1 /*
2  * Copyright (C) 2015 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #ifndef ART_RUNTIME_BASE_BIT_UTILS_H_
18 #define ART_RUNTIME_BASE_BIT_UTILS_H_
19 
20 #include <iterator>
21 #include <limits>
22 #include <type_traits>
23 
24 #include "base/logging.h"
25 #include "base/iteration_range.h"
26 
27 namespace art {
28 
29 template<typename T>
CLZ(T x)30 static constexpr int CLZ(T x) {
31   static_assert(std::is_integral<T>::value, "T must be integral");
32   // TODO: assert unsigned. There is currently many uses with signed values.
33   static_assert(sizeof(T) <= sizeof(long long),  // NOLINT [runtime/int] [4]
34                 "T too large, must be smaller than long long");
35   return (sizeof(T) == sizeof(uint32_t))
36       ? __builtin_clz(x)  // TODO: __builtin_clz[ll] has undefined behavior for x=0
37       : __builtin_clzll(x);
38 }
39 
40 template<typename T>
CTZ(T x)41 static constexpr int CTZ(T x) {
42   static_assert(std::is_integral<T>::value, "T must be integral");
43   // TODO: assert unsigned. There is currently many uses with signed values.
44   return (sizeof(T) == sizeof(uint32_t))
45       ? __builtin_ctz(x)
46       : __builtin_ctzll(x);
47 }
48 
49 template<typename T>
POPCOUNT(T x)50 static constexpr int POPCOUNT(T x) {
51   return (sizeof(T) == sizeof(uint32_t))
52       ? __builtin_popcount(x)
53       : __builtin_popcountll(x);
54 }
55 
56 // Find the bit position of the most significant bit (0-based), or -1 if there were no bits set.
57 template <typename T>
MostSignificantBit(T value)58 static constexpr ssize_t MostSignificantBit(T value) {
59   static_assert(std::is_integral<T>::value, "T must be integral");
60   static_assert(std::is_unsigned<T>::value, "T must be unsigned");
61   static_assert(std::numeric_limits<T>::radix == 2, "Unexpected radix!");
62   return (value == 0) ? -1 : std::numeric_limits<T>::digits - 1 - CLZ(value);
63 }
64 
65 // Find the bit position of the least significant bit (0-based), or -1 if there were no bits set.
66 template <typename T>
LeastSignificantBit(T value)67 static constexpr ssize_t LeastSignificantBit(T value) {
68   static_assert(std::is_integral<T>::value, "T must be integral");
69   static_assert(std::is_unsigned<T>::value, "T must be unsigned");
70   return (value == 0) ? -1 : CTZ(value);
71 }
72 
73 // How many bits (minimally) does it take to store the constant 'value'? i.e. 1 for 1, 3 for 5, etc.
74 template <typename T>
MinimumBitsToStore(T value)75 static constexpr size_t MinimumBitsToStore(T value) {
76   return static_cast<size_t>(MostSignificantBit(value) + 1);
77 }
78 
79 template <typename T>
RoundUpToPowerOfTwo(T x)80 static constexpr inline T RoundUpToPowerOfTwo(T x) {
81   static_assert(std::is_integral<T>::value, "T must be integral");
82   static_assert(std::is_unsigned<T>::value, "T must be unsigned");
83   // NOTE: Undefined if x > (1 << (std::numeric_limits<T>::digits - 1)).
84   return (x < 2u) ? x : static_cast<T>(1u) << (std::numeric_limits<T>::digits - CLZ(x - 1u));
85 }
86 
87 template<typename T>
IsPowerOfTwo(T x)88 static constexpr bool IsPowerOfTwo(T x) {
89   static_assert(std::is_integral<T>::value, "T must be integral");
90   // TODO: assert unsigned. There is currently many uses with signed values.
91   return (x & (x - 1)) == 0;
92 }
93 
94 template<typename T>
WhichPowerOf2(T x)95 static inline int WhichPowerOf2(T x) {
96   static_assert(std::is_integral<T>::value, "T must be integral");
97   // TODO: assert unsigned. There is currently many uses with signed values.
98   DCHECK((x != 0) && IsPowerOfTwo(x));
99   return CTZ(x);
100 }
101 
102 // For rounding integers.
103 // NOTE: In the absence of std::omit_from_type_deduction<T> or std::identity<T>, use std::decay<T>.
104 template<typename T>
105 static constexpr T RoundDown(T x, typename std::decay<T>::type n) WARN_UNUSED;
106 
107 template<typename T>
RoundDown(T x,typename std::decay<T>::type n)108 static constexpr T RoundDown(T x, typename std::decay<T>::type n) {
109   return
110       DCHECK_CONSTEXPR(IsPowerOfTwo(n), , T(0))
111       (x & -n);
112 }
113 
114 template<typename T>
115 static constexpr T RoundUp(T x, typename std::remove_reference<T>::type n) WARN_UNUSED;
116 
117 template<typename T>
RoundUp(T x,typename std::remove_reference<T>::type n)118 static constexpr T RoundUp(T x, typename std::remove_reference<T>::type n) {
119   return RoundDown(x + n - 1, n);
120 }
121 
122 // For aligning pointers.
