitor(mirror::Object ** object,void * arg,const RootInfo &)1156 static void MonitorExitVisitor(mirror::Object** object, void* arg, const RootInfo& /*root_info*/)
1157 NO_THREAD_SAFETY_ANALYSIS {
1158 Thread* self = reinterpret_cast<Thread*>(arg);
1159 mirror::Object* entered_monitor = *object;
1160 if (self->HoldsLock(entered_monitor)) {
1161 LOG(WARNING) << "Calling MonitorExit on object "
1162 << object << " (" << PrettyTypeOf(entered_monitor) << ")"
1163 << " left locked by native thread "
1164 << *Thread::Current() << " which is detaching";
1165 entered_monitor->MonitorExit(self);
1166 }
1167 }
1168
Destroy()1169 void Thread::Destroy() {
1170 Thread* self = this;
1171 DCHECK_EQ(self, Thread::Current());
1172
1173 if (tlsPtr_.opeer != nullptr) {
1174 ScopedObjectAccess soa(self);
1175 // We may need to call user-supplied managed code, do this before final clean-up.
1176 HandleUncaughtExceptions(soa);
1177 RemoveFromThreadGroup(soa);
1178
1179 // this.nativePeer = 0;
1180 if (Runtime::Current()->IsActiveTransaction()) {
1181 soa.DecodeField(WellKnownClasses::java_lang_Thread_nativePeer)
1182 ->SetLong<true>(tlsPtr_.opeer, 0);
1183 } else {
1184 soa.DecodeField(WellKnownClasses::java_lang_Thread_nativePeer)
1185 ->SetLong<false>(tlsPtr_.opeer, 0);
1186 }
1187 Dbg::PostThreadDeath(self);
1188
1189 // Thread.join() is implemented as an Object.wait() on the Thread.lock object. Signal anyone
1190 // who is waiting.
1191 mirror::Object* lock =
1192 soa.DecodeField(WellKnownClasses::java_lang_Thread_lock)->GetObject(tlsPtr_.opeer);
1193 // (This conditional is only needed for tests, where Thread.lock won't have been set.)
1194 if (lock != nullptr) {
1195 StackHandleScope<1> hs(self);
1196 Handle<mirror::Object> h_obj(hs.NewHandle(lock));
1197 ObjectLock<mirror::Object> locker(self, h_obj);
1198 locker.NotifyAll();
1199 }
1200 }
1201
1202 // On thread detach, all monitors entered with JNI MonitorEnter are automatically exited.
1203 if (tlsPtr_.jni_env != nullptr) {
1204 tlsPtr_.jni_env->monitors.VisitRoots(MonitorExitVisitor, self, RootInfo(kRootVMInternal));
1205 }
1206 }
1207
~Thread()1208 Thread::~Thread() {
1209 if (tlsPtr_.jni_env != nullptr && tlsPtr_.jpeer != nullptr) {
1210 // If pthread_create fails we don't have a jni env here.
1211 tlsPtr_.jni_env->DeleteGlobalRef(tlsPtr_.jpeer);
1212 tlsPtr_.jpeer = nullptr;
1213 }
1214 tlsPtr_.opeer = nullptr;
1215
1216 bool initialized = (tlsPtr_.jni_env != nullptr); // Did Thread::Init run?
1217 if (initialized) {
1218 delete tlsPtr_.jni_env;
1219 tlsPtr_.jni_env = nullptr;
1220 }
1221 CHECK_NE(GetState(), kRunnable);
1222 CHECK_NE(ReadFlag(kCheckpointRequest), true);
1223 CHECK(tlsPtr_.checkpoint_functions[0] == nullptr);
1224 CHECK(tlsPtr_.checkpoint_functions[1] == nullptr);
1225 CHECK(tlsPtr_.checkpoint_functions[2] == nullptr);
1226
1227 // We may be deleting a still born thread.
1228 SetStateUnsafe(kTerminated);
1229
1230 delete wait_cond_;
1231 delete wait_mutex_;
1232
1233 if (tlsPtr_.long_jump_context != nullptr) {
1234 delete tlsPtr_.long_jump_context;
1235 }
1236
1237 if (initialized) {
1238 CleanupCpu();
1239 }
1240
1241 delete tlsPtr_.debug_invoke_req;
1242 delete tlsPtr_.single_step_control;
1243 delete tlsPtr_.instrumentation_stack;
1244 delete tlsPtr_.name;
1245 delete tlsPtr_.stack_trace_sample;
1246 free(tlsPtr_.nested_signal_state);
1247
1248 Runtime::Current()->GetHeap()->RevokeThreadLocalBuffers(this);
1249
1250 TearDownAlternateSignalStack();
1251 }
1252
HandleUncaughtExceptions(ScopedObjectAccess & soa)1253 void Thread::HandleUncaughtExceptions(ScopedObjectAccess& soa) {
1254 if (!IsExceptionPending()) {
1255 return;
1256 }
1257 ScopedLocalRef<jobject> peer(tlsPtr_.jni_env, soa.AddLocalReference<jobject>(tlsPtr_.opeer));
1258 ScopedThreadStateChange tsc(this, kNative);
1259
1260 // Get and clear the exception.
1261 ScopedLocalRef<jthrowable> exception(tlsPtr_.jni_env, tlsPtr_.jni_env->ExceptionOccurred());
1262 tlsPtr_.jni_env->ExceptionClear();
1263
1264 // If the thread has its own handler, use that.
1265 ScopedLocalRef<jobject> handler(tlsPtr_.jni_env,
1266 tlsPtr_.jni_env->GetObjectField(peer.get(),
1267 WellKnownClasses::java_lang_Thread_uncaughtHandler));
1268 if (handler.get() == nullptr) {
1269 // Otherwise use the thread group's default handler.
1270 handler.reset(tlsPtr_.jni_env->GetObjectField(peer.get(),
1271 WellKnownClasses::java_lang_Thread_group));
1272 }
1273
1274 // Call the handler.
1275 tlsPtr_.jni_env->CallVoidMethod(handler.get(),
1276 WellKnownClasses::java_lang_Thread$UncaughtExceptionHandler_uncaughtException,
1277 peer.get(), exception.get());
1278
1279 // If the handler threw, clear that exception too.
1280 tlsPtr_.jni_env->ExceptionClear();
1281 }
1282
RemoveFromThreadGroup(ScopedObjectAccess & soa)1283 void Thread::RemoveFromThreadGroup(ScopedObjectAccess& soa) {
1284 // this.group.removeThread(this);
1285 // group can be null if we're in the compiler or a test.
1286 mirror::Object* ogroup = soa.DecodeField(WellKnownClasses::java_lang_Thread_group)
1287 ->GetObject(tlsPtr_.opeer);
1288 if (ogroup != nullptr) {
1289 ScopedLocalRef<jobject> group(soa.Env(), soa.AddLocalReference<jobject>(ogroup));
1290 ScopedLocalRef<jobject> peer(soa.Env(), soa.AddLocalReference<jobject>(tlsPtr_.opeer));
1291 ScopedThreadStateChange tsc(soa.Self(), kNative);
1292 tlsPtr_.jni_env->CallVoidMethod(group.get(),
1293 WellKnownClasses::java_lang_ThreadGroup_removeThread,
1294 peer.get());
1295 }
1296 }
1297
NumHandleReferences()1298 size_t Thread::NumHandleReferences() {
1299 size_t count = 0;
1300 for (HandleScope* cur = tlsPtr_.top_handle_scope; cur; cur = cur->GetLink()) {
1301 count += cur->NumberOfReferences();
1302 }
1303 return count;
1304 }
1305
HandleScopeContains(jobject obj) const1306 bool Thread::HandleScopeContains(jobject obj) const {
1307 StackReference<mirror::Object>* hs_entry =
1308 reinterpret_cast<StackReference<mirror::Object>*>(obj);
1309 for (HandleScope* cur = tlsPtr_.top_handle_scope; cur; cur = cur->GetLink()) {
1310 if (cur->Contains(hs_entry)) {
1311 return true;
1312 }
1313 }
1314 // JNI code invoked from portable code uses shadow frames rather than the handle scope.
