1 /*
2  * Copyright (C) 2008 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "asn1_decoder.h"
18 #include "common.h"
19 #include "ui.h"
20 #include "verifier.h"
21 
22 #include "mincrypt/dsa_sig.h"
23 #include "mincrypt/p256.h"
24 #include "mincrypt/p256_ecdsa.h"
25 #include "mincrypt/rsa.h"
26 #include "mincrypt/sha.h"
27 #include "mincrypt/sha256.h"
28 
29 #include <string.h>
30 #include <stdio.h>
31 #include <errno.h>
32 
33 extern RecoveryUI* ui;
34 
35 /*
36  * Simple version of PKCS#7 SignedData extraction. This extracts the
37  * signature OCTET STRING to be used for signature verification.
38  *
39  * For full details, see http://www.ietf.org/rfc/rfc3852.txt
40  *
41  * The PKCS#7 structure looks like:
42  *
43  *   SEQUENCE (ContentInfo)
44  *     OID (ContentType)
45  *     [0] (content)
46  *       SEQUENCE (SignedData)
47  *         INTEGER (version CMSVersion)
48  *         SET (DigestAlgorithmIdentifiers)
49  *         SEQUENCE (EncapsulatedContentInfo)
50  *         [0] (CertificateSet OPTIONAL)
51  *         [1] (RevocationInfoChoices OPTIONAL)
52  *         SET (SignerInfos)
53  *           SEQUENCE (SignerInfo)
54  *             INTEGER (CMSVersion)
55  *             SEQUENCE (SignerIdentifier)
56  *             SEQUENCE (DigestAlgorithmIdentifier)
57  *             SEQUENCE (SignatureAlgorithmIdentifier)
58  *             OCTET STRING (SignatureValue)
59  */
read_pkcs7(uint8_t * pkcs7_der,size_t pkcs7_der_len,uint8_t ** sig_der,size_t * sig_der_length)60 static bool read_pkcs7(uint8_t* pkcs7_der, size_t pkcs7_der_len, uint8_t** sig_der,
61         size_t* sig_der_length) {
62     asn1_context_t* ctx = asn1_context_new(pkcs7_der, pkcs7_der_len);
63     if (ctx == NULL) {
64         return false;
65     }
66 
67     asn1_context_t* pkcs7_seq = asn1_sequence_get(ctx);
68     if (pkcs7_seq != NULL && asn1_sequence_next(pkcs7_seq)) {
69         asn1_context_t *signed_data_app = asn1_constructed_get(pkcs7_seq);
70         if (signed_data_app != NULL) {
71             asn1_context_t* signed_data_seq = asn1_sequence_get(signed_data_app);
72             if (signed_data_seq != NULL
73                     && asn1_sequence_next(signed_data_seq)
74                     && asn1_sequence_next(signed_data_seq)
75                     && asn1_sequence_next(signed_data_seq)
76                     && asn1_constructed_skip_all(signed_data_seq)) {
77                 asn1_context_t *sig_set = asn1_set_get(signed_data_seq);
78                 if (sig_set != NULL) {
79                     asn1_context_t* sig_seq = asn1_sequence_get(sig_set);
80                     if (sig_seq != NULL
81                             && asn1_sequence_next(sig_seq)
82                             && asn1_sequence_next(sig_seq)
83                             && asn1_sequence_next(sig_seq)
84                             && asn1_sequence_next(sig_seq)) {
85                         uint8_t* sig_der_ptr;
86                         if (asn1_octet_string_get(sig_seq, &sig_der_ptr, sig_der_length)) {
87                             *sig_der = (uint8_t*) malloc(*sig_der_length);
88                             if (*sig_der != NULL) {
89                                 memcpy(*sig_der, sig_der_ptr, *sig_der_length);
90                             }
91                         }
92                         asn1_context_free(sig_seq);
93                     }
94                     asn1_context_free(sig_set);
95                 }
96                 asn1_context_free(signed_data_seq);
97             }
98             asn1_context_free(signed_data_app);
99         }
100         asn1_context_free(pkcs7_seq);
101     }
102     asn1_context_free(ctx);
103 
104     return *sig_der != NULL;
105 }
106 
107 // Look for an RSA signature embedded in the .ZIP file comment given
108 // the path to the zip.  Verify it matches one of the given public
109 // keys.
110 //
111 // Return VERIFY_SUCCESS, VERIFY_FAILURE (if any error is encountered
112 // or no key matches the signature).
