1 /*
2  * Copyright (C) 2009 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 /* this implements a sensors hardware library for the Android emulator.
18  * the following code should be built as a shared library that will be
19  * placed into /system/lib/hw/sensors.goldfish.so
20  *
21  * it will be loaded by the code in hardware/libhardware/hardware.c
22  * which is itself called from com_android_server_SensorService.cpp
23  */
24 
25 
26 /* we connect with the emulator through the "sensors" qemud service
27  */
28 #define  SENSORS_SERVICE_NAME "sensors"
29 
30 #define LOG_TAG "QemuSensors"
31 
32 #include <unistd.h>
33 #include <fcntl.h>
34 #include <errno.h>
35 #include <string.h>
36 #include <cutils/log.h>
37 #include <cutils/native_handle.h>
38 #include <cutils/sockets.h>
39 #include <hardware/sensors.h>
40 
41 #if 0
42 #define  D(...)  ALOGD(__VA_ARGS__)
43 #else
44 #define  D(...)  ((void)0)
45 #endif
46 
47 #define  E(...)  ALOGE(__VA_ARGS__)
48 
49 #include <hardware/qemud.h>
50 
51 /** SENSOR IDS AND NAMES
52  **/
53 
54 #define MAX_NUM_SENSORS 5
55 
56 #define SUPPORTED_SENSORS  ((1<<MAX_NUM_SENSORS)-1)
57 
58 #define  ID_BASE           SENSORS_HANDLE_BASE
59 #define  ID_ACCELERATION   (ID_BASE+0)
60 #define  ID_MAGNETIC_FIELD (ID_BASE+1)
61 #define  ID_ORIENTATION    (ID_BASE+2)
62 #define  ID_TEMPERATURE    (ID_BASE+3)
63 #define  ID_PROXIMITY      (ID_BASE+4)
64 
65 #define  SENSORS_ACCELERATION   (1 << ID_ACCELERATION)
66 #define  SENSORS_MAGNETIC_FIELD  (1 << ID_MAGNETIC_FIELD)
67 #define  SENSORS_ORIENTATION     (1 << ID_ORIENTATION)
68 #define  SENSORS_TEMPERATURE     (1 << ID_TEMPERATURE)
69 #define  SENSORS_PROXIMITY       (1 << ID_PROXIMITY)
70 
71 #define  ID_CHECK(x)  ((unsigned)((x)-ID_BASE) < MAX_NUM_SENSORS)
72 
73 #define  SENSORS_LIST  \
74     SENSOR_(ACCELERATION,"acceleration") \
75     SENSOR_(MAGNETIC_FIELD,"magnetic-field") \
76     SENSOR_(ORIENTATION,"orientation") \
77     SENSOR_(TEMPERATURE,"temperature") \
78     SENSOR_(PROXIMITY,"proximity") \
79 
80 static const struct {
81     const char*  name;
82     int          id; } _sensorIds[MAX_NUM_SENSORS] =
83 {
84 #define SENSOR_(x,y)  { y, ID_##x },
85     SENSORS_LIST
86 #undef  SENSOR_
87 };
88 
89 static const char*
_sensorIdToName(int id)90 _sensorIdToName( int  id )
91 {
92     int  nn;
93     for (nn = 0; nn < MAX_NUM_SENSORS; nn++)
94         if (id == _sensorIds[nn].id)
95             return _sensorIds[nn].name;
96     return "<UNKNOWN>";
97 }
98 
99 static int
_sensorIdFromName(const char * name)100 _sensorIdFromName( const char*  name )
101 {
102     int  nn;
103 
104     if (name == NULL)
105         return -1;
106 
107     for (nn = 0; nn < MAX_NUM_SENSORS; nn++)
108         if (!strcmp(name, _sensorIds[nn].name))
109             return _sensorIds[nn].id;
110 
111     return -1;
112 }
113 
114 /** SENSORS POLL DEVICE
115  **
116  ** This one is used to read sensor data from the hardware.
117  ** We implement this by simply reading the data from the
118  ** emulator through the QEMUD channel.
