1 /*
2 * Copyright (C) 2009 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 /* this implements a sensors hardware library for the Android emulator.
18 * the following code should be built as a shared library that will be
19 * placed into /system/lib/hw/sensors.goldfish.so
20 *
21 * it will be loaded by the code in hardware/libhardware/hardware.c
22 * which is itself called from com_android_server_SensorService.cpp
23 */
24
25
26 /* we connect with the emulator through the "sensors" qemud service
27 */
28 #define SENSORS_SERVICE_NAME "sensors"
29
30 #define LOG_TAG "QemuSensors"
31
32 #include <unistd.h>
33 #include <fcntl.h>
34 #include <errno.h>
35 #include <string.h>
36 #include <cutils/log.h>
37 #include <cutils/native_handle.h>
38 #include <cutils/sockets.h>
39 #include <hardware/sensors.h>
40
41 #if 0
42 #define D(...) ALOGD(__VA_ARGS__)
43 #else
44 #define D(...) ((void)0)
45 #endif
46
47 #define E(...) ALOGE(__VA_ARGS__)
48
49 #include <hardware/qemud.h>
50
51 /** SENSOR IDS AND NAMES
52 **/
53
54 #define MAX_NUM_SENSORS 5
55
56 #define SUPPORTED_SENSORS ((1<<MAX_NUM_SENSORS)-1)
57
58 #define ID_BASE SENSORS_HANDLE_BASE
59 #define ID_ACCELERATION (ID_BASE+0)
60 #define ID_MAGNETIC_FIELD (ID_BASE+1)
61 #define ID_ORIENTATION (ID_BASE+2)
62 #define ID_TEMPERATURE (ID_BASE+3)
63 #define ID_PROXIMITY (ID_BASE+4)
64
65 #define SENSORS_ACCELERATION (1 << ID_ACCELERATION)
66 #define SENSORS_MAGNETIC_FIELD (1 << ID_MAGNETIC_FIELD)
67 #define SENSORS_ORIENTATION (1 << ID_ORIENTATION)
68 #define SENSORS_TEMPERATURE (1 << ID_TEMPERATURE)
69 #define SENSORS_PROXIMITY (1 << ID_PROXIMITY)
70
71 #define ID_CHECK(x) ((unsigned)((x)-ID_BASE) < MAX_NUM_SENSORS)
72
73 #define SENSORS_LIST \
74 SENSOR_(ACCELERATION,"acceleration") \
75 SENSOR_(MAGNETIC_FIELD,"magnetic-field") \
76 SENSOR_(ORIENTATION,"orientation") \
77 SENSOR_(TEMPERATURE,"temperature") \
78 SENSOR_(PROXIMITY,"proximity") \
79
80 static const struct {
81 const char* name;
82 int id; } _sensorIds[MAX_NUM_SENSORS] =
83 {
84 #define SENSOR_(x,y) { y, ID_##x },
85 SENSORS_LIST
86 #undef SENSOR_
87 };
88
89 static const char*
_sensorIdToName(int id)90 _sensorIdToName( int id )
91 {
92 int nn;
93 for (nn = 0; nn < MAX_NUM_SENSORS; nn++)
94 if (id == _sensorIds[nn].id)
95 return _sensorIds[nn].name;
96 return "<UNKNOWN>";
97 }
98
99 static int
_sensorIdFromName(const char * name)100 _sensorIdFromName( const char* name )
101 {
102 int nn;
103
104 if (name == NULL)
105 return -1;
106
107 for (nn = 0; nn < MAX_NUM_SENSORS; nn++)
108 if (!strcmp(name, _sensorIds[nn].name))
109 return _sensorIds[nn].id;
110
111 return -1;
112 }
113
114 /** SENSORS POLL DEVICE
115 **
116 ** This one is used to read sensor data from the hardware.
117 ** We implement this by simply reading the data from the
118 ** emulator through the QEMUD channel.
