1 /*
2  * Copyright (C) 2012 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "thread_pool.h"
18 
19 #include "base/casts.h"
20 #include "base/stl_util.h"
21 #include "runtime.h"
22 #include "thread-inl.h"
23 
24 namespace art {
25 
26 static constexpr bool kMeasureWaitTime = false;
27 
ThreadPoolWorker(ThreadPool * thread_pool,const std::string & name,size_t stack_size)28 ThreadPoolWorker::ThreadPoolWorker(ThreadPool* thread_pool, const std::string& name,
29                                    size_t stack_size)
30     : thread_pool_(thread_pool),
31       name_(name) {
32   std::string error_msg;
33   stack_.reset(MemMap::MapAnonymous(name.c_str(), nullptr, stack_size, PROT_READ | PROT_WRITE,
34                                     false, &error_msg));
35   CHECK(stack_.get() != nullptr) << error_msg;
36   const char* reason = "new thread pool worker thread";
37   pthread_attr_t attr;
38   CHECK_PTHREAD_CALL(pthread_attr_init, (&attr), reason);
39   CHECK_PTHREAD_CALL(pthread_attr_setstack, (&attr, stack_->Begin(), stack_->Size()), reason);
40   CHECK_PTHREAD_CALL(pthread_create, (&pthread_, &attr, &Callback, this), reason);
41   CHECK_PTHREAD_CALL(pthread_attr_destroy, (&attr), reason);
42 }
43 
~ThreadPoolWorker()44 ThreadPoolWorker::~ThreadPoolWorker() {
45   CHECK_PTHREAD_CALL(pthread_join, (pthread_, NULL), "thread pool worker shutdown");
46 }
47 
Run()48 void ThreadPoolWorker::Run() {
49   Thread* self = Thread::Current();
50   Task* task = NULL;
51   thread_pool_->creation_barier_.Wait(self);
52   while ((task = thread_pool_->GetTask(self)) != NULL) {
53     task->Run(self);
54     task->Finalize();
55   }
56 }
57 
Callback(void * arg)58 void* ThreadPoolWorker::Callback(void* arg) {
59   ThreadPoolWorker* worker = reinterpret_cast<ThreadPoolWorker*>(arg);
60   Runtime* runtime = Runtime::Current();
61   CHECK(runtime->AttachCurrentThread(worker->name_.c_str(), true, NULL, false));
62   // Do work until its time to shut down.
63   worker->Run();
64   runtime->DetachCurrentThread();
65   return NULL;
66 }
67 
AddTask(Thread * self,Task * task)68 void ThreadPool::AddTask(Thread* self, Task* task) {
69   MutexLock mu(self, task_queue_lock_);
70   tasks_.push_back(task);
71   // If we have any waiters, signal one.
72   if (started_ && waiting_count_ != 0) {
73     task_queue_condition_.Signal(self);
74   }
75 }
76 
ThreadPool(const char * name,size_t num_threads)77 ThreadPool::ThreadPool(const char* name, size_t num_threads)
78   : name_(name),
79     task_queue_lock_("task queue lock"),
80     task_queue_condition_("task queue condition", task_queue_lock_),
81     completion_condition_("task completion condition", task_queue_lock_),
82     started_(false),
83     shutting_down_(false),
84     waiting_count_(0),
85     start_time_(0),
86     total_wait_time_(0),
87     // Add one since the caller of constructor waits on the barrier too.
88     creation_barier_(num_threads + 1),
89     max_active_workers_(num_threads) {
90   Thread* self = Thread::Current();
91   while (GetThreadCount() < num_threads) {
92     const std::string name = StringPrintf("%s worker thread %zu", name_.c_str(), GetThreadCount());
93     threads_.push_back(new ThreadPoolWorker(this, name, ThreadPoolWorker::kDefaultStackSize));
94   }
95   // Wait for all of the threads to attach.