1315 return tlsPtr_.managed_stack.ShadowFramesContain(hs_entry);
1316 }
1317
HandleScopeVisitRoots(RootCallback * visitor,void * arg,uint32_t thread_id)1318 void Thread::HandleScopeVisitRoots(RootCallback* visitor, void* arg, uint32_t thread_id) {
1319 for (HandleScope* cur = tlsPtr_.top_handle_scope; cur; cur = cur->GetLink()) {
1320 size_t num_refs = cur->NumberOfReferences();
1321 for (size_t j = 0; j < num_refs; ++j) {
1322 mirror::Object* object = cur->GetReference(j);
1323 if (object != nullptr) {
1324 mirror::Object* old_obj = object;
1325 visitor(&object, arg, RootInfo(kRootNativeStack, thread_id));
1326 if (old_obj != object) {
1327 cur->SetReference(j, object);
1328 }
1329 }
1330 }
1331 }
1332 }
1333
DecodeJObject(jobject obj) const1334 mirror::Object* Thread::DecodeJObject(jobject obj) const {
1335 Locks::mutator_lock_->AssertSharedHeld(this);
1336 if (obj == nullptr) {
1337 return nullptr;
1338 }
1339 IndirectRef ref = reinterpret_cast<IndirectRef>(obj);
1340 IndirectRefKind kind = GetIndirectRefKind(ref);
1341 mirror::Object* result;
1342 // The "kinds" below are sorted by the frequency we expect to encounter them.
1343 if (kind == kLocal) {
1344 IndirectReferenceTable& locals = tlsPtr_.jni_env->locals;
1345 // Local references do not need a read barrier.
1346 result = locals.Get<kWithoutReadBarrier>(ref);
1347 } else if (kind == kHandleScopeOrInvalid) {
1348 // TODO: make stack indirect reference table lookup more efficient.
1349 // Check if this is a local reference in the handle scope.
1350 if (LIKELY(HandleScopeContains(obj))) {
1351 // Read from handle scope.
1352 result = reinterpret_cast<StackReference<mirror::Object>*>(obj)->AsMirrorPtr();
1353 VerifyObject(result);
1354 } else {
1355 result = kInvalidIndirectRefObject;
1356 }
1357 } else if (kind == kGlobal) {
1358 JavaVMExt* const vm = Runtime::Current()->GetJavaVM();
1359 result = vm->globals.SynchronizedGet(const_cast<Thread*>(this), &vm->globals_lock, ref);
1360 } else {
1361 DCHECK_EQ(kind, kWeakGlobal);
1362 result = Runtime::Current()->GetJavaVM()->DecodeWeakGlobal(const_cast<Thread*>(this), ref);
1363 if (result == kClearedJniWeakGlobal) {
1364 // This is a special case where it's okay to return nullptr.
1365 return nullptr;
1366 }
1367 }
1368
1369 if (UNLIKELY(result == nullptr)) {
1370 JniAbortF(nullptr, "use of deleted %s %p", ToStr<IndirectRefKind>(kind).c_str(), obj);
1371 }
1372 return result;
1373 }
1374
1375 // Implements java.lang.Thread.interrupted.
Interrupted()1376 bool Thread::Interrupted() {
1377 MutexLock mu(Thread::Current(), *wait_mutex_);
1378 bool interrupted = IsInterruptedLocked();
1379 SetInterruptedLocked(false);
1380 return interrupted;
1381 }
1382
1383 // Implements java.lang.Thread.isInterrupted.
IsInterrupted()1384 bool Thread::IsInterrupted() {
1385 MutexLock mu(Thread::Current(), *wait_mutex_);
1386 return IsInterruptedLocked();
1387 }
1388
Interrupt(Thread * self)1389 void Thread::Interrupt(Thread* self) {
1390 MutexLock mu(self, *wait_mutex_);
1391 if (interrupted_) {
1392 return;
1393 }
1394 interrupted_ = true;
1395 NotifyLocked(self);
1396 }
1397
Notify()1398 void Thread::Notify() {
1399 Thread* self = Thread::Current();
1400 MutexLock mu(self, *wait_mutex_);
1401 NotifyLocked(self);
1402 }
1403
NotifyLocked(Thread * self)1404 void Thread::NotifyLocked(Thread* self) {
1405 if (wait_monitor_ != nullptr) {
1406 wait_cond_->Signal(self);
1407 }
1408 }
1409
1410 class CountStackDepthVisitor : public StackVisitor {
1411 public:
1412 explicit CountStackDepthVisitor(Thread* thread)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)1413 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
1414 : StackVisitor(thread, nullptr),
1415 depth_(0), skip_depth_(0), skipping_(true) {}
1416
VisitFrame()1417 bool VisitFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1418 // We want to skip frames up to and including the exception's constructor.
1419 // Note we also skip the frame if it doesn't have a method (namely the callee
1420 // save frame)
1421 mirror::ArtMethod* m = GetMethod();
1422 if (skipping_ && !m->IsRuntimeMethod() &&
1423 !mirror::Throwable::GetJavaLangThrowable()->IsAssignableFrom(m->GetDeclaringClass())) {
1424 skipping_ = false;
1425 }
1426 if (!skipping_) {
1427 if (!m->IsRuntimeMethod()) { // Ignore runtime frames (in particular callee save).
1428 ++depth_;
1429 }
1430 } else {
1431 ++skip_depth_;
1432 }
1433 return true;
1434 }
1435
GetDepth() const1436 int GetDepth() const {
1437 return depth_;
1438 }
1439
GetSkipDepth() const1440 int GetSkipDepth() const {
1441 return skip_depth_;
1442 }
1443
1444 private:
1445 uint32_t depth_;
1446 uint32_t skip_depth_;
1447 bool skipping_;
1448 };
1449
1450 template<bool kTransactionActive>
1451 class BuildInternalStackTraceVisitor : public StackVisitor {
1452 public:
BuildInternalStackTraceVisitor(Thread * self,Thread * thread,int skip_depth)1453 explicit BuildInternalStackTraceVisitor(Thread* self, Thread* thread, int skip_depth)
1454 : StackVisitor(thread, nullptr), self_(self),
1455 skip_depth_(skip_depth), count_(0), dex_pc_trace_(nullptr), method_trace_(nullptr) {}
1456
Init(int depth)1457 bool Init(int depth)
1458 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1459 // Allocate method trace with an extra slot that will hold the PC trace
1460 StackHandleScope<1> hs(self_);
1461 ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
1462 Handle<mirror::ObjectArray<mirror::Object>> method_trace(
1463 hs.NewHandle(class_linker->AllocObjectArray<mirror::Object>(self_, depth + 1)));
1464 if (method_trace.Get() == nullptr) {
1465 return false;
1466 }
1467 mirror::IntArray* dex_pc_trace = mirror::IntArray::Alloc(self_, depth);
1468 if (dex_pc_trace == nullptr) {
1469 return false;
1470 }
1471 // Save PC trace in last element of method trace, also places it into the
1472 // object graph.
1473 // We are called from native: use non-transactional mode.
1474 method_trace->Set<kTransactionActive>(depth, dex_pc_trace);
1475 // Set the Object*s and assert that no thread suspension is now possible.
1476 const char* last_no_suspend_cause =
1477 self_->StartAssertNoThreadSuspension("Building internal stack trace");
1478 CHECK(last_no_suspend_cause == nullptr) << last_no_suspend_cause;
1479 method_trace_ = method_trace.Get();
1480 dex_pc_trace_ = dex_pc_trace;
1481 return true;
1482 }
1483
~BuildInternalStackTraceVisitor()1484 virtual ~BuildInternalStackTraceVisitor() {
1485 if (method_trace_ != nullptr) {
1486 self_->EndAssertNoThreadSuspension(nullptr);
1487 }
1488 }
1489
VisitFrame()1490 bool VisitFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1491 if (method_trace_ == nullptr || dex_pc_trace_ == nullptr) {
1492 return true; // We're probably trying to fillInStackTrace for an OutOfMemoryError.