123 template<typename T>
124 static inline T* AlignDown(T* x, uintptr_t n) WARN_UNUSED;
125 
126 template<typename T>
AlignDown(T * x,uintptr_t n)127 static inline T* AlignDown(T* x, uintptr_t n) {
128   return reinterpret_cast<T*>(RoundDown(reinterpret_cast<uintptr_t>(x), n));
129 }
130 
131 template<typename T>
132 static inline T* AlignUp(T* x, uintptr_t n) WARN_UNUSED;
133 
134 template<typename T>
AlignUp(T * x,uintptr_t n)135 static inline T* AlignUp(T* x, uintptr_t n) {
136   return reinterpret_cast<T*>(RoundUp(reinterpret_cast<uintptr_t>(x), n));
137 }
138 
139 template<int n, typename T>
IsAligned(T x)140 static inline bool IsAligned(T x) {
141   static_assert((n & (n - 1)) == 0, "n is not a power of two");
142   return (x & (n - 1)) == 0;
143 }
144 
145 template<int n, typename T>
IsAligned(T * x)146 static inline bool IsAligned(T* x) {
147   return IsAligned<n>(reinterpret_cast<const uintptr_t>(x));
148 }
149 
150 template<typename T>
IsAlignedParam(T x,int n)151 static inline bool IsAlignedParam(T x, int n) {
152   return (x & (n - 1)) == 0;
153 }
154 
155 #define CHECK_ALIGNED(value, alignment) \
156   CHECK(::art::IsAligned<alignment>(value)) << reinterpret_cast<const void*>(value)
157 
158 #define DCHECK_ALIGNED(value, alignment) \
159   DCHECK(::art::IsAligned<alignment>(value)) << reinterpret_cast<const void*>(value)
160 
161 #define DCHECK_ALIGNED_PARAM(value, alignment) \
162   DCHECK(::art::IsAlignedParam(value, alignment)) << reinterpret_cast<const void*>(value)
163 
164 // Like sizeof, but count how many bits a type takes. Pass type explicitly.
165 template <typename T>
BitSizeOf()166 static constexpr size_t BitSizeOf() {
167   static_assert(std::is_integral<T>::value, "T must be integral");
168   typedef typename std::make_unsigned<T>::type unsigned_type;
169   static_assert(sizeof(T) == sizeof(unsigned_type), "Unexpected type size mismatch!");
170   static_assert(std::numeric_limits<unsigned_type>::radix == 2, "Unexpected radix!");
171   return std::numeric_limits<unsigned_type>::digits;
172 }
173 
174 // Like sizeof, but count how many bits a type takes. Infers type from parameter.
175 template <typename T>
BitSizeOf(T)176 static constexpr size_t BitSizeOf(T /*x*/) {
177   return BitSizeOf<T>();
178 }
179 
Low16Bits(uint32_t value)180 static inline uint16_t Low16Bits(uint32_t value) {
181   return static_cast<uint16_t>(value);
182 }
183 
High16Bits(uint32_t value)184 static inline uint16_t High16Bits(uint32_t value) {
185   return static_cast<uint16_t>(value >> 16);
186 }
187 
Low32Bits(uint64_t value)188 static inline uint32_t Low32Bits(uint64_t value) {
189   return static_cast<uint32_t>(value);
190 }
191 
High32Bits(uint64_t value)192 static inline uint32_t High32Bits(uint64_t value) {
193   return static_cast<uint32_t>(value >> 32);
194 }
195 
196 // Check whether an N-bit two's-complement representation can hold value.
197 template <typename T>
IsInt(size_t N,T value)198 static inline bool IsInt(size_t N, T value) {
199   if (N == BitSizeOf<T>()) {
200     return true;
201   } else {
202     CHECK_LT(0u, N);
203     CHECK_LT(N, BitSizeOf<T>());
204     T limit = static_cast<T>(1) << (N - 1u);
205     return (-limit <= value) && (value < limit);
206   }
207 }
208 
209 template <typename T>
GetIntLimit(size_t bits)210 static constexpr T GetIntLimit(size_t bits) {
211   return
212       DCHECK_CONSTEXPR(bits > 0, "bits cannot be zero", 0)
213       DCHECK_CONSTEXPR(bits < BitSizeOf<T>(), "kBits must be < max.", 0)
214       static_cast<T>(1) << (bits - 1);
215 }
216 
217 template <size_t kBits, typename T>
IsInt(T value)218 static constexpr bool IsInt(T value) {
219   static_assert(kBits > 0, "kBits cannot be zero.");
220   static_assert(kBits <= BitSizeOf<T>(), "kBits must be <= max.");
221   static_assert(std::is_signed<T>::value, "Needs a signed type.");
222   // Corner case for "use all bits." Can't use the limits, as they would overflow, but it is
223   // trivially true.
224   return (kBits == BitSizeOf<T>()) ?