119 **/
120
121 typedef struct SensorPoll {
122 struct sensors_poll_device_1 device;
123 sensors_event_t sensors[MAX_NUM_SENSORS];
124 int events_fd;
125 uint32_t pendingSensors;
126 int64_t timeStart;
127 int64_t timeOffset;
128 int fd;
129 uint32_t active_sensors;
130 } SensorPoll;
131
132 /* this must return a file descriptor that will be used to read
133 * the sensors data (it is passed to data__data_open() below
134 */
135 static native_handle_t*
control__open_data_source(struct sensors_poll_device_1 * dev)136 control__open_data_source(struct sensors_poll_device_1 *dev)
137 {
138 SensorPoll* ctl = (void*)dev;
139 native_handle_t* handle;
140
141 if (ctl->fd < 0) {
142 ctl->fd = qemud_channel_open(SENSORS_SERVICE_NAME);
143 }
144 D("%s: fd=%d", __FUNCTION__, ctl->fd);
145 handle = native_handle_create(1, 0);
146 handle->data[0] = dup(ctl->fd);
147 return handle;
148 }
149
150 static int
control__activate(struct sensors_poll_device_1 * dev,int handle,int enabled)151 control__activate(struct sensors_poll_device_1 *dev,
152 int handle,
153 int enabled)
154 {
155 SensorPoll* ctl = (void*)dev;
156 uint32_t mask, sensors, active, new_sensors, changed;
157 char command[128];
158 int ret;
159
160 D("%s: handle=%s (%d) fd=%d enabled=%d", __FUNCTION__,
161 _sensorIdToName(handle), handle, ctl->fd, enabled);
162
163 if (!ID_CHECK(handle)) {
164 E("%s: bad handle ID", __FUNCTION__);
165 return -1;
166 }
167
168 mask = (1<<handle);
169 sensors = enabled ? mask : 0;
170
171 active = ctl->active_sensors;
172 new_sensors = (active & ~mask) | (sensors & mask);
173 changed = active ^ new_sensors;
174
175 if (!changed)
176 return 0;
177
178 snprintf(command, sizeof command, "set:%s:%d",
179 _sensorIdToName(handle), enabled != 0);
180
181 if (ctl->fd < 0) {
182 ctl->fd = qemud_channel_open(SENSORS_SERVICE_NAME);
183 }
184
185 ret = qemud_channel_send(ctl->fd, command, -1);
186 if (ret < 0) {
187 E("%s: when sending command errno=%d: %s", __FUNCTION__, errno, strerror(errno));
188 return -1;
189 }
190 ctl->active_sensors = new_sensors;
191
192 return 0;
193 }
194
195 static int
control__set_delay(struct sensors_poll_device_1 * dev,int32_t ms)196 control__set_delay(struct sensors_poll_device_1 *dev, int32_t ms)
197 {
198 SensorPoll* ctl = (void*)dev;
199 char command[128];
200
201 D("%s: dev=%p delay-ms=%d", __FUNCTION__, dev, ms);
202
203 snprintf(command, sizeof command, "set-delay:%d", ms);
204
205 return qemud_channel_send(ctl->fd, command, -1);
206 }
207
208 static int
control__close(struct hw_device_t * dev)209 control__close(struct hw_device_t *dev)
210 {
211 SensorPoll* ctl = (void*)dev;
212 close(ctl->fd);
213 free(ctl);
214 return 0;
215 }
216
217 /* return the current time in nanoseconds */
218 static int64_t
data__now_ns(void)219 data__now_ns(void)
220 {
221 struct timespec ts;
222
223 clock_gettime(CLOCK_MONOTONIC, &ts);
224
225 return (int64_t)ts.tv_sec * 1000000000 + ts.tv_nsec;
226 }
227
228 static int
data__data_open(struct sensors_poll_device_1 * dev,native_handle_t * handle)229 data__data_open(struct sensors_poll_device_1 *dev, native_handle_t* handle)