113 
verify_file(unsigned char * addr,size_t length,const Certificate * pKeys,unsigned int numKeys)114 int verify_file(unsigned char* addr, size_t length,
115                 const Certificate* pKeys, unsigned int numKeys) {
116     ui->SetProgress(0.0);
117 
118     // An archive with a whole-file signature will end in six bytes:
119     //
120     //   (2-byte signature start) $ff $ff (2-byte comment size)
121     //
122     // (As far as the ZIP format is concerned, these are part of the
123     // archive comment.)  We start by reading this footer, this tells
124     // us how far back from the end we have to start reading to find
125     // the whole comment.
126 
127 #define FOOTER_SIZE 6
128 
129     if (length < FOOTER_SIZE) {
130         LOGE("not big enough to contain footer\n");
131         return VERIFY_FAILURE;
132     }
133 
134     unsigned char* footer = addr + length - FOOTER_SIZE;
135 
136     if (footer[2] != 0xff || footer[3] != 0xff) {
137         LOGE("footer is wrong\n");
138         return VERIFY_FAILURE;
139     }
140 
141     size_t comment_size = footer[4] + (footer[5] << 8);
142     size_t signature_start = footer[0] + (footer[1] << 8);
143     LOGI("comment is %zu bytes; signature %zu bytes from end\n",
144          comment_size, signature_start);
145 
146     if (signature_start <= FOOTER_SIZE) {
147         LOGE("Signature start is in the footer");
148         return VERIFY_FAILURE;
149     }
150 
151 #define EOCD_HEADER_SIZE 22
152 
153     // The end-of-central-directory record is 22 bytes plus any
154     // comment length.
155     size_t eocd_size = comment_size + EOCD_HEADER_SIZE;
156 
157     if (length < eocd_size) {
158         LOGE("not big enough to contain EOCD\n");
159         return VERIFY_FAILURE;
160     }
161 
162     // Determine how much of the file is covered by the signature.
163     // This is everything except the signature data and length, which
164     // includes all of the EOCD except for the comment length field (2
165     // bytes) and the comment data.
166     size_t signed_len = length - eocd_size + EOCD_HEADER_SIZE - 2;
167 
168     unsigned char* eocd = addr + length - eocd_size;
169 
170     // If this is really is the EOCD record, it will begin with the
171     // magic number $50 $4b $05 $06.
172     if (eocd[0] != 0x50 || eocd[1] != 0x4b ||
173         eocd[2] != 0x05 || eocd[3] != 0x06) {
174         LOGE("signature length doesn't match EOCD marker\n");
175         return VERIFY_FAILURE;
176     }
177 
178     size_t i;
179     for (i = 4; i < eocd_size-3; ++i) {
180         if (eocd[i  ] == 0x50 && eocd[i+1] == 0x4b &&
181             eocd[i+2] == 0x05 && eocd[i+3] == 0x06) {
182             // if the sequence $50 $4b $05 $06 appears anywhere after
183             // the real one, minzip will find the later (wrong) one,
184             // which could be exploitable.  Fail verification if
185             // this sequence occurs anywhere after the real one.
186             LOGE("EOCD marker occurs after start of EOCD\n");
187             return VERIFY_FAILURE;
188         }
189     }
190 
191 #define BUFFER_SIZE 4096
192 
193     bool need_sha1 = false;
194     bool need_sha256 = false;
195     for (i = 0; i < numKeys; ++i) {
196         switch (pKeys[i].hash_len) {
197             case SHA_DIGEST_SIZE: need_sha1 = true; break;
198             case SHA256_DIGEST_SIZE: need_sha256 = true; break;
199         }
200     }
201 
202     SHA_CTX sha1_ctx;
203     SHA256_CTX sha256_ctx;
204     SHA_init(&sha1_ctx);
205     SHA256_init(&sha256_ctx);
206 
207     double frac = -1.0;
208     size_t so_far = 0;
209     while (so_far < signed_len) {
210         size_t size = signed_len - so_far;
211         if (size > BUFFER_SIZE) size = BUFFER_SIZE;
212 
213         if (need_sha1) SHA_update(&sha1_ctx, addr + so_far, size);
214         if (need_sha256) SHA256_update(&sha256_ctx, addr + so_far, size);
215         so_far += size;
216 
217         double f = so_far / (double)signed_len;
218         if (f > frac + 0.02 || size == so_far) {
219             ui->SetProgress(f);
220             frac = f;
221         }
222     }
223 
224     const uint8_t* sha1 = SHA_final(&sha1_ctx);
225     const uint8_t* sha256 = SHA256_final(&sha256_ctx);
226 
227     uint8_t* sig_der = NULL;
228     size_t sig_der_length = 0;
229 
230     size_t signature_size = signature_start - FOOTER_SIZE;
231     if (!read_pkcs7(eocd + eocd_size - signature_start, signature_size, &sig_der,
232             &sig_der_length)) {
233         LOGE("Could not find signature DER block\n");
234         return VERIFY_FAILURE;
235     }
236 
237     /*
238      * Check to make sure at least one of the keys matches the signature. Since
239      * any key can match, we need to try each before determining a verification
240      * failure has happened.