119  **/
120 
121 typedef struct SensorPoll {
122     struct sensors_poll_device_1  device;
123     sensors_event_t               sensors[MAX_NUM_SENSORS];
124     int                           events_fd;
125     uint32_t                      pendingSensors;
126     int64_t                       timeStart;
127     int64_t                       timeOffset;
128     int                           fd;
129     uint32_t                      active_sensors;
130 } SensorPoll;
131 
132 /* this must return a file descriptor that will be used to read
133  * the sensors data (it is passed to data__data_open() below
134  */
135 static native_handle_t*
control__open_data_source(struct sensors_poll_device_1 * dev)136 control__open_data_source(struct sensors_poll_device_1 *dev)
137 {
138     SensorPoll*  ctl = (void*)dev;
139     native_handle_t* handle;
140 
141     if (ctl->fd < 0) {
142         ctl->fd = qemud_channel_open(SENSORS_SERVICE_NAME);
143     }
144     D("%s: fd=%d", __FUNCTION__, ctl->fd);
145     handle = native_handle_create(1, 0);
146     handle->data[0] = dup(ctl->fd);
147     return handle;
148 }
149 
150 static int
control__activate(struct sensors_poll_device_1 * dev,int handle,int enabled)151 control__activate(struct sensors_poll_device_1 *dev,
152                   int handle,
153                   int enabled)
154 {
155     SensorPoll*     ctl = (void*)dev;
156     uint32_t        mask, sensors, active, new_sensors, changed;
157     char            command[128];
158     int             ret;
159 
160     D("%s: handle=%s (%d) fd=%d enabled=%d", __FUNCTION__,
161         _sensorIdToName(handle), handle, ctl->fd, enabled);
162 
163     if (!ID_CHECK(handle)) {
164         E("%s: bad handle ID", __FUNCTION__);
165         return -1;
166     }
167 
168     mask    = (1<<handle);
169     sensors = enabled ? mask : 0;
170 
171     active      = ctl->active_sensors;
172     new_sensors = (active & ~mask) | (sensors & mask);
173     changed     = active ^ new_sensors;
174 
175     if (!changed)
176         return 0;
177 
178     snprintf(command, sizeof command, "set:%s:%d",
179                 _sensorIdToName(handle), enabled != 0);
180 
181     if (ctl->fd < 0) {
182         ctl->fd = qemud_channel_open(SENSORS_SERVICE_NAME);
183     }
184 
185     ret = qemud_channel_send(ctl->fd, command, -1);
186     if (ret < 0) {
187         E("%s: when sending command errno=%d: %s", __FUNCTION__, errno, strerror(errno));
188         return -1;
189     }
190     ctl->active_sensors = new_sensors;
191 
192     return 0;
193 }
194 
195 static int
control__set_delay(struct sensors_poll_device_1 * dev,int32_t ms)196 control__set_delay(struct sensors_poll_device_1 *dev, int32_t ms)
197 {
198     SensorPoll*     ctl = (void*)dev;
199     char            command[128];
200 
201     D("%s: dev=%p delay-ms=%d", __FUNCTION__, dev, ms);
202 
203     snprintf(command, sizeof command, "set-delay:%d", ms);
204 
205     return qemud_channel_send(ctl->fd, command, -1);
206 }
207 
208 static int
control__close(struct hw_device_t * dev)209 control__close(struct hw_device_t *dev)
210 {
211     SensorPoll*  ctl = (void*)dev;
212     close(ctl->fd);
213     free(ctl);
214     return 0;
215 }
216 
217 /* return the current time in nanoseconds */
218 static int64_t
data__now_ns(void)219 data__now_ns(void)
220 {
221     struct timespec  ts;
222 
223     clock_gettime(CLOCK_MONOTONIC, &ts);
224 
225     return (int64_t)ts.tv_sec * 1000000000 + ts.tv_nsec;
226 }
227 
228 static int
data__data_open(struct sensors_poll_device_1 * dev,native_handle_t * handle)229 data__data_open(struct sensors_poll_device_1 *dev, native_handle_t* handle)
230 {
231     SensorPoll*  data = (void*)dev;
232     int i;
233     D("%s: dev=%p fd=%d", __FUNCTION__, dev, handle->data[0]);