230 {
231 SensorPoll* data = (void*)dev;
232 int i;
233 D("%s: dev=%p fd=%d", __FUNCTION__, dev, handle->data[0]);
234 memset(&data->sensors, 0, sizeof(data->sensors));
235
236 data->pendingSensors = 0;
237 data->timeStart = 0;
238 data->timeOffset = 0;
239
240 data->events_fd = dup(handle->data[0]);
241 D("%s: dev=%p fd=%d (was %d)", __FUNCTION__, dev, data->events_fd, handle->data[0]);
242 native_handle_close(handle);
243 native_handle_delete(handle);
244 return 0;
245 }
246
247 static int
data__data_close(struct sensors_poll_device_1 * dev)248 data__data_close(struct sensors_poll_device_1 *dev)
249 {
250 SensorPoll* data = (void*)dev;
251 D("%s: dev=%p", __FUNCTION__, dev);
252 if (data->events_fd >= 0) {
253 close(data->events_fd);
254 data->events_fd = -1;
255 }
256 return 0;
257 }
258
259 static int
pick_sensor(SensorPoll * data,sensors_event_t * values)260 pick_sensor(SensorPoll* data,
261 sensors_event_t* values)
262 {
263 uint32_t mask = SUPPORTED_SENSORS;
264 while (mask) {
265 uint32_t i = 31 - __builtin_clz(mask);
266 mask &= ~(1<<i);
267 if (data->pendingSensors & (1<<i)) {
268 data->pendingSensors &= ~(1<<i);
269 *values = data->sensors[i];
270 values->sensor = i;
271 values->version = sizeof(*values);
272
273 D("%s: %d [%f, %f, %f]", __FUNCTION__,
274 i,
275 values->data[0],
276 values->data[1],
277 values->data[2]);
278 return i;
279 }
280 }
281 ALOGE("No sensor to return!!! pendingSensors=%08x", data->pendingSensors);
282 // we may end-up in a busy loop, slow things down, just in case.
283 usleep(100000);
284 return -EINVAL;
285 }
286
287 static int
data__poll(struct sensors_poll_device_1 * dev,sensors_event_t * values)288 data__poll(struct sensors_poll_device_1 *dev, sensors_event_t* values)
289 {
290 SensorPoll* data = (void*)dev;
291 int fd = data->events_fd;
292
293 D("%s: data=%p", __FUNCTION__, dev);
294
295 // there are pending sensors, returns them now...
296 if (data->pendingSensors) {
297 return pick_sensor(data, values);
298 }
299
300 // wait until we get a complete event for an enabled sensor
301 uint32_t new_sensors = 0;
302
303 while (1) {
304 /* read the next event */
305 char buff[256];
306 int len = qemud_channel_recv(data->events_fd, buff, sizeof buff-1);
307 float params[3];
308 int64_t event_time;
309
310 if (len < 0) {
311 E("%s: len=%d, errno=%d: %s", __FUNCTION__, len, errno, strerror(errno));
312 return -errno;
313 }
314
315 buff[len] = 0;
316
317 /* "wake" is sent from the emulator to exit this loop. */
318 if (!strcmp((const char*)data, "wake")) {
319 return 0x7FFFFFFF;
320 }
321
322 /* "acceleration:<x>:<y>:<z>" corresponds to an acceleration event */
323 if (sscanf(buff, "acceleration:%g:%g:%g", params+0, params+1, params+2) == 3) {
324 new_sensors |= SENSORS_ACCELERATION;
325 data->sensors[ID_ACCELERATION].acceleration.x = params[0];
326 data->sensors[ID_ACCELERATION].acceleration.y = params[1];
327 data->sensors[ID_ACCELERATION].acceleration.z = params[2];
328 data->sensors[ID_ACCELERATION].type = SENSOR_TYPE_ACCELEROMETER;
329 continue;
330 }
331