1493 }
1494 if (skip_depth_ > 0) {
1495 skip_depth_--;
1496 return true;
1497 }
1498 mirror::ArtMethod* m = GetMethod();
1499 if (m->IsRuntimeMethod()) {
1500 return true; // Ignore runtime frames (in particular callee save).
1501 }
1502 method_trace_->Set<kTransactionActive>(count_, m);
1503 dex_pc_trace_->Set<kTransactionActive>(count_,
1504 m->IsProxyMethod() ? DexFile::kDexNoIndex : GetDexPc());
1505 ++count_;
1506 return true;
1507 }
1508
GetInternalStackTrace() const1509 mirror::ObjectArray<mirror::Object>* GetInternalStackTrace() const {
1510 return method_trace_;
1511 }
1512
1513 private:
1514 Thread* const self_;
1515 // How many more frames to skip.
1516 int32_t skip_depth_;
1517 // Current position down stack trace.
1518 uint32_t count_;
1519 // Array of dex PC values.
1520 mirror::IntArray* dex_pc_trace_;
1521 // An array of the methods on the stack, the last entry is a reference to the PC trace.
1522 mirror::ObjectArray<mirror::Object>* method_trace_;
1523 };
1524
1525 template<bool kTransactionActive>
CreateInternalStackTrace(const ScopedObjectAccessAlreadyRunnable & soa) const1526 jobject Thread::CreateInternalStackTrace(const ScopedObjectAccessAlreadyRunnable& soa) const {
1527 // Compute depth of stack
1528 CountStackDepthVisitor count_visitor(const_cast<Thread*>(this));
1529 count_visitor.WalkStack();
1530 int32_t depth = count_visitor.GetDepth();
1531 int32_t skip_depth = count_visitor.GetSkipDepth();
1532
1533 // Build internal stack trace.
1534 BuildInternalStackTraceVisitor<kTransactionActive> build_trace_visitor(soa.Self(),
1535 const_cast<Thread*>(this),
1536 skip_depth);
1537 if (!build_trace_visitor.Init(depth)) {
1538 return nullptr; // Allocation failed.
1539 }
1540 build_trace_visitor.WalkStack();
1541 mirror::ObjectArray<mirror::Object>* trace = build_trace_visitor.GetInternalStackTrace();
1542 if (kIsDebugBuild) {
1543 for (int32_t i = 0; i < trace->GetLength(); ++i) {
1544 CHECK(trace->Get(i) != nullptr);
1545 }
1546 }
1547 return soa.AddLocalReference<jobjectArray>(trace);
1548 }
1549 template jobject Thread::CreateInternalStackTrace<false>(
1550 const ScopedObjectAccessAlreadyRunnable& soa) const;
1551 template jobject Thread::CreateInternalStackTrace<true>(
1552 const ScopedObjectAccessAlreadyRunnable& soa) const;
1553
InternalStackTraceToStackTraceElementArray(const ScopedObjectAccessAlreadyRunnable & soa,jobject internal,jobjectArray output_array,int * stack_depth)1554 jobjectArray Thread::InternalStackTraceToStackTraceElementArray(
1555 const ScopedObjectAccessAlreadyRunnable& soa, jobject internal, jobjectArray output_array,
1556 int* stack_depth) {
1557 // Decode the internal stack trace into the depth, method trace and PC trace
1558 int32_t depth = soa.Decode<mirror::ObjectArray<mirror::Object>*>(internal)->GetLength() - 1;
1559
1560 ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
1561
1562 jobjectArray result;
1563
1564 if (output_array != nullptr) {
1565 // Reuse the array we were given.
1566 result = output_array;
1567 // ...adjusting the number of frames we'll write to not exceed the array length.
1568 const int32_t traces_length =
1569 soa.Decode<mirror::ObjectArray<mirror::StackTraceElement>*>(result)->GetLength();
1570 depth = std::min(depth, traces_length);
1571 } else {
1572 // Create java_trace array and place in local reference table
1573 mirror::ObjectArray<mirror::StackTraceElement>* java_traces =
1574 class_linker->AllocStackTraceElementArray(soa.Self(), depth);
1575 if (java_traces == nullptr) {
1576 return nullptr;
1577 }
1578 result = soa.AddLocalReference<jobjectArray>(java_traces);
1579 }
1580
1581 if (stack_depth != nullptr) {
1582 *stack_depth = depth;
1583 }
1584
1585 for (int32_t i = 0; i < depth; ++i) {
1586 mirror::ObjectArray<mirror::Object>* method_trace =
1587 soa.Decode<mirror::ObjectArray<mirror::Object>*>(internal);
1588 // Prepare parameters for StackTraceElement(String cls, String method, String file, int line)
1589 mirror::ArtMethod* method = down_cast<mirror::ArtMethod*>(method_trace->Get(i));
1590 int32_t line_number;
1591 StackHandleScope<3> hs(soa.Self());
1592 auto class_name_object(hs.NewHandle<mirror::String>(nullptr));
1593 auto source_name_object(hs.NewHandle<mirror::String>(nullptr));
1594 if (method->IsProxyMethod()) {
1595 line_number = -1;
1596 class_name_object.Assign(method->GetDeclaringClass()->GetName());
1597 // source_name_object intentionally left null for proxy methods
1598 } else {
1599 mirror::IntArray* pc_trace = down_cast<mirror::IntArray*>(method_trace->Get(depth));
1600 uint32_t dex_pc = pc_trace->Get(i);
1601 line_number = method->GetLineNumFromDexPC(dex_pc);
1602 // Allocate element, potentially triggering GC
1603 // TODO: reuse class_name_object via Class::name_?
1604 const char* descriptor = method->GetDeclaringClassDescriptor();
1605 CHECK(descriptor != nullptr);
1606 std::string class_name(PrettyDescriptor(descriptor));
1607 class_name_object.Assign(mirror::String::AllocFromModifiedUtf8(soa.Self(), class_name.c_str()));
1608 if (class_name_object.Get() == nullptr) {
1609 return nullptr;
1610 }
1611 const char* source_file = method->GetDeclaringClassSourceFile();
1612 if (source_file != nullptr) {
1613 source_name_object.Assign(mirror::String::AllocFromModifiedUtf8(soa.Self(), source_file));
1614 if (source_name_object.Get() == nullptr) {
1615 return nullptr;
1616 }
1617 }
1618 }
1619 const char* method_name = method->GetName();
1620 CHECK(method_name != nullptr);
1621 Handle<mirror::String> method_name_object(
1622 hs.NewHandle(mirror::String::AllocFromModifiedUtf8(soa.Self(), method_name)));
1623 if (method_name_object.Get() == nullptr) {
1624 return nullptr;
1625 }
1626 mirror::StackTraceElement* obj = mirror::StackTraceElement::Alloc(
1627 soa.Self(), class_name_object, method_name_object, source_name_object, line_number);
1628 if (obj == nullptr) {
1629 return nullptr;
1630 }
1631 // We are called from native: use non-transactional mode.