241      */
242     for (i = 0; i < numKeys; ++i) {
243         const uint8_t* hash;
244         switch (pKeys[i].hash_len) {
245             case SHA_DIGEST_SIZE: hash = sha1; break;
246             case SHA256_DIGEST_SIZE: hash = sha256; break;
247             default: continue;
248         }
249 
250         // The 6 bytes is the "(signature_start) $ff $ff (comment_size)" that
251         // the signing tool appends after the signature itself.
252         if (pKeys[i].key_type == Certificate::RSA) {
253             if (sig_der_length < RSANUMBYTES) {
254                 // "signature" block isn't big enough to contain an RSA block.
255                 LOGI("signature is too short for RSA key %zu\n", i);
256                 continue;
257             }
258 
259             if (!RSA_verify(pKeys[i].rsa, sig_der, RSANUMBYTES,
260                             hash, pKeys[i].hash_len)) {
261                 LOGI("failed to verify against RSA key %zu\n", i);
262                 continue;
263             }
264 
265             LOGI("whole-file signature verified against RSA key %zu\n", i);
266             free(sig_der);
267             return VERIFY_SUCCESS;
268         } else if (pKeys[i].key_type == Certificate::EC
269                 && pKeys[i].hash_len == SHA256_DIGEST_SIZE) {
270             p256_int r, s;
271             if (!dsa_sig_unpack(sig_der, sig_der_length, &r, &s)) {
272                 LOGI("Not a DSA signature block for EC key %zu\n", i);
273                 continue;
274             }
275 
276             p256_int p256_hash;
277             p256_from_bin(hash, &p256_hash);
278             if (!p256_ecdsa_verify(&(pKeys[i].ec->x), &(pKeys[i].ec->y),
279                                    &p256_hash, &r, &s)) {
280                 LOGI("failed to verify against EC key %zu\n", i);
281                 continue;
282             }
283 
284             LOGI("whole-file signature verified against EC key %zu\n", i);
285             free(sig_der);
286             return VERIFY_SUCCESS;
287         } else {
288             LOGI("Unknown key type %d\n", pKeys[i].key_type);
289         }
290     }
291     free(sig_der);
292     LOGE("failed to verify whole-file signature\n");
293     return VERIFY_FAILURE;
294 }
295 
296 // Reads a file containing one or more public keys as produced by
297 // DumpPublicKey:  this is an RSAPublicKey struct as it would appear
298 // as a C source literal, eg:
299 //
300 //  "{64,0xc926ad21,{1795090719,...,-695002876},{-857949815,...,1175080310}}"
301 //
302 // For key versions newer than the original 2048-bit e=3 keys
303 // supported by Android, the string is preceded by a version
304 // identifier, eg:
305 //
306 //  "v2 {64,0xc926ad21,{1795090719,...,-695002876},{-857949815,...,1175080310}}"
307 //
308 // (Note that the braces and commas in this example are actual
309 // characters the parser expects to find in the file; the ellipses
310 // indicate more numbers omitted from this example.)
311 //
312 // The file may contain multiple keys in this format, separated by
313 // commas.  The last key must not be followed by a comma.
314 //
315 // A Certificate is a pair of an RSAPublicKey and a particular hash
316 // (we support SHA-1 and SHA-256; we store the hash length to signify
317 // which is being used).  The hash used is implied by the version number.
318 //
319 //       1: 2048-bit RSA key with e=3 and SHA-1 hash
320 //       2: 2048-bit RSA key with e=65537 and SHA-1 hash
321 //       3: 2048-bit RSA key with e=3 and SHA-256 hash
322 //       4: 2048-bit RSA key with e=65537 and SHA-256 hash
323 //       5: 256-bit EC key using the NIST P-256 curve parameters and SHA-256 hash
324 //
325 // Returns NULL if the file failed to parse, or if it contain zero keys.
326 Certificate*
load_keys(const char * filename,int * numKeys)327 load_keys(const char* filename, int* numKeys) {
328     Certificate* out = NULL;
329     *numKeys = 0;
330 
331     FILE* f = fopen(filename, "r");
332     if (f == NULL) {
333         LOGE("opening %s: %s\n", filename, strerror(errno));
334         goto exit;
335     }
336 
337     {
338         int i;
339         bool done = false;
340         while (!done) {
341             ++*numKeys;
342             out = (Certificate*)realloc(out, *numKeys * sizeof(Certificate));
343             Certificate* cert = out + (*numKeys - 1);
344             memset(cert, '\0', sizeof(Certificate));
345 
346             char start_char;
347             if (fscanf(f, " %c", &start_char) != 1) goto exit;
348             if (start_char == '{') {
349                 // a version 1 key has no version specifier.