332 /* "orientation:<azimuth>:<pitch>:<roll>" is sent when orientation changes */
333 if (sscanf(buff, "orientation:%g:%g:%g", params+0, params+1, params+2) == 3) {
334 new_sensors |= SENSORS_ORIENTATION;
335 data->sensors[ID_ORIENTATION].orientation.azimuth = params[0];
336 data->sensors[ID_ORIENTATION].orientation.pitch = params[1];
337 data->sensors[ID_ORIENTATION].orientation.roll = params[2];
338 data->sensors[ID_ORIENTATION].orientation.status = SENSOR_STATUS_ACCURACY_HIGH;
339 data->sensors[ID_ACCELERATION].type = SENSOR_TYPE_ORIENTATION;
340 continue;
341 }
342
343 /* "magnetic:<x>:<y>:<z>" is sent for the params of the magnetic field */
344 if (sscanf(buff, "magnetic:%g:%g:%g", params+0, params+1, params+2) == 3) {
345 new_sensors |= SENSORS_MAGNETIC_FIELD;
346 data->sensors[ID_MAGNETIC_FIELD].magnetic.x = params[0];
347 data->sensors[ID_MAGNETIC_FIELD].magnetic.y = params[1];
348 data->sensors[ID_MAGNETIC_FIELD].magnetic.z = params[2];
349 data->sensors[ID_MAGNETIC_FIELD].magnetic.status = SENSOR_STATUS_ACCURACY_HIGH;
350 data->sensors[ID_ACCELERATION].type = SENSOR_TYPE_MAGNETIC_FIELD;
351 continue;
352 }
353
354 /* "temperature:<celsius>" */
355 if (sscanf(buff, "temperature:%g", params+0) == 1) {
356 new_sensors |= SENSORS_TEMPERATURE;
357 data->sensors[ID_TEMPERATURE].temperature = params[0];
358 data->sensors[ID_ACCELERATION].type = SENSOR_TYPE_TEMPERATURE;
359 continue;
360 }
361
362 /* "proximity:<value>" */
363 if (sscanf(buff, "proximity:%g", params+0) == 1) {
364 new_sensors |= SENSORS_PROXIMITY;
365 data->sensors[ID_PROXIMITY].distance = params[0];
366 data->sensors[ID_ACCELERATION].type = SENSOR_TYPE_PROXIMITY;
367 continue;
368 }
369
370 /* "sync:<time>" is sent after a series of sensor events.
371 * where 'time' is expressed in micro-seconds and corresponds
372 * to the VM time when the real poll occured.
373 */
374 if (sscanf(buff, "sync:%lld", &event_time) == 1) {
375 if (new_sensors) {
376 data->pendingSensors = new_sensors;
377 int64_t t = event_time * 1000LL; /* convert to nano-seconds */
378
379 /* use the time at the first sync: as the base for later
380 * time values */
381 if (data->timeStart == 0) {
382 data->timeStart = data__now_ns();
383 data->timeOffset = data->timeStart - t;
384 }
385 t += data->timeOffset;
386
387 while (new_sensors) {
388 uint32_t i = 31 - __builtin_clz(new_sensors);
389 new_sensors &= ~(1<<i);
390 data->sensors[i].timestamp = t;
391 }
392 return pick_sensor(data, values);
393 } else {
394 D("huh ? sync without any sensor data ?");
395 }
396 continue;
397 }
398 D("huh ? unsupported command");
399 }
400 return -1;
401 }
402
403 static int
data__close(struct hw_device_t * dev)404 data__close(struct hw_device_t *dev)
405 {
406 SensorPoll* data = (SensorPoll*)dev;
407 if (data) {
408 if (data->events_fd >= 0) {
409 //ALOGD("(device close) about to close fd=%d", data->events_fd);
410 close(data->events_fd);
411 }
412 free(data);
413 }
414 return 0;
415 }
416
417 /** SENSORS POLL DEVICE FUNCTIONS **/
418
poll__close(struct hw_device_t * dev)419 static int poll__close(struct hw_device_t* dev)
420 {
421 SensorPoll* ctl = (void*)dev;