234     memset(&data->sensors, 0, sizeof(data->sensors));
235 
236     data->pendingSensors = 0;
237     data->timeStart      = 0;
238     data->timeOffset     = 0;
239 
240     data->events_fd = dup(handle->data[0]);
241     D("%s: dev=%p fd=%d (was %d)", __FUNCTION__, dev, data->events_fd, handle->data[0]);
242     native_handle_close(handle);
243     native_handle_delete(handle);
244     return 0;
245 }
246 
247 static int
data__data_close(struct sensors_poll_device_1 * dev)248 data__data_close(struct sensors_poll_device_1 *dev)
249 {
250     SensorPoll*  data = (void*)dev;
251     D("%s: dev=%p", __FUNCTION__, dev);
252     if (data->events_fd >= 0) {
253         close(data->events_fd);
254         data->events_fd = -1;
255     }
256     return 0;
257 }
258 
259 static int
pick_sensor(SensorPoll * data,sensors_event_t * values)260 pick_sensor(SensorPoll*       data,
261             sensors_event_t*  values)
262 {
263     uint32_t mask = SUPPORTED_SENSORS;
264     while (mask) {
265         uint32_t i = 31 - __builtin_clz(mask);
266         mask &= ~(1<<i);
267         if (data->pendingSensors & (1<<i)) {
268             data->pendingSensors &= ~(1<<i);
269             *values = data->sensors[i];
270             values->sensor = i;
271             values->version = sizeof(*values);
272 
273             D("%s: %d [%f, %f, %f]", __FUNCTION__,
274                     i,
275                     values->data[0],
276                     values->data[1],
277                     values->data[2]);
278             return i;
279         }
280     }
281     ALOGE("No sensor to return!!! pendingSensors=%08x", data->pendingSensors);
282     // we may end-up in a busy loop, slow things down, just in case.
283     usleep(100000);
284     return -EINVAL;
285 }
286 
287 static int
data__poll(struct sensors_poll_device_1 * dev,sensors_event_t * values)288 data__poll(struct sensors_poll_device_1 *dev, sensors_event_t* values)
289 {
290     SensorPoll*  data = (void*)dev;
291     int fd = data->events_fd;
292 
293     D("%s: data=%p", __FUNCTION__, dev);
294 
295     // there are pending sensors, returns them now...
296     if (data->pendingSensors) {
297         return pick_sensor(data, values);
298     }
299 
300     // wait until we get a complete event for an enabled sensor
301     uint32_t new_sensors = 0;
302 
303     while (1) {
304         /* read the next event */
305         char     buff[256];
306         int      len = qemud_channel_recv(data->events_fd, buff, sizeof buff-1);
307         float    params[3];
308         int64_t  event_time;
309 
310         if (len < 0) {
311             E("%s: len=%d, errno=%d: %s", __FUNCTION__, len, errno, strerror(errno));
312             return -errno;
313         }
314 
315         buff[len] = 0;
316 
317         /* "wake" is sent from the emulator to exit this loop. */
318         if (!strcmp((const char*)data, "wake")) {
319             return 0x7FFFFFFF;
320         }
321 
322         /* "acceleration:<x>:<y>:<z>" corresponds to an acceleration event */
323         if (sscanf(buff, "acceleration:%g:%g:%g", params+0, params+1, params+2) == 3) {
324             new_sensors |= SENSORS_ACCELERATION;
325             data->sensors[ID_ACCELERATION].acceleration.x = params[0];
326             data->sensors[ID_ACCELERATION].acceleration.y = params[1];
327             data->sensors[ID_ACCELERATION].acceleration.z = params[2];
328             data->sensors[ID_ACCELERATION].type = SENSOR_TYPE_ACCELEROMETER;
329             continue;
330         }
331 
332         /* "orientation:<azimuth>:<pitch>:<roll>" is sent when orientation changes */
333         if (sscanf(buff, "orientation:%g:%g:%g", params+0, params+1, params+2) == 3) {
334             new_sensors |= SENSORS_ORIENTATION;