1632 soa.Decode<mirror::ObjectArray<mirror::StackTraceElement>*>(result)->Set<false>(i, obj);
1633 }
1634 return result;
1635 }
1636
ThrowNewExceptionF(const ThrowLocation & throw_location,const char * exception_class_descriptor,const char * fmt,...)1637 void Thread::ThrowNewExceptionF(const ThrowLocation& throw_location,
1638 const char* exception_class_descriptor, const char* fmt, ...) {
1639 va_list args;
1640 va_start(args, fmt);
1641 ThrowNewExceptionV(throw_location, exception_class_descriptor,
1642 fmt, args);
1643 va_end(args);
1644 }
1645
ThrowNewExceptionV(const ThrowLocation & throw_location,const char * exception_class_descriptor,const char * fmt,va_list ap)1646 void Thread::ThrowNewExceptionV(const ThrowLocation& throw_location,
1647 const char* exception_class_descriptor,
1648 const char* fmt, va_list ap) {
1649 std::string msg;
1650 StringAppendV(&msg, fmt, ap);
1651 ThrowNewException(throw_location, exception_class_descriptor, msg.c_str());
1652 }
1653
ThrowNewException(const ThrowLocation & throw_location,const char * exception_class_descriptor,const char * msg)1654 void Thread::ThrowNewException(const ThrowLocation& throw_location, const char* exception_class_descriptor,
1655 const char* msg) {
1656 // Callers should either clear or call ThrowNewWrappedException.
1657 AssertNoPendingExceptionForNewException(msg);
1658 ThrowNewWrappedException(throw_location, exception_class_descriptor, msg);
1659 }
1660
ThrowNewWrappedException(const ThrowLocation & throw_location,const char * exception_class_descriptor,const char * msg)1661 void Thread::ThrowNewWrappedException(const ThrowLocation& throw_location,
1662 const char* exception_class_descriptor,
1663 const char* msg) {
1664 DCHECK_EQ(this, Thread::Current());
1665 ScopedObjectAccessUnchecked soa(this);
1666 StackHandleScope<5> hs(soa.Self());
1667 // Ensure we don't forget arguments over object allocation.
1668 Handle<mirror::Object> saved_throw_this(hs.NewHandle(throw_location.GetThis()));
1669 Handle<mirror::ArtMethod> saved_throw_method(hs.NewHandle(throw_location.GetMethod()));
1670 // Ignore the cause throw location. TODO: should we report this as a re-throw?
1671 ScopedLocalRef<jobject> cause(GetJniEnv(), soa.AddLocalReference<jobject>(GetException(nullptr)));
1672 bool is_exception_reported = IsExceptionReportedToInstrumentation();
1673 ClearException();
1674 Runtime* runtime = Runtime::Current();
1675
1676 mirror::ClassLoader* cl = nullptr;
1677 if (saved_throw_method.Get() != nullptr) {
1678 cl = saved_throw_method.Get()->GetDeclaringClass()->GetClassLoader();
1679 }
1680 Handle<mirror::ClassLoader> class_loader(hs.NewHandle(cl));
1681 Handle<mirror::Class> exception_class(
1682 hs.NewHandle(runtime->GetClassLinker()->FindClass(this, exception_class_descriptor,
1683 class_loader)));
1684 if (UNLIKELY(exception_class.Get() == nullptr)) {
1685 CHECK(IsExceptionPending());
1686 LOG(ERROR) << "No exception class " << PrettyDescriptor(exception_class_descriptor);
1687 return;
1688 }
1689
1690 if (UNLIKELY(!runtime->GetClassLinker()->EnsureInitialized(exception_class, true, true))) {
1691 DCHECK(IsExceptionPending());
1692 return;
1693 }
1694 DCHECK(!runtime->IsStarted() || exception_class->IsThrowableClass());
1695 Handle<mirror::Throwable> exception(
1696 hs.NewHandle(down_cast<mirror::Throwable*>(exception_class->AllocObject(this))));
1697
1698 // If we couldn't allocate the exception, throw the pre-allocated out of memory exception.
1699 if (exception.Get() == nullptr) {
1700 ThrowLocation gc_safe_throw_location(saved_throw_this.Get(), saved_throw_method.Get(),
1701 throw_location.GetDexPc());
1702 SetException(gc_safe_throw_location, Runtime::Current()->GetPreAllocatedOutOfMemoryError());
1703 SetExceptionReportedToInstrumentation(is_exception_reported);
1704 return;
1705 }
1706
1707 // Choose an appropriate constructor and set up the arguments.
1708 const char* signature;
1709 ScopedLocalRef<jstring> msg_string(GetJniEnv(), nullptr);
1710 if (msg != nullptr) {
1711 // Ensure we remember this and the method over the String allocation.
1712 msg_string.reset(
1713 soa.AddLocalReference<jstring>(mirror::String::AllocFromModifiedUtf8(this, msg)));
1714 if (UNLIKELY(msg_string.get() == nullptr)) {
1715 CHECK(IsExceptionPending()); // OOME.
1716 return;
1717 }
1718 if (cause.get() == nullptr) {
1719 signature = "(Ljava/lang/String;)V";
1720 } else {
1721 signature = "(Ljava/lang/String;Ljava/lang/Throwable;)V";
1722 }
1723 } else {
1724 if (cause.get() == nullptr) {
1725 signature = "()V";
1726 } else {
1727 signature = "(Ljava/lang/Throwable;)V";
1728 }
1729 }
1730 mirror::ArtMethod* exception_init_method =
1731 exception_class->FindDeclaredDirectMethod("<init>", signature);
1732
1733 CHECK(exception_init_method != nullptr) << "No <init>" << signature << " in "
1734 << PrettyDescriptor(exception_class_descriptor);
1735
1736 if (UNLIKELY(!runtime->IsStarted())) {
1737 // Something is trying to throw an exception without a started runtime, which is the common
1738 // case in the compiler. We won't be able to invoke the constructor of the exception, so set
1739 // the exception fields directly.
1740 if (msg != nullptr) {
1741 exception->SetDetailMessage(down_cast<mirror::String*>(DecodeJObject(msg_string.get())));
1742 }
1743 if (cause.get() != nullptr) {
1744 exception->SetCause(down_cast<mirror::Throwable*>(DecodeJObject(cause.get())));
1745 }
1746 ScopedLocalRef<jobject> trace(GetJniEnv(),
1747 Runtime::Current()->IsActiveTransaction()
1748 ? CreateInternalStackTrace<true>(soa)
1749 : CreateInternalStackTrace<false>(soa));
1750 if (trace.get() != nullptr) {
1751 exception->SetStackState(down_cast<mirror::Throwable*>(DecodeJObject(trace.get())));
1752 }
1753 ThrowLocation gc_safe_throw_location(saved_throw_this.Get(), saved_throw_method.Get(),
1754 throw_location.GetDexPc());
1755 SetException(gc_safe_throw_location, exception.Get());
1756 SetExceptionReportedToInstrumentation(is_exception_reported);
1757 } else {
1758 jvalue jv_args[2];
1759 size_t i = 0;
1760
1761 if (msg != nullptr) {
1762 jv_args[i].l = msg_string.get();
1763 ++i;
1764 }
1765 if (cause.get() != nullptr) {
1766 jv_args[i].l = cause.get();
1767 ++i;
1768 }
1769 InvokeWithJValues(soa, exception.Get(), soa.EncodeMethod(exception_init_method), jv_args);
1770 if (LIKELY(!IsExceptionPending())) {
1771 ThrowLocation gc_safe_throw_location(saved_throw_this.Get(), saved_throw_method.Get(),
1772 throw_location.GetDexPc());
1773 SetException(gc_safe_throw_location, exception.Get());
1774 SetExceptionReportedToInstrumentation(is_exception_reported);
1775 }
1776 }
1777 }
1778
ThrowOutOfMemoryError(const char * msg)1779 void Thread::ThrowOutOfMemoryError(const char* msg) {
1780 LOG(ERROR) << StringPrintf("Throwing OutOfMemoryError \"%s\"%s",
1781 msg, (tls32_.throwing_OutOfMemoryError ? " (recursive case)" : ""));
1782 ThrowLocation throw_location = GetCurrentLocationForThrow();
1783 if (!tls32_.throwing_OutOfMemoryError) {
1784 tls32_.throwing_OutOfMemoryError = true;
1785 ThrowNewException(throw_location, "Ljava/lang/OutOfMemoryError;", msg);
1786 tls32_.throwing_OutOfMemoryError = false;
1787 } else {
1788 Dump(LOG(ERROR)); // The pre-allocated OOME has no stack, so help out and log one.
1789 SetException(throw_location, Runtime::Current()->GetPreAllocatedOutOfMemoryError());
1790 }
1791 }
1792
CurrentFromGdb()1793 Thread* Thread::CurrentFromGdb() {
1794 return Thread::Current();
1795 }
1796
DumpFromGdb() const1797 void Thread::DumpFromGdb() const {
1798 std::ostringstream ss;
1799 Dump(ss);
1800 std::string str(ss.str());
1801 // log to stderr for debugging command line processes
1802 std::cerr << str;
1803 #ifdef HAVE_ANDROID_OS
1804 // log to logcat for debugging frameworks processes
1805 LOG(INFO) << str;
1806 #endif
1807 }
1808
1809 // Explicitly instantiate 32 and 64bit thread offset dumping support.