422 close(ctl->fd);
423 if (ctl->fd >= 0) {
424 close(ctl->fd);
425 }
426 if (ctl->events_fd >= 0) {
427 close(ctl->events_fd);
428 }
429 free(ctl);
430 return 0;
431 }
432
poll__poll(struct sensors_poll_device_1 * dev,sensors_event_t * data,int count)433 static int poll__poll(struct sensors_poll_device_1 *dev,
434 sensors_event_t* data, int count)
435 {
436 SensorPoll* datadev = (void*)dev;
437 int ret;
438 int i;
439 D("%s: dev=%p data=%p count=%d ", __FUNCTION__, dev, data, count);
440
441 for (i = 0; i < count; i++) {
442 ret = data__poll(dev, data);
443 data++;
444 if (ret > MAX_NUM_SENSORS || ret < 0) {
445 return i;
446 }
447 if (!datadev->pendingSensors) {
448 return i + 1;
449 }
450 }
451 return count;
452 }
453
poll__activate(struct sensors_poll_device_1 * dev,int handle,int enabled)454 static int poll__activate(struct sensors_poll_device_1 *dev,
455 int handle, int enabled)
456 {
457 int ret;
458 native_handle_t* hdl;
459 SensorPoll* ctl = (void*)dev;
460 D("%s: dev=%p handle=%x enable=%d ", __FUNCTION__, dev, handle, enabled);
461 if (ctl->fd < 0) {
462 D("%s: OPEN CTRL and DATA ", __FUNCTION__);
463 hdl = control__open_data_source(dev);
464 ret = data__data_open(dev,hdl);
465 }
466 ret = control__activate(dev, handle, enabled);
467 return ret;
468 }
469
poll__setDelay(struct sensors_poll_device_1 * dev,int handle,int64_t ns)470 static int poll__setDelay(struct sensors_poll_device_1 *dev,
471 int handle, int64_t ns)
472 {
473 // TODO
474 return 0;
475 }
476
477 /** MODULE REGISTRATION SUPPORT
478 **
479 ** This is required so that hardware/libhardware/hardware.c
480 ** will dlopen() this library appropriately.
481 **/
482
483 /*
484 * the following is the list of all supported sensors.
485 * this table is used to build sSensorList declared below
486 * according to which hardware sensors are reported as
487 * available from the emulator (see get_sensors_list below)
488 *
489 * note: numerical values for maxRange/resolution/power were
490 * taken from the reference AK8976A implementation
491 */
492 static const struct sensor_t sSensorListInit[] = {
493 { .name = "Goldfish 3-axis Accelerometer",
494 .vendor = "The Android Open Source Project",
495 .version = 1,
496 .handle = ID_ACCELERATION,
497 .type = SENSOR_TYPE_ACCELEROMETER,
498 .maxRange = 2.8f,
499 .resolution = 1.0f/4032.0f,
500 .power = 3.0f,
501 .reserved = {}
502 },
503
504 { .name = "Goldfish 3-axis Magnetic field sensor",
505 .vendor = "The Android Open Source Project",
506 .version = 1,
507 .handle = ID_MAGNETIC_FIELD,
508 .type = SENSOR_TYPE_MAGNETIC_FIELD,
509 .maxRange = 2000.0f,
510 .resolution = 1.0f,
511 .power = 6.7f,
512 .reserved = {}
513 },
514
515 { .name = "Goldfish Orientation sensor",
516 .vendor = "The Android Open Source Project",
517 .version = 1,
518 .handle = ID_ORIENTATION,
519 .type = SENSOR_TYPE_ORIENTATION,
520 .maxRange = 360.0f,
521 .resolution = 1.0f,
522 .power = 9.7f,
523 .reserved = {}
524 },
525
526 { .name = "Goldfish Temperature sensor",
527 .vendor = "The Android Open Source Project",
528 .version = 1,
529 .handle = ID_TEMPERATURE,