335             data->sensors[ID_ORIENTATION].orientation.azimuth = params[0];
336             data->sensors[ID_ORIENTATION].orientation.pitch   = params[1];
337             data->sensors[ID_ORIENTATION].orientation.roll    = params[2];
338             data->sensors[ID_ORIENTATION].orientation.status  = SENSOR_STATUS_ACCURACY_HIGH;
339             data->sensors[ID_ACCELERATION].type = SENSOR_TYPE_ORIENTATION;
340             continue;
341         }
342 
343         /* "magnetic:<x>:<y>:<z>" is sent for the params of the magnetic field */
344         if (sscanf(buff, "magnetic:%g:%g:%g", params+0, params+1, params+2) == 3) {
345             new_sensors |= SENSORS_MAGNETIC_FIELD;
346             data->sensors[ID_MAGNETIC_FIELD].magnetic.x = params[0];
347             data->sensors[ID_MAGNETIC_FIELD].magnetic.y = params[1];
348             data->sensors[ID_MAGNETIC_FIELD].magnetic.z = params[2];
349             data->sensors[ID_MAGNETIC_FIELD].magnetic.status = SENSOR_STATUS_ACCURACY_HIGH;
350             data->sensors[ID_ACCELERATION].type = SENSOR_TYPE_MAGNETIC_FIELD;
351             continue;
352         }
353 
354         /* "temperature:<celsius>" */
355         if (sscanf(buff, "temperature:%g", params+0) == 1) {
356             new_sensors |= SENSORS_TEMPERATURE;
357             data->sensors[ID_TEMPERATURE].temperature = params[0];
358             data->sensors[ID_ACCELERATION].type = SENSOR_TYPE_TEMPERATURE;
359             continue;
360         }
361 
362         /* "proximity:<value>" */
363         if (sscanf(buff, "proximity:%g", params+0) == 1) {
364             new_sensors |= SENSORS_PROXIMITY;
365             data->sensors[ID_PROXIMITY].distance = params[0];
366             data->sensors[ID_ACCELERATION].type = SENSOR_TYPE_PROXIMITY;
367             continue;
368         }
369 
370         /* "sync:<time>" is sent after a series of sensor events.
371          * where 'time' is expressed in micro-seconds and corresponds
372          * to the VM time when the real poll occured.
373          */
374         if (sscanf(buff, "sync:%lld", &event_time) == 1) {
375             if (new_sensors) {
376                 data->pendingSensors = new_sensors;
377                 int64_t t = event_time * 1000LL;  /* convert to nano-seconds */
378 
379                 /* use the time at the first sync: as the base for later
380                  * time values */
381                 if (data->timeStart == 0) {
382                     data->timeStart  = data__now_ns();
383                     data->timeOffset = data->timeStart - t;
384                 }
385                 t += data->timeOffset;
386 
387                 while (new_sensors) {
388                     uint32_t i = 31 - __builtin_clz(new_sensors);
389                     new_sensors &= ~(1<<i);
390                     data->sensors[i].timestamp = t;
391                 }
392                 return pick_sensor(data, values);
393             } else {
394                 D("huh ? sync without any sensor data ?");
395             }
396             continue;
397         }
398         D("huh ? unsupported command");
399     }
400     return -1;
401 }
402 
403 static int
data__close(struct hw_device_t * dev)404 data__close(struct hw_device_t *dev)
405 {
406     SensorPoll* data = (SensorPoll*)dev;
407     if (data) {
408         if (data->events_fd >= 0) {
409             //ALOGD("(device close) about to close fd=%d", data->events_fd);
410             close(data->events_fd);
411         }
412         free(data);
413     }
414     return 0;
415 }
416 
417 /** SENSORS POLL DEVICE FUNCTIONS **/
418 
poll__close(struct hw_device_t * dev)419 static int poll__close(struct hw_device_t* dev)
420 {
421     SensorPoll*  ctl = (void*)dev;
422     close(ctl->fd);
423     if (ctl->fd >= 0) {