350                 cert->key_type = Certificate::RSA;
351                 cert->rsa = (RSAPublicKey*)malloc(sizeof(RSAPublicKey));
352                 cert->rsa->exponent = 3;
353                 cert->hash_len = SHA_DIGEST_SIZE;
354             } else if (start_char == 'v') {
355                 int version;
356                 if (fscanf(f, "%d {", &version) != 1) goto exit;
357                 switch (version) {
358                     case 2:
359                         cert->key_type = Certificate::RSA;
360                         cert->rsa = (RSAPublicKey*)malloc(sizeof(RSAPublicKey));
361                         cert->rsa->exponent = 65537;
362                         cert->hash_len = SHA_DIGEST_SIZE;
363                         break;
364                     case 3:
365                         cert->key_type = Certificate::RSA;
366                         cert->rsa = (RSAPublicKey*)malloc(sizeof(RSAPublicKey));
367                         cert->rsa->exponent = 3;
368                         cert->hash_len = SHA256_DIGEST_SIZE;
369                         break;
370                     case 4:
371                         cert->key_type = Certificate::RSA;
372                         cert->rsa = (RSAPublicKey*)malloc(sizeof(RSAPublicKey));
373                         cert->rsa->exponent = 65537;
374                         cert->hash_len = SHA256_DIGEST_SIZE;
375                         break;
376                     case 5:
377                         cert->key_type = Certificate::EC;
378                         cert->ec = (ECPublicKey*)calloc(1, sizeof(ECPublicKey));
379                         cert->hash_len = SHA256_DIGEST_SIZE;
380                         break;
381                     default:
382                         goto exit;
383                 }
384             }
385 
386             if (cert->key_type == Certificate::RSA) {
387                 RSAPublicKey* key = cert->rsa;
388                 if (fscanf(f, " %i , 0x%x , { %u",
389                            &(key->len), &(key->n0inv), &(key->n[0])) != 3) {
390                     goto exit;
391                 }
392                 if (key->len != RSANUMWORDS) {
393                     LOGE("key length (%d) does not match expected size\n", key->len);
394                     goto exit;
395                 }
396                 for (i = 1; i < key->len; ++i) {
397                     if (fscanf(f, " , %u", &(key->n[i])) != 1) goto exit;
398                 }
399                 if (fscanf(f, " } , { %u", &(key->rr[0])) != 1) goto exit;
400                 for (i = 1; i < key->len; ++i) {
401                     if (fscanf(f, " , %u", &(key->rr[i])) != 1) goto exit;
402                 }
403                 fscanf(f, " } } ");
404 
405                 LOGI("read key e=%d hash=%d\n", key->exponent, cert->hash_len);
406             } else if (cert->key_type == Certificate::EC) {
407                 ECPublicKey* key = cert->ec;
408                 int key_len;
409                 unsigned int byte;
410                 uint8_t x_bytes[P256_NBYTES];
411                 uint8_t y_bytes[P256_NBYTES];
412                 if (fscanf(f, " %i , { %u", &key_len, &byte) != 2) goto exit;
413                 if (key_len != P256_NBYTES) {
414                     LOGE("Key length (%d) does not match expected size %d\n", key_len, P256_NBYTES);
415                     goto exit;
416                 }
417                 x_bytes[P256_NBYTES - 1] = byte;
418                 for (i = P256_NBYTES - 2; i >= 0; --i) {
419                     if (fscanf(f, " , %u", &byte) != 1) goto exit;
420                     x_bytes[i] = byte;
421                 }
422                 if (fscanf(f, " } , { %u", &byte) != 1) goto exit;
423                 y_bytes[P256_NBYTES - 1] = byte;
424                 for (i = P256_NBYTES - 2; i >= 0; --i) {
425                     if (fscanf(f, " , %u", &byte) != 1) goto exit;
426                     y_bytes[i] = byte;
427                 }
428                 fscanf(f, " } } ");
429                 p256_from_bin(x_bytes, &key->x);
430                 p256_from_bin(y_bytes, &key->y);
431             } else {
432                 LOGE("Unknown key type %d\n", cert->key_type);
433                 goto exit;
434             }
435 
436             // if the line ends in a comma, this file has more keys.
437             switch (fgetc(f)) {
438             case ',':
439                 // more keys to come.
440                 break;
441 
442             case EOF:
443                 done = true;
444                 break;
445 
446             default:
447                 LOGE("unexpected character between keys\n");
448                 goto exit;
449             }
450         }
451     }
452 
453     fclose(f);
454     return out;
455 
456 exit:
457     if (f) fclose(f);
458     free(out);
459     *numKeys = 0;
460     return NULL;
461 }
462