530 .type = SENSOR_TYPE_TEMPERATURE,
531 .maxRange = 80.0f,
532 .resolution = 1.0f,
533 .power = 0.0f,
534 .reserved = {}
535 },
536
537 { .name = "Goldfish Proximity sensor",
538 .vendor = "The Android Open Source Project",
539 .version = 1,
540 .handle = ID_PROXIMITY,
541 .type = SENSOR_TYPE_PROXIMITY,
542 .maxRange = 1.0f,
543 .resolution = 1.0f,
544 .power = 20.0f,
545 .reserved = {}
546 },
547 };
548
549 static struct sensor_t sSensorList[MAX_NUM_SENSORS];
550
sensors__get_sensors_list(struct sensors_module_t * module,struct sensor_t const ** list)551 static int sensors__get_sensors_list(struct sensors_module_t* module,
552 struct sensor_t const** list)
553 {
554 int fd = qemud_channel_open(SENSORS_SERVICE_NAME);
555 char buffer[12];
556 int mask, nn, count;
557
558 int ret;
559 if (fd < 0) {
560 E("%s: no qemud connection", __FUNCTION__);
561 return 0;
562 }
563 ret = qemud_channel_send(fd, "list-sensors", -1);
564 if (ret < 0) {
565 E("%s: could not query sensor list: %s", __FUNCTION__,
566 strerror(errno));
567 close(fd);
568 return 0;
569 }
570 ret = qemud_channel_recv(fd, buffer, sizeof buffer-1);
571 if (ret < 0) {
572 E("%s: could not receive sensor list: %s", __FUNCTION__,
573 strerror(errno));
574 close(fd);
575 return 0;
576 }
577 buffer[ret] = 0;
578 close(fd);
579
580 /* the result is a integer used as a mask for available sensors */
581 mask = atoi(buffer);
582 count = 0;
583 for (nn = 0; nn < MAX_NUM_SENSORS; nn++) {
584 if (((1 << nn) & mask) == 0)
585 continue;
586
587 sSensorList[count++] = sSensorListInit[nn];
588 }
589 D("%s: returned %d sensors (mask=%d)", __FUNCTION__, count, mask);
590 *list = sSensorList;
591 return count;
592 }
593
594
595 static int
open_sensors(const struct hw_module_t * module,const char * name,struct hw_device_t ** device)596 open_sensors(const struct hw_module_t* module,
597 const char* name,
598 struct hw_device_t* *device)
599 {
600 int status = -EINVAL;
601
602 D("%s: name=%s", __FUNCTION__, name);
603
604 if (!strcmp(name, SENSORS_HARDWARE_POLL)) {
605 SensorPoll *dev = malloc(sizeof(*dev));
606
607 memset(dev, 0, sizeof(*dev));
608
609 dev->device.common.tag = HARDWARE_DEVICE_TAG;
610 dev->device.common.version = SENSORS_DEVICE_API_VERSION_1_0;
611 dev->device.common.module = (struct hw_module_t*) module;
612 dev->device.common.close = poll__close;
613 dev->device.poll = poll__poll;
614 dev->device.activate = poll__activate;
615 dev->device.setDelay = poll__setDelay;
616 dev->events_fd = -1;
617 dev->fd = -1;
618
619 *device = &dev->device.common;
620 status = 0;
621 }
622 return status;
623 }
624
625
626 static struct hw_module_methods_t sensors_module_methods = {
627 .open = open_sensors
628 };
629
630 struct sensors_module_t HAL_MODULE_INFO_SYM = {
631 .common = {
632 .tag = HARDWARE_MODULE_TAG,
633 .version_major = 1,
634 .version_minor = 0,
635 .id = SENSORS_HARDWARE_MODULE_ID,
636 .name = "Goldfish SENSORS Module",
637 .author = "The Android Open Source Project",
638 .methods = &sensors_module_methods,
639 },
640 .get_sensors_list = sensors__get_sensors_list
641 };
642