424         close(ctl->fd);
425     }
426     if (ctl->events_fd >= 0) {
427         close(ctl->events_fd);
428     }
429     free(ctl);
430     return 0;
431 }
432 
poll__poll(struct sensors_poll_device_1 * dev,sensors_event_t * data,int count)433 static int poll__poll(struct sensors_poll_device_1 *dev,
434             sensors_event_t* data, int count)
435 {
436     SensorPoll*  datadev = (void*)dev;
437     int ret;
438     int i;
439     D("%s: dev=%p data=%p count=%d ", __FUNCTION__, dev, data, count);
440 
441     for (i = 0; i < count; i++)  {
442         ret = data__poll(dev, data);
443         data++;
444         if (ret > MAX_NUM_SENSORS || ret < 0) {
445            return i;
446         }
447         if (!datadev->pendingSensors) {
448            return i + 1;
449         }
450     }
451     return count;
452 }
453 
poll__activate(struct sensors_poll_device_1 * dev,int handle,int enabled)454 static int poll__activate(struct sensors_poll_device_1 *dev,
455             int handle, int enabled)
456 {
457     int ret;
458     native_handle_t* hdl;
459     SensorPoll*  ctl = (void*)dev;
460     D("%s: dev=%p handle=%x enable=%d ", __FUNCTION__, dev, handle, enabled);
461     if (ctl->fd < 0) {
462         D("%s: OPEN CTRL and DATA ", __FUNCTION__);
463         hdl = control__open_data_source(dev);
464         ret = data__data_open(dev,hdl);
465     }
466     ret = control__activate(dev, handle, enabled);
467     return ret;
468 }
469 
poll__setDelay(struct sensors_poll_device_1 * dev,int handle,int64_t ns)470 static int poll__setDelay(struct sensors_poll_device_1 *dev,
471             int handle, int64_t ns)
472 {
473     // TODO
474     return 0;
475 }
476 
477 /** MODULE REGISTRATION SUPPORT
478  **
479  ** This is required so that hardware/libhardware/hardware.c
480  ** will dlopen() this library appropriately.
481  **/
482 
483 /*
484  * the following is the list of all supported sensors.
485  * this table is used to build sSensorList declared below
486  * according to which hardware sensors are reported as
487  * available from the emulator (see get_sensors_list below)
488  *
489  * note: numerical values for maxRange/resolution/power were
490  *       taken from the reference AK8976A implementation
491  */
492 static const struct sensor_t sSensorListInit[] = {
493         { .name       = "Goldfish 3-axis Accelerometer",
494           .vendor     = "The Android Open Source Project",
495           .version    = 1,
496           .handle     = ID_ACCELERATION,
497           .type       = SENSOR_TYPE_ACCELEROMETER,
498           .maxRange   = 2.8f,
499           .resolution = 1.0f/4032.0f,
500           .power      = 3.0f,
501           .reserved   = {}
502         },
503 
504         { .name       = "Goldfish 3-axis Magnetic field sensor",
505           .vendor     = "The Android Open Source Project",
506           .version    = 1,
507           .handle     = ID_MAGNETIC_FIELD,
508           .type       = SENSOR_TYPE_MAGNETIC_FIELD,
509           .maxRange   = 2000.0f,
510           .resolution = 1.0f,
511           .power      = 6.7f,
512           .reserved   = {}
513         },
514 
515         { .name       = "Goldfish Orientation sensor",
516           .vendor     = "The Android Open Source Project",
517           .version    = 1,
518           .handle     = ID_ORIENTATION,
519           .type       = SENSOR_TYPE_ORIENTATION,
520           .maxRange   = 360.0f,
521           .resolution = 1.0f,
522           .power      = 9.7f,
523           .reserved   = {}
524         },
525 
526         { .name       = "Goldfish Temperature sensor",
527           .vendor     = "The Android Open Source Project",
528           .version    = 1,
529           .handle     = ID_TEMPERATURE,
530           .type       = SENSOR_TYPE_TEMPERATURE,