225       true :
226       (-GetIntLimit<T>(kBits) <= value) && (value < GetIntLimit<T>(kBits));
227 }
228 
229 template <size_t kBits, typename T>
IsUint(T value)230 static constexpr bool IsUint(T value) {
231   static_assert(kBits > 0, "kBits cannot be zero.");
232   static_assert(kBits <= BitSizeOf<T>(), "kBits must be <= max.");
233   static_assert(std::is_integral<T>::value, "Needs an integral type.");
234   // Corner case for "use all bits." Can't use the limits, as they would overflow, but it is
235   // trivially true.
236   // NOTE: To avoid triggering assertion in GetIntLimit(kBits+1) if kBits+1==BitSizeOf<T>(),
237   // use GetIntLimit(kBits)*2u. The unsigned arithmetic works well for us if it overflows.
238   return (0 <= value) &&
239       (kBits == BitSizeOf<T>() ||
240           (static_cast<typename std::make_unsigned<T>::type>(value) <=
241                GetIntLimit<typename std::make_unsigned<T>::type>(kBits) * 2u - 1u));
242 }
243 
244 template <size_t kBits, typename T>
IsAbsoluteUint(T value)245 static constexpr bool IsAbsoluteUint(T value) {
246   static_assert(kBits <= BitSizeOf<T>(), "kBits must be <= max.");
247   static_assert(std::is_integral<T>::value, "Needs an integral type.");
248   typedef typename std::make_unsigned<T>::type unsigned_type;
249   return (kBits == BitSizeOf<T>())
250       ? true
251       : IsUint<kBits>(value < 0
252                       ? static_cast<unsigned_type>(-1 - value) + 1u  // Avoid overflow.
253                       : static_cast<unsigned_type>(value));
254 }
255 
256 // Using the Curiously Recurring Template Pattern to implement everything shared
257 // by LowToHighBitIterator and HighToLowBitIterator, i.e. everything but operator*().
258 template <typename T, typename Iter>
259 class BitIteratorBase
260     : public std::iterator<std::forward_iterator_tag, uint32_t, ptrdiff_t, void, void> {
261   static_assert(std::is_integral<T>::value, "T must be integral");
262   static_assert(std::is_unsigned<T>::value, "T must be unsigned");
263 
264   static_assert(sizeof(T) == sizeof(uint32_t) || sizeof(T) == sizeof(uint64_t), "Unsupported size");
265 
266  public:
BitIteratorBase()267   BitIteratorBase() : bits_(0u) { }
BitIteratorBase(T bits)268   explicit BitIteratorBase(T bits) : bits_(bits) { }
269 
270   Iter& operator++() {
271     DCHECK_NE(bits_, 0u);
272     uint32_t bit = *static_cast<Iter&>(*this);
273     bits_ &= ~(static_cast<T>(1u) << bit);
274     return static_cast<Iter&>(*this);
275   }
276 
277   Iter& operator++(int) {
278     Iter tmp(static_cast<Iter&>(*this));
279     ++*this;
280     return tmp;
281   }
282 
283  protected:
284   T bits_;
285 
286   template <typename U, typename I>
287   friend bool operator==(const BitIteratorBase<U, I>& lhs, const BitIteratorBase<U, I>& rhs);
288 };
289 
290 template <typename T, typename Iter>
291 bool operator==(const BitIteratorBase<T, Iter>& lhs, const BitIteratorBase<T, Iter>& rhs) {
292   return lhs.bits_ == rhs.bits_;
293 }
294 
295 template <typename T, typename Iter>
296 bool operator!=(const BitIteratorBase<T, Iter>& lhs, const BitIteratorBase<T, Iter>& rhs) {
297   return !(lhs == rhs);
298 }
299 
300 template <typename T>
301 class LowToHighBitIterator : public BitIteratorBase<T, LowToHighBitIterator<T>> {
302  public:
303   using BitIteratorBase<T, LowToHighBitIterator<T>>::BitIteratorBase;
304 
305   uint32_t operator*() const {
306     DCHECK_NE(this->bits_, 0u);
307     return CTZ(this->bits_);
308   }
309 };
310 
311 template <typename T>
312 class HighToLowBitIterator : public BitIteratorBase<T, HighToLowBitIterator<T>> {
313  public:
314   using BitIteratorBase<T, HighToLowBitIterator<T>>::BitIteratorBase;
315 
316   uint32_t operator*() const {
317     DCHECK_NE(this->bits_, 0u);
318     static_assert(std::numeric_limits<T>::radix == 2, "Unexpected radix!");
319     return std::numeric_limits<T>::digits - 1u - CLZ(this->bits_);
320   }
321 };
322 
323 template <typename T>
LowToHighBits(T bits)324 IterationRange<LowToHighBitIterator<T>> LowToHighBits(T bits) {
325   return IterationRange<LowToHighBitIterator<T>>(
326       LowToHighBitIterator<T>(bits), LowToHighBitIterator<T>());
327 }
328 
329 template <typename T>
HighToLowBits(T bits)330 IterationRange<HighToLowBitIterator<T>> HighToLowBits(T bits) {
331   return IterationRange<HighToLowBitIterator<T>>(
332       HighToLowBitIterator<T>(bits), HighToLowBitIterator<T>());
333 }
334 
335 }  // namespace art
336 
337 #endif  // ART_RUNTIME_BASE_BIT_UTILS_H_
338