1810 template void Thread::DumpThreadOffset<4>(std::ostream& os, uint32_t offset);
1811 template void Thread::DumpThreadOffset<8>(std::ostream& os, uint32_t offset);
1812
1813 template<size_t ptr_size>
DumpThreadOffset(std::ostream & os,uint32_t offset)1814 void Thread::DumpThreadOffset(std::ostream& os, uint32_t offset) {
1815 #define DO_THREAD_OFFSET(x, y) \
1816 if (offset == x.Uint32Value()) { \
1817 os << y; \
1818 return; \
1819 }
1820 DO_THREAD_OFFSET(ThreadFlagsOffset<ptr_size>(), "state_and_flags")
1821 DO_THREAD_OFFSET(CardTableOffset<ptr_size>(), "card_table")
1822 DO_THREAD_OFFSET(ExceptionOffset<ptr_size>(), "exception")
1823 DO_THREAD_OFFSET(PeerOffset<ptr_size>(), "peer");
1824 DO_THREAD_OFFSET(JniEnvOffset<ptr_size>(), "jni_env")
1825 DO_THREAD_OFFSET(SelfOffset<ptr_size>(), "self")
1826 DO_THREAD_OFFSET(StackEndOffset<ptr_size>(), "stack_end")
1827 DO_THREAD_OFFSET(ThinLockIdOffset<ptr_size>(), "thin_lock_thread_id")
1828 DO_THREAD_OFFSET(TopOfManagedStackOffset<ptr_size>(), "top_quick_frame_method")
1829 DO_THREAD_OFFSET(TopOfManagedStackPcOffset<ptr_size>(), "top_quick_frame_pc")
1830 DO_THREAD_OFFSET(TopShadowFrameOffset<ptr_size>(), "top_shadow_frame")
1831 DO_THREAD_OFFSET(TopHandleScopeOffset<ptr_size>(), "top_handle_scope")
1832 DO_THREAD_OFFSET(ThreadSuspendTriggerOffset<ptr_size>(), "suspend_trigger")
1833 #undef DO_THREAD_OFFSET
1834
1835 #define INTERPRETER_ENTRY_POINT_INFO(x) \
1836 if (INTERPRETER_ENTRYPOINT_OFFSET(ptr_size, x).Uint32Value() == offset) { \
1837 os << #x; \
1838 return; \
1839 }
1840 INTERPRETER_ENTRY_POINT_INFO(pInterpreterToInterpreterBridge)
1841 INTERPRETER_ENTRY_POINT_INFO(pInterpreterToCompiledCodeBridge)
1842 #undef INTERPRETER_ENTRY_POINT_INFO
1843
1844 #define JNI_ENTRY_POINT_INFO(x) \
1845 if (JNI_ENTRYPOINT_OFFSET(ptr_size, x).Uint32Value() == offset) { \
1846 os << #x; \
1847 return; \
1848 }
1849 JNI_ENTRY_POINT_INFO(pDlsymLookup)
1850 #undef JNI_ENTRY_POINT_INFO
1851
1852 #define PORTABLE_ENTRY_POINT_INFO(x) \
1853 if (PORTABLE_ENTRYPOINT_OFFSET(ptr_size, x).Uint32Value() == offset) { \
1854 os << #x; \
1855 return; \
1856 }
1857 PORTABLE_ENTRY_POINT_INFO(pPortableImtConflictTrampoline)
1858 PORTABLE_ENTRY_POINT_INFO(pPortableResolutionTrampoline)
1859 PORTABLE_ENTRY_POINT_INFO(pPortableToInterpreterBridge)
1860 #undef PORTABLE_ENTRY_POINT_INFO
1861
1862 #define QUICK_ENTRY_POINT_INFO(x) \
1863 if (QUICK_ENTRYPOINT_OFFSET(ptr_size, x).Uint32Value() == offset) { \
1864 os << #x; \
1865 return; \
1866 }
1867 QUICK_ENTRY_POINT_INFO(pAllocArray)
1868 QUICK_ENTRY_POINT_INFO(pAllocArrayResolved)
1869 QUICK_ENTRY_POINT_INFO(pAllocArrayWithAccessCheck)
1870 QUICK_ENTRY_POINT_INFO(pAllocObject)
1871 QUICK_ENTRY_POINT_INFO(pAllocObjectResolved)
1872 QUICK_ENTRY_POINT_INFO(pAllocObjectInitialized)
1873 QUICK_ENTRY_POINT_INFO(pAllocObjectWithAccessCheck)
1874 QUICK_ENTRY_POINT_INFO(pCheckAndAllocArray)
1875 QUICK_ENTRY_POINT_INFO(pCheckAndAllocArrayWithAccessCheck)
1876 QUICK_ENTRY_POINT_INFO(pInstanceofNonTrivial)
1877 QUICK_ENTRY_POINT_INFO(pCheckCast)
1878 QUICK_ENTRY_POINT_INFO(pInitializeStaticStorage)
1879 QUICK_ENTRY_POINT_INFO(pInitializeTypeAndVerifyAccess)
1880 QUICK_ENTRY_POINT_INFO(pInitializeType)
1881 QUICK_ENTRY_POINT_INFO(pResolveString)
1882 QUICK_ENTRY_POINT_INFO(pSet32Instance)
1883 QUICK_ENTRY_POINT_INFO(pSet32Static)
1884 QUICK_ENTRY_POINT_INFO(pSet64Instance)
1885 QUICK_ENTRY_POINT_INFO(pSet64Static)
1886 QUICK_ENTRY_POINT_INFO(pSetObjInstance)
1887 QUICK_ENTRY_POINT_INFO(pSetObjStatic)
1888 QUICK_ENTRY_POINT_INFO(pGet32Instance)
1889 QUICK_ENTRY_POINT_INFO(pGet32Static)
1890 QUICK_ENTRY_POINT_INFO(pGet64Instance)
1891 QUICK_ENTRY_POINT_INFO(pGet64Static)
1892 QUICK_ENTRY_POINT_INFO(pGetObjInstance)
1893 QUICK_ENTRY_POINT_INFO(pGetObjStatic)
1894 QUICK_ENTRY_POINT_INFO(pAputObjectWithNullAndBoundCheck)
1895 QUICK_ENTRY_POINT_INFO(pAputObjectWithBoundCheck)
1896 QUICK_ENTRY_POINT_INFO(pAputObject)
1897 QUICK_ENTRY_POINT_INFO(pHandleFillArrayData)
1898 QUICK_ENTRY_POINT_INFO(pJniMethodStart)
1899 QUICK_ENTRY_POINT_INFO(pJniMethodStartSynchronized)
1900 QUICK_ENTRY_POINT_INFO(pJniMethodEnd)
1901 QUICK_ENTRY_POINT_INFO(pJniMethodEndSynchronized)
1902 QUICK_ENTRY_POINT_INFO(pJniMethodEndWithReference)
1903 QUICK_ENTRY_POINT_INFO(pJniMethodEndWithReferenceSynchronized)
1904 QUICK_ENTRY_POINT_INFO(pQuickGenericJniTrampoline)
1905 QUICK_ENTRY_POINT_INFO(pLockObject)
1906 QUICK_ENTRY_POINT_INFO(pUnlockObject)
1907 QUICK_ENTRY_POINT_INFO(pCmpgDouble)
1908 QUICK_ENTRY_POINT_INFO(pCmpgFloat)
1909 QUICK_ENTRY_POINT_INFO(pCmplDouble)
1910 QUICK_ENTRY_POINT_INFO(pCmplFloat)
1911 QUICK_ENTRY_POINT_INFO(pFmod)
1912 QUICK_ENTRY_POINT_INFO(pL2d)
1913 QUICK_ENTRY_POINT_INFO(pFmodf)
1914 QUICK_ENTRY_POINT_INFO(pL2f)
1915 QUICK_ENTRY_POINT_INFO(pD2iz)
1916 QUICK_ENTRY_POINT_INFO(pF2iz)