531           .maxRange   = 80.0f,
532           .resolution = 1.0f,
533           .power      = 0.0f,
534           .reserved   = {}
535         },
536 
537         { .name       = "Goldfish Proximity sensor",
538           .vendor     = "The Android Open Source Project",
539           .version    = 1,
540           .handle     = ID_PROXIMITY,
541           .type       = SENSOR_TYPE_PROXIMITY,
542           .maxRange   = 1.0f,
543           .resolution = 1.0f,
544           .power      = 20.0f,
545           .reserved   = {}
546         },
547 };
548 
549 static struct sensor_t  sSensorList[MAX_NUM_SENSORS];
550 
sensors__get_sensors_list(struct sensors_module_t * module,struct sensor_t const ** list)551 static int sensors__get_sensors_list(struct sensors_module_t* module,
552         struct sensor_t const** list)
553 {
554     int  fd = qemud_channel_open(SENSORS_SERVICE_NAME);
555     char buffer[12];
556     int  mask, nn, count;
557 
558     int  ret;
559     if (fd < 0) {
560         E("%s: no qemud connection", __FUNCTION__);
561         return 0;
562     }
563     ret = qemud_channel_send(fd, "list-sensors", -1);
564     if (ret < 0) {
565         E("%s: could not query sensor list: %s", __FUNCTION__,
566           strerror(errno));
567         close(fd);
568         return 0;
569     }
570     ret = qemud_channel_recv(fd, buffer, sizeof buffer-1);
571     if (ret < 0) {
572         E("%s: could not receive sensor list: %s", __FUNCTION__,
573           strerror(errno));
574         close(fd);
575         return 0;
576     }
577     buffer[ret] = 0;
578     close(fd);
579 
580     /* the result is a integer used as a mask for available sensors */
581     mask  = atoi(buffer);
582     count = 0;
583     for (nn = 0; nn < MAX_NUM_SENSORS; nn++) {
584         if (((1 << nn) & mask) == 0)
585             continue;
586 
587         sSensorList[count++] = sSensorListInit[nn];
588     }
589     D("%s: returned %d sensors (mask=%d)", __FUNCTION__, count, mask);
590     *list = sSensorList;
591     return count;
592 }
593 
594 
595 static int
open_sensors(const struct hw_module_t * module,const char * name,struct hw_device_t ** device)596 open_sensors(const struct hw_module_t* module,
597              const char*               name,
598              struct hw_device_t*      *device)
599 {
600     int  status = -EINVAL;
601 
602     D("%s: name=%s", __FUNCTION__, name);
603 
604     if (!strcmp(name, SENSORS_HARDWARE_POLL)) {
605         SensorPoll *dev = malloc(sizeof(*dev));
606 
607         memset(dev, 0, sizeof(*dev));
608 
609         dev->device.common.tag     = HARDWARE_DEVICE_TAG;
610         dev->device.common.version = SENSORS_DEVICE_API_VERSION_1_0;
611         dev->device.common.module  = (struct hw_module_t*) module;
612         dev->device.common.close   = poll__close;
613         dev->device.poll           = poll__poll;
614         dev->device.activate       = poll__activate;
615         dev->device.setDelay       = poll__setDelay;
616         dev->events_fd             = -1;
617         dev->fd                    = -1;
618 
619         *device = &dev->device.common;
620         status  = 0;
621     }
622     return status;
623 }
624 
625 
626 static struct hw_module_methods_t sensors_module_methods = {
627     .open = open_sensors
628 };
629 
630 struct sensors_module_t HAL_MODULE_INFO_SYM = {
631     .common = {
632         .tag = HARDWARE_MODULE_TAG,
633         .version_major = 1,
634         .version_minor = 0,
635         .id = SENSORS_HARDWARE_MODULE_ID,
636         .name = "Goldfish SENSORS Module",
637         .author = "The Android Open Source Project",
638         .methods = &sensors_module_methods,
639     },
640     .get_sensors_list = sensors__get_sensors_list
641 };
642