96   creation_barier_.Wait(self);
97 }
98 
SetMaxActiveWorkers(size_t threads)99 void ThreadPool::SetMaxActiveWorkers(size_t threads) {
100   MutexLock mu(Thread::Current(), task_queue_lock_);
101   CHECK_LE(threads, GetThreadCount());
102   max_active_workers_ = threads;
103 }
104 
~ThreadPool()105 ThreadPool::~ThreadPool() {
106   {
107     Thread* self = Thread::Current();
108     MutexLock mu(self, task_queue_lock_);
109     // Tell any remaining workers to shut down.
110     shutting_down_ = true;
111     // Broadcast to everyone waiting.
112     task_queue_condition_.Broadcast(self);
113     completion_condition_.Broadcast(self);
114   }
115   // Wait for the threads to finish.
116   STLDeleteElements(&threads_);
117 }
118 
StartWorkers(Thread * self)119 void ThreadPool::StartWorkers(Thread* self) {
120   MutexLock mu(self, task_queue_lock_);
121   started_ = true;
122   task_queue_condition_.Broadcast(self);
123   start_time_ = NanoTime();
124   total_wait_time_ = 0;
125 }
126 
StopWorkers(Thread * self)127 void ThreadPool::StopWorkers(Thread* self) {
128   MutexLock mu(self, task_queue_lock_);
129   started_ = false;
130 }
131 
GetTask(Thread * self)132 Task* ThreadPool::GetTask(Thread* self) {
133   MutexLock mu(self, task_queue_lock_);
134   while (!IsShuttingDown()) {
135     const size_t thread_count = GetThreadCount();
136     // Ensure that we don't use more threads than the maximum active workers.
137     const size_t active_threads = thread_count - waiting_count_;
138     // <= since self is considered an active worker.
139     if (active_threads <= max_active_workers_) {
140       Task* task = TryGetTaskLocked(self);
141       if (task != NULL) {
142         return task;
143       }
144     }
145 
146     ++waiting_count_;
147     if (waiting_count_ == GetThreadCount() && tasks_.empty()) {
148       // We may be done, lets broadcast to the completion condition.
149       completion_condition_.Broadcast(self);
150     }
151     const uint64_t wait_start = kMeasureWaitTime ? NanoTime() : 0;
152     task_queue_condition_.Wait(self);
153     if (kMeasureWaitTime) {
154       const uint64_t wait_end = NanoTime();
155       total_wait_time_ += wait_end - std::max(wait_start, start_time_);
156     }
157     --waiting_count_;
158   }
159 
160   // We are shutting down, return NULL to tell the worker thread to stop looping.
161   return NULL;
162 }
163 
TryGetTask(Thread * self)164 Task* ThreadPool::TryGetTask(Thread* self) {
165   MutexLock mu(self, task_queue_lock_);
166   return TryGetTaskLocked(self);
167 }
168 
TryGetTaskLocked(Thread * self)169 Task* ThreadPool::TryGetTaskLocked(Thread* self) {
170   if (started_ && !tasks_.empty()) {
171     Task* task = tasks_.front();
172     tasks_.pop_front();
173     return task;
174   }
175   return NULL;
176 }
177 
Wait(Thread * self,bool do_work,bool may_hold_locks)178 void ThreadPool::Wait(Thread* self, bool do_work, bool may_hold_locks) {
179   if (do_work) {
180     Task* task = NULL;
181     while ((task = TryGetTask(self)) != NULL) {
182       task->Run(self);
183       task->Finalize();
184     }
185   }
186   // Wait until each thread is waiting and the task list is empty.