1917 QUICK_ENTRY_POINT_INFO(pIdivmod)
1918 QUICK_ENTRY_POINT_INFO(pD2l)
1919 QUICK_ENTRY_POINT_INFO(pF2l)
1920 QUICK_ENTRY_POINT_INFO(pLdiv)
1921 QUICK_ENTRY_POINT_INFO(pLmod)
1922 QUICK_ENTRY_POINT_INFO(pLmul)
1923 QUICK_ENTRY_POINT_INFO(pShlLong)
1924 QUICK_ENTRY_POINT_INFO(pShrLong)
1925 QUICK_ENTRY_POINT_INFO(pUshrLong)
1926 QUICK_ENTRY_POINT_INFO(pIndexOf)
1927 QUICK_ENTRY_POINT_INFO(pStringCompareTo)
1928 QUICK_ENTRY_POINT_INFO(pMemcpy)
1929 QUICK_ENTRY_POINT_INFO(pQuickImtConflictTrampoline)
1930 QUICK_ENTRY_POINT_INFO(pQuickResolutionTrampoline)
1931 QUICK_ENTRY_POINT_INFO(pQuickToInterpreterBridge)
1932 QUICK_ENTRY_POINT_INFO(pInvokeDirectTrampolineWithAccessCheck)
1933 QUICK_ENTRY_POINT_INFO(pInvokeInterfaceTrampolineWithAccessCheck)
1934 QUICK_ENTRY_POINT_INFO(pInvokeStaticTrampolineWithAccessCheck)
1935 QUICK_ENTRY_POINT_INFO(pInvokeSuperTrampolineWithAccessCheck)
1936 QUICK_ENTRY_POINT_INFO(pInvokeVirtualTrampolineWithAccessCheck)
1937 QUICK_ENTRY_POINT_INFO(pTestSuspend)
1938 QUICK_ENTRY_POINT_INFO(pDeliverException)
1939 QUICK_ENTRY_POINT_INFO(pThrowArrayBounds)
1940 QUICK_ENTRY_POINT_INFO(pThrowDivZero)
1941 QUICK_ENTRY_POINT_INFO(pThrowNoSuchMethod)
1942 QUICK_ENTRY_POINT_INFO(pThrowNullPointer)
1943 QUICK_ENTRY_POINT_INFO(pThrowStackOverflow)
1944 QUICK_ENTRY_POINT_INFO(pA64Load)
1945 QUICK_ENTRY_POINT_INFO(pA64Store)
1946 #undef QUICK_ENTRY_POINT_INFO
1947
1948 os << offset;
1949 }
1950
QuickDeliverException()1951 void Thread::QuickDeliverException() {
1952 // Get exception from thread.
1953 ThrowLocation throw_location;
1954 mirror::Throwable* exception = GetException(&throw_location);
1955 CHECK(exception != nullptr);
1956 // Don't leave exception visible while we try to find the handler, which may cause class
1957 // resolution.
1958 bool is_exception_reported = IsExceptionReportedToInstrumentation();
1959 ClearException();
1960 bool is_deoptimization = (exception == GetDeoptimizationException());
1961 QuickExceptionHandler exception_handler(this, is_deoptimization);
1962 if (is_deoptimization) {
1963 exception_handler.DeoptimizeStack();
1964 } else {
1965 exception_handler.FindCatch(throw_location, exception, is_exception_reported);
1966 }
1967 exception_handler.UpdateInstrumentationStack();
1968 exception_handler.DoLongJump();
1969 LOG(FATAL) << "UNREACHABLE";
1970 }
1971
GetLongJumpContext()1972 Context* Thread::GetLongJumpContext() {
1973 Context* result = tlsPtr_.long_jump_context;
1974 if (result == nullptr) {
1975 result = Context::Create();
1976 } else {
1977 tlsPtr_.long_jump_context = nullptr; // Avoid context being shared.
1978 result->Reset();
1979 }
1980 return result;
1981 }
1982
1983 // Note: this visitor may return with a method set, but dex_pc_ being DexFile:kDexNoIndex. This is
1984 // so we don't abort in a special situation (thinlocked monitor) when dumping the Java stack.
1985 struct CurrentMethodVisitor FINAL : public StackVisitor {
CurrentMethodVisitorart::FINAL1986 CurrentMethodVisitor(Thread* thread, Context* context, bool abort_on_error)
1987 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
1988 : StackVisitor(thread, context), this_object_(nullptr), method_(nullptr), dex_pc_(0),
1989 abort_on_error_(abort_on_error) {}
VisitFrameart::FINAL1990 bool VisitFrame() OVERRIDE SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1991 mirror::ArtMethod* m = GetMethod();
1992 if (m->IsRuntimeMethod()) {
1993 // Continue if this is a runtime method.
1994 return true;
1995 }
1996 if (context_ != nullptr) {
1997 this_object_ = GetThisObject();
1998 }
1999 method_ = m;
2000 dex_pc_ = GetDexPc(abort_on_error_);
2001 return false;
2002 }
2003 mirror::Object* this_object_;
2004 mirror::ArtMethod* method_;
2005 uint32_t dex_pc_;
2006 const bool abort_on_error_;
2007 };
2008
GetCurrentMethod(uint32_t * dex_pc,bool abort_on_error) const2009 mirror::ArtMethod* Thread::GetCurrentMethod(uint32_t* dex_pc, bool abort_on_error) const {
2010 CurrentMethodVisitor visitor(const_cast<Thread*>(this), nullptr, abort_on_error);
2011 visitor.WalkStack(false);
2012 if (dex_pc != nullptr) {
2013 *dex_pc = visitor.dex_pc_;
2014 }
2015 return visitor.method_;
2016 }
2017
GetCurrentLocationForThrow()2018 ThrowLocation Thread::GetCurrentLocationForThrow() {
2019 Context* context = GetLongJumpContext();
2020 CurrentMethodVisitor visitor(this, context, true);
2021 visitor.WalkStack(false);
2022 ReleaseLongJumpContext(context);
2023 return ThrowLocation(visitor.this_object_, visitor.method_, visitor.dex_pc_);
2024 }
2025
HoldsLock(mirror::Object * object) const2026 bool Thread::HoldsLock(mirror::Object* object) const {
2027 if (object == nullptr) {
2028 return false;
2029 }
2030 return object->GetLockOwnerThreadId() == GetThreadId();
2031 }
2032
2033 // RootVisitor parameters are: (const Object* obj, size_t vreg, const StackVisitor* visitor).