187   MutexLock mu(self, task_queue_lock_);
188   while (!shutting_down_ && (waiting_count_ != GetThreadCount() || !tasks_.empty())) {
189     if (!may_hold_locks) {
190       completion_condition_.Wait(self);
191     } else {
192       completion_condition_.WaitHoldingLocks(self);
193     }
194   }
195 }
196 
GetTaskCount(Thread * self)197 size_t ThreadPool::GetTaskCount(Thread* self) {
198   MutexLock mu(self, task_queue_lock_);
199   return tasks_.size();
200 }
201 
WorkStealingWorker(ThreadPool * thread_pool,const std::string & name,size_t stack_size)202 WorkStealingWorker::WorkStealingWorker(ThreadPool* thread_pool, const std::string& name,
203                                        size_t stack_size)
204     : ThreadPoolWorker(thread_pool, name, stack_size), task_(NULL) {}
205 
Run()206 void WorkStealingWorker::Run() {
207   Thread* self = Thread::Current();
208   Task* task = NULL;
209   WorkStealingThreadPool* thread_pool = down_cast<WorkStealingThreadPool*>(thread_pool_);
210   while ((task = thread_pool_->GetTask(self)) != NULL) {
211     WorkStealingTask* stealing_task = down_cast<WorkStealingTask*>(task);
212 
213     {
214       CHECK(task_ == NULL);
215       MutexLock mu(self, thread_pool->work_steal_lock_);
216       // Register that we are running the task
217       ++stealing_task->ref_count_;
218       task_ = stealing_task;
219     }
220     stealing_task->Run(self);
221     // Mark ourselves as not running a task so that nobody tries to steal from us.
222     // There is a race condition that someone starts stealing from us at this point. This is okay
223     // due to the reference counting.
224     task_ = NULL;
225 
226     bool finalize;
227 
228     // Steal work from tasks until there is none left to steal. Note: There is a race, but
229     // all that happens when the race occurs is that we steal some work instead of processing a
230     // task from the queue.
231     while (thread_pool->GetTaskCount(self) == 0) {
232       WorkStealingTask* steal_from_task  = NULL;
233 
234       {
235         MutexLock mu(self, thread_pool->work_steal_lock_);
236         // Try finding a task to steal from.
237         steal_from_task = thread_pool->FindTaskToStealFrom(self);
238         if (steal_from_task != NULL) {
239           CHECK_NE(stealing_task, steal_from_task)
240               << "Attempting to steal from completed self task";
241           steal_from_task->ref_count_++;
242         } else {
243           break;
244         }
245       }
246 
247       if (steal_from_task != NULL) {
248         // Task which completed earlier is going to steal some work.
249         stealing_task->StealFrom(self, steal_from_task);
250 
251         {
252           // We are done stealing from the task, lets decrement its reference count.
253           MutexLock mu(self, thread_pool->work_steal_lock_);
254           finalize = !--steal_from_task->ref_count_;
255         }
256 
257         if (finalize) {
258           steal_from_task->Finalize();
259         }
260       }
261     }
262 
263     {
264       MutexLock mu(self, thread_pool->work_steal_lock_);
265       // If nobody is still referencing task_ we can finalize it.
266       finalize = !--stealing_task->ref_count_;
267     }
268 
269     if (finalize) {
270       stealing_task->Finalize();
271     }
272   }
273 }
274 
~WorkStealingWorker()275 WorkStealingWorker::~WorkStealingWorker() {}
276 
WorkStealingThreadPool(const char * name,size_t num_threads)277 WorkStealingThreadPool::WorkStealingThreadPool(const char* name, size_t num_threads)
278     : ThreadPool(name, 0),
279       work_steal_lock_("work stealing lock"),
280       steal_index_(0) {
281   while (GetThreadCount() < num_threads) {
282     const std::string name = StringPrintf("Work stealing worker %zu", GetThreadCount());
283     threads_.push_back(new WorkStealingWorker(this, name, ThreadPoolWorker::kDefaultStackSize));
284   }
285 }
286 
FindTaskToStealFrom(Thread * self)287 WorkStealingTask* WorkStealingThreadPool::FindTaskToStealFrom(Thread* self) {
288   const size_t thread_count = GetThreadCount();
289   for (size_t i = 0; i < thread_count; ++i) {
290     // TODO: Use CAS instead of lock.
291     ++steal_index_;
292     if (steal_index_ >= thread_count) {
293       steal_index_-= thread_count;
294     }
295 
296     WorkStealingWorker* worker = down_cast<WorkStealingWorker*>(threads_[steal_index_]);
297     WorkStealingTask* task = worker->task_;
298     if (task) {
299       // Not null, we can probably steal from this worker.
300       return task;
301     }
302   }
303   // Couldn't find something to steal.
304   return NULL;
305 }
306 
~WorkStealingThreadPool()307 WorkStealingThreadPool::~WorkStealingThreadPool() {}
308 
309 }  // namespace art
310