2034 template <typename RootVisitor>
2035 class ReferenceMapVisitor : public StackVisitor {
2036 public:
ReferenceMapVisitor(Thread * thread,Context * context,const RootVisitor & visitor)2037 ReferenceMapVisitor(Thread* thread, Context* context, const RootVisitor& visitor)
2038 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
2039 : StackVisitor(thread, context), visitor_(visitor) {}
2040
VisitFrame()2041 bool VisitFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
2042 if (false) {
2043 LOG(INFO) << "Visiting stack roots in " << PrettyMethod(GetMethod())
2044 << StringPrintf("@ PC:%04x", GetDexPc());
2045 }
2046 ShadowFrame* shadow_frame = GetCurrentShadowFrame();
2047 if (shadow_frame != nullptr) {
2048 VisitShadowFrame(shadow_frame);
2049 } else {
2050 VisitQuickFrame();
2051 }
2052 return true;
2053 }
2054
VisitShadowFrame(ShadowFrame * shadow_frame)2055 void VisitShadowFrame(ShadowFrame* shadow_frame) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
2056 mirror::ArtMethod** method_addr = shadow_frame->GetMethodAddress();
2057 visitor_(reinterpret_cast<mirror::Object**>(method_addr), 0 /*ignored*/, this);
2058 mirror::ArtMethod* m = *method_addr;
2059 DCHECK(m != nullptr);
2060 size_t num_regs = shadow_frame->NumberOfVRegs();
2061 if (m->IsNative() || shadow_frame->HasReferenceArray()) {
2062 // handle scope for JNI or References for interpreter.
2063 for (size_t reg = 0; reg < num_regs; ++reg) {
2064 mirror::Object* ref = shadow_frame->GetVRegReference(reg);
2065 if (ref != nullptr) {
2066 mirror::Object* new_ref = ref;
2067 visitor_(&new_ref, reg, this);
2068 if (new_ref != ref) {
2069 shadow_frame->SetVRegReference(reg, new_ref);
2070 }
2071 }
2072 }
2073 } else {
2074 // Java method.
2075 // Portable path use DexGcMap and store in Method.native_gc_map_.
2076 const uint8_t* gc_map = m->GetNativeGcMap(sizeof(void*));
2077 CHECK(gc_map != nullptr) << PrettyMethod(m);
2078 verifier::DexPcToReferenceMap dex_gc_map(gc_map);
2079 uint32_t dex_pc = shadow_frame->GetDexPC();
2080 const uint8_t* reg_bitmap = dex_gc_map.FindBitMap(dex_pc);
2081 DCHECK(reg_bitmap != nullptr);
2082 num_regs = std::min(dex_gc_map.RegWidth() * 8, num_regs);
2083 for (size_t reg = 0; reg < num_regs; ++reg) {
2084 if (TestBitmap(reg, reg_bitmap)) {
2085 mirror::Object* ref = shadow_frame->GetVRegReference(reg);
2086 if (ref != nullptr) {
2087 mirror::Object* new_ref = ref;
2088 visitor_(&new_ref, reg, this);
2089 if (new_ref != ref) {
2090 shadow_frame->SetVRegReference(reg, new_ref);
2091 }
2092 }
2093 }
2094 }
2095 }
2096 }
2097
2098 private:
VisitQuickFrame()2099 void VisitQuickFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
2100 StackReference<mirror::ArtMethod>* cur_quick_frame = GetCurrentQuickFrame();
2101 mirror::ArtMethod* m = cur_quick_frame->AsMirrorPtr();
2102 mirror::ArtMethod* old_method = m;
2103 visitor_(reinterpret_cast<mirror::Object**>(&m), 0 /*ignored*/, this);
2104 if (m != old_method) {
2105 cur_quick_frame->Assign(m);
2106 }
2107
2108 // Process register map (which native and runtime methods don't have)
2109 if (!m->IsNative() && !m->IsRuntimeMethod() && !m->IsProxyMethod()) {
2110 const uint8_t* native_gc_map = m->GetNativeGcMap(sizeof(void*));
2111 CHECK(native_gc_map != nullptr) << PrettyMethod(m);
2112 const DexFile::CodeItem* code_item = m->GetCodeItem();
2113 DCHECK(code_item != nullptr) << PrettyMethod(m); // Can't be nullptr or how would we compile its instructions?
2114 NativePcOffsetToReferenceMap map(native_gc_map);
2115 size_t num_regs = std::min(map.RegWidth() * 8,
2116 static_cast<size_t>(code_item->registers_size_));
2117 if (num_regs > 0) {
2118 Runtime* runtime = Runtime::Current();
2119 const void* entry_point = runtime->GetInstrumentation()->GetQuickCodeFor(m, sizeof(void*));
2120 uintptr_t native_pc_offset = m->NativePcOffset(GetCurrentQuickFramePc(), entry_point);
2121 const uint8_t* reg_bitmap = map.FindBitMap(native_pc_offset);
2122 DCHECK(reg_bitmap != nullptr);
2123 const void* code_pointer = mirror::ArtMethod::EntryPointToCodePointer(entry_point);
2124 const VmapTable vmap_table(m->GetVmapTable(code_pointer, sizeof(void*)));
2125 QuickMethodFrameInfo frame_info = m->GetQuickFrameInfo(code_pointer);
2126 // For all dex registers in the bitmap
2127 StackReference<mirror::ArtMethod>* cur_quick_frame = GetCurrentQuickFrame();
2128 DCHECK(cur_quick_frame != nullptr);
2129 for (size_t reg = 0; reg < num_regs; ++reg) {
2130 // Does this register hold a reference?
2131 if (TestBitmap(reg, reg_bitmap)) {
2132 uint32_t vmap_offset;
2133 if (vmap_table.IsInContext(reg, kReferenceVReg, &vmap_offset)) {
2134 int vmap_reg = vmap_table.ComputeRegister(frame_info.CoreSpillMask(), vmap_offset,
2135 kReferenceVReg);
2136 // This is sound as spilled GPRs will be word sized (ie 32 or 64bit).
2137 mirror::Object** ref_addr = reinterpret_cast<mirror::Object**>(GetGPRAddress(vmap_reg));
2138 if (*ref_addr != nullptr) {
2139 visitor_(ref_addr, reg, this);
2140 }
2141 } else {
2142 StackReference<mirror::Object>* ref_addr =
2143 reinterpret_cast<StackReference<mirror::Object>*>(
2144 GetVRegAddr(cur_quick_frame, code_item, frame_info.CoreSpillMask(),
2145 frame_info.FpSpillMask(), frame_info.FrameSizeInBytes(), reg));
2146 mirror::Object* ref = ref_addr->AsMirrorPtr();
2147 if (ref != nullptr) {
2148 mirror::Object* new_ref = ref;
2149 visitor_(&new_ref, reg, this);
2150 if (ref != new_ref) {
2151 ref_addr->Assign(new_ref);
2152 }
2153 }
2154 }
2155 }
2156 }
2157 }
2158 }
2159 }
2160
TestBitmap(size_t reg,const uint8_t * reg_vector)2161 static bool TestBitmap(size_t reg, const uint8_t* reg_vector) {
2162 return ((reg_vector[reg / kBitsPerByte] >> (reg % kBitsPerByte)) & 0x01) != 0;
2163 }
2164
2165 // Visitor for when we visit a root.
2166 const RootVisitor& visitor_;
2167 };
2168
2169 class RootCallbackVisitor {
2170 public:
RootCallbackVisitor(RootCallback * callback,void * arg,uint32_t tid)2171 RootCallbackVisitor(RootCallback* callback, void* arg, uint32_t tid)
2172 : callback_(callback), arg_(arg), tid_(tid) {}
2173
operator ()(mirror::Object ** obj,size_t vreg,const StackVisitor * stack_visitor) const2174 void operator()(mirror::Object** obj, size_t vreg, const StackVisitor* stack_visitor) const {
2175 callback_(obj, arg_, JavaFrameRootInfo(tid_, stack_visitor, vreg));
2176 }
2177
2178 private:
2179 RootCallback* const callback_;
2180 void* const arg_;
2181 const uint32_t tid_;
2182 };
2183
SetClassLoaderOverride(mirror::ClassLoader * class_loader_override)2184 void Thread::SetClassLoaderOverride(mirror::ClassLoader* class_loader_override) {
2185 VerifyObject(class_loader_override);
2186 tlsPtr_.class_loader_override = class_loader_override;
2187 }
2188
VisitRoots(RootCallback * visitor,void * arg)2189 void Thread::VisitRoots(RootCallback* visitor, void* arg) {
2190 uint32_t thread_id = GetThreadId();
2191 if (tlsPtr_.opeer != nullptr) {
2192 visitor(&tlsPtr_.opeer, arg, RootInfo(kRootThreadObject, thread_id));
2193 }
2194 if (tlsPtr_.exception != nullptr && tlsPtr_.exception != GetDeoptimizationException()) {
2195 visitor(reinterpret_cast<mirror::Object**>(&tlsPtr_.exception), arg,
2196 RootInfo(kRootNativeStack, thread_id));
2197 }
2198 tlsPtr_.throw_location.VisitRoots(visitor, arg);
2199 if (tlsPtr_.class_loader_override != nullptr) {
2200 visitor(reinterpret_cast<mirror::Object**>(&tlsPtr_.class_loader_override), arg,
2201 RootInfo(kRootNativeStack, thread_id));
2202 }
2203 if (tlsPtr_.monitor_enter_object != nullptr) {
2204 visitor(&tlsPtr_.monitor_enter_object, arg, RootInfo(kRootNativeStack, thread_id));
2205 }
2206 tlsPtr_.jni_env->locals.VisitRoots(visitor, arg, RootInfo(kRootJNILocal, thread_id));
2207 tlsPtr_.jni_env->monitors.VisitRoots(visitor, arg, RootInfo(kRootJNIMonitor, thread_id));
2208 HandleScopeVisitRoots(visitor, arg, thread_id);
2209 if (tlsPtr_.debug_invoke_req != nullptr) {
2210 tlsPtr_.debug_invoke_req->VisitRoots(visitor, arg, RootInfo(kRootDebugger, thread_id));
2211 }
2212 if (tlsPtr_.single_step_control != nullptr) {
2213 tlsPtr_.single_step_control->VisitRoots(visitor, arg, RootInfo(kRootDebugger, thread_id));
2214 }
2215 if (tlsPtr_.deoptimization_shadow_frame != nullptr) {
2216 RootCallbackVisitor visitorToCallback(visitor, arg, thread_id);
2217 ReferenceMapVisitor<RootCallbackVisitor> mapper(this, nullptr, visitorToCallback);
2218 for (ShadowFrame* shadow_frame = tlsPtr_.deoptimization_shadow_frame; shadow_frame != nullptr;
2219 shadow_frame = shadow_frame->GetLink()) {
2220 mapper.VisitShadowFrame(shadow_frame);
2221 }
2222 }
2223 if (tlsPtr_.shadow_frame_under_construction != nullptr) {
2224 RootCallbackVisitor visitor_to_callback(visitor, arg, thread_id);
2225 ReferenceMapVisitor<RootCallbackVisitor> mapper(this, nullptr, visitor_to_callback);
2226 for (ShadowFrame* shadow_frame = tlsPtr_.shadow_frame_under_construction;
2227 shadow_frame != nullptr;
2228 shadow_frame = shadow_frame->GetLink()) {
2229 mapper.VisitShadowFrame(shadow_frame);
2230 }
2231 }
2232 // Visit roots on this thread's stack
2233 Context* context = GetLongJumpContext();
2234 RootCallbackVisitor visitor_to_callback(visitor, arg, thread_id);
2235 ReferenceMapVisitor<RootCallbackVisitor> mapper(this, context, visitor_to_callback);
2236 mapper.WalkStack();
2237 ReleaseLongJumpContext(context);
2238 for (instrumentation::InstrumentationStackFrame& frame : *GetInstrumentationStack()) {
2239 if (frame.this_object_ != nullptr) {
2240 visitor(&frame.this_object_, arg, RootInfo(kRootVMInternal, thread_id));
2241 }
2242 DCHECK(frame.method_ != nullptr);
2243 visitor(reinterpret_cast<mirror::Object**>(&frame.method_), arg,
2244 RootInfo(kRootVMInternal, thread_id));
2245 }
2246 }
2247
VerifyRoot(mirror::Object ** root,void *,const RootInfo &)2248 static void VerifyRoot(mirror::Object** root, void* /*arg*/, const RootInfo& /*root_info*/)
2249 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
2250 VerifyObject(*root);
2251 }
2252
VerifyStackImpl()2253 void Thread::VerifyStackImpl() {
2254 std::unique_ptr<Context> context(Context::Create());
2255 RootCallbackVisitor visitorToCallback(VerifyRoot, Runtime::Current()->GetHeap(), GetThreadId());
2256 ReferenceMapVisitor<RootCallbackVisitor> mapper(this, context.get(), visitorToCallback);
2257 mapper.WalkStack();
2258 }
2259
2260 // Set the stack end to that to be used during a stack overflow
SetStackEndForStackOverflow()2261 void Thread::SetStackEndForStackOverflow() {
2262 // During stack overflow we allow use of the full stack.
2263 if (tlsPtr_.stack_end == tlsPtr_.stack_begin) {
2264 // However, we seem to have already extended to use the full stack.
2265 LOG(ERROR) << "Need to increase kStackOverflowReservedBytes (currently "
2266 << GetStackOverflowReservedBytes(kRuntimeISA) << ")?";
2267 DumpStack(LOG(ERROR));
2268 LOG(FATAL) << "Recursive stack overflow.";
2269 }
2270
2271 tlsPtr_.stack_end = tlsPtr_.stack_begin;
2272
2273 // Remove the stack overflow protection if is it set up.
2274 bool implicit_stack_check = !Runtime::Current()->ExplicitStackOverflowChecks();
2275 if (implicit_stack_check) {
2276 if (!UnprotectStack()) {
2277 LOG(ERROR) << "Unable to remove stack protection for stack overflow";
2278 }
2279 }
2280 }
2281
SetTlab(byte * start,byte * end)2282 void Thread::SetTlab(byte* start, byte* end) {
2283 DCHECK_LE(start, end);
2284 tlsPtr_.thread_local_start = start;
2285 tlsPtr_.thread_local_pos = tlsPtr_.thread_local_start;
2286 tlsPtr_.thread_local_end = end;
2287 tlsPtr_.thread_local_objects = 0;
2288 }
2289
HasTlab() const2290 bool Thread::HasTlab() const {
2291 bool has_tlab = tlsPtr_.thread_local_pos != nullptr;
2292 if (has_tlab) {
2293 DCHECK(tlsPtr_.thread_local_start != nullptr && tlsPtr_.thread_local_end != nullptr);
2294 } else {
2295 DCHECK(tlsPtr_.thread_local_start == nullptr && tlsPtr_.thread_local_end == nullptr);
2296 }
2297 return has_tlab;
2298 }
2299
operator <<(std::ostream & os,const Thread & thread)2300 std::ostream& operator<<(std::ostream& os, const Thread& thread) {
2301 thread.ShortDump(os);
2302 return os;
2303 }
2304
ProtectStack()2305 void Thread::ProtectStack() {
2306 void* pregion = tlsPtr_.stack_begin - kStackOverflowProtectedSize;
2307 VLOG(threads) << "Protecting stack at " << pregion;
2308 if (mprotect(pregion, kStackOverflowProtectedSize, PROT_NONE) == -1) {
2309 LOG(FATAL) << "Unable to create protected region in stack for implicit overflow check. "
2310 "Reason: "
2311 << strerror(errno) << " size: " << kStackOverflowProtectedSize;
2312 }
2313 }
2314
UnprotectStack()2315 bool Thread::UnprotectStack() {
2316 void* pregion = tlsPtr_.stack_begin - kStackOverflowProtectedSize;
2317 VLOG(threads) << "Unprotecting stack at " << pregion;
2318 return mprotect(pregion, kStackOverflowProtectedSize, PROT_READ|PROT_WRITE) == 0;
2319 }
2320
2321
2322 } // namespace art
2323