1 /*
2  * Copyright (C) 2011 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 /* This file contains codegen for the Thumb2 ISA. */
18 
19 #include "codegen_arm.h"
20 
21 #include "arm_lir.h"
22 #include "art_method.h"
23 #include "base/bit_utils.h"
24 #include "base/logging.h"
25 #include "dex/mir_graph.h"
26 #include "dex/quick/dex_file_to_method_inliner_map.h"
27 #include "dex/quick/mir_to_lir-inl.h"
28 #include "driver/compiler_driver.h"
29 #include "driver/compiler_options.h"
30 #include "gc/accounting/card_table.h"
31 #include "mirror/object_array-inl.h"
32 #include "entrypoints/quick/quick_entrypoints.h"
33 #include "utils/dex_cache_arrays_layout-inl.h"
34 
35 namespace art {
36 
37 /*
38  * The sparse table in the literal pool is an array of <key,displacement>
39  * pairs.  For each set, we'll load them as a pair using ldmia.
40  * This means that the register number of the temp we use for the key
41  * must be lower than the reg for the displacement.
42  *
43  * The test loop will look something like:
44  *
45  *   adr   r_base, <table>
46  *   ldr   r_val, [rARM_SP, v_reg_off]
47  *   mov   r_idx, #table_size
48  * lp:
49  *   ldmia r_base!, {r_key, r_disp}
50  *   sub   r_idx, #1
51  *   cmp   r_val, r_key
52  *   ifeq
53  *   add   rARM_PC, r_disp   ; This is the branch from which we compute displacement
54  *   cbnz  r_idx, lp
55  */
GenLargeSparseSwitch(MIR * mir,uint32_t table_offset,RegLocation rl_src)56 void ArmMir2Lir::GenLargeSparseSwitch(MIR* mir, uint32_t table_offset, RegLocation rl_src) {
57   const uint16_t* table = mir_graph_->GetTable(mir, table_offset);
58   // Add the table to the list - we'll process it later
59   SwitchTable *tab_rec =
60       static_cast<SwitchTable*>(arena_->Alloc(sizeof(SwitchTable), kArenaAllocData));
61   tab_rec->switch_mir = mir;
62   tab_rec->table = table;
63   tab_rec->vaddr = current_dalvik_offset_;
64   uint32_t size = table[1];
65   switch_tables_.push_back(tab_rec);
66 
67   // Get the switch value
68   rl_src = LoadValue(rl_src, kCoreReg);
69   RegStorage r_base = AllocTemp();
70   /* Allocate key and disp temps */
71   RegStorage r_key = AllocTemp();
72   RegStorage r_disp = AllocTemp();
73   // Make sure r_key's register number is less than r_disp's number for ldmia
74   if (r_key.GetReg() > r_disp.GetReg()) {
75     RegStorage tmp = r_disp;
76     r_disp = r_key;
77     r_key = tmp;
78   }
79   // Materialize a pointer to the switch table
80   NewLIR3(kThumb2Adr, r_base.GetReg(), 0, WrapPointer(tab_rec));
81   // Set up r_idx
82   RegStorage r_idx = AllocTemp();
83   LoadConstant(r_idx, size);
84   // Establish loop branch target
85   LIR* target = NewLIR0(kPseudoTargetLabel);
86   // Load next key/disp
87   NewLIR2(kThumb2LdmiaWB, r_base.GetReg(), (1 << r_key.GetRegNum()) | (1 << r_disp.GetRegNum()));
88   OpRegReg(kOpCmp, r_key, rl_src.reg);
89   // Go if match. NOTE: No instruction set switch here - must stay Thumb2
90   LIR* it = OpIT(kCondEq, "");
91   LIR* switch_branch = NewLIR1(kThumb2AddPCR, r_disp.GetReg());
92   OpEndIT(it);
93   tab_rec->anchor = switch_branch;
94   // Needs to use setflags encoding here
95   OpRegRegImm(kOpSub, r_idx, r_idx, 1);  // For value == 1, this should set flags.
96   DCHECK(last_lir_insn_->u.m.def_mask->HasBit(ResourceMask::kCCode));
97   OpCondBranch(kCondNe, target);
98 }
99 
100 
GenLargePackedSwitch(MIR * mir,uint32_t table_offset,RegLocation rl_src)101 void ArmMir2Lir::GenLargePackedSwitch(MIR* mir, uint32_t table_offset, RegLocation rl_src) {
102   const uint16_t* table = mir_graph_->GetTable(mir, table_offset);
103   // Add the table to the list - we'll process it later
104   SwitchTable *tab_rec =
105       static_cast<SwitchTable*>(arena_->Alloc(sizeof(SwitchTable),  kArenaAllocData));
106   tab_rec->switch_mir = mir;
107   tab_rec->table = table;
108   tab_rec->vaddr = current_dalvik_offset_;
109   uint32_t size = table[1];
110   switch_tables_.push_back(tab_rec);
111 
112   // Get the switch value
113   rl_src = LoadValue(rl_src, kCoreReg);
114   RegStorage table_base = AllocTemp();
115   // Materialize a pointer to the switch table
116   NewLIR3(kThumb2Adr, table_base.GetReg(), 0, WrapPointer(tab_rec));
117   int low_key = s4FromSwitchData(&table[2]);
118   RegStorage keyReg;
119   // Remove the bias, if necessary
120   if (low_key == 0) {
121     keyReg = rl_src.reg;
122   } else {
123     keyReg = AllocTemp();
124     OpRegRegImm(kOpSub, keyReg, rl_src.reg, low_key);
125   }
126   // Bounds check - if < 0 or >= size continue following switch
127   OpRegImm(kOpCmp, keyReg, size-1);
128   LIR* branch_over = OpCondBranch(kCondHi, nullptr);
129 
130   // Load the displacement from the switch table
131   RegStorage disp_reg = AllocTemp();
132   LoadBaseIndexed(table_base, keyReg, disp_reg, 2, k32);
133 
134   // ..and go! NOTE: No instruction set switch here - must stay Thumb2
135   LIR* switch_branch = NewLIR1(kThumb2AddPCR, disp_reg.GetReg());
136   tab_rec->anchor = switch_branch;
137 
138   /* branch_over target here */
139   LIR* target = NewLIR0(kPseudoTargetLabel);
140   branch_over->target = target;
141 }
142 
143 /*
144  * Handle unlocked -> thin locked transition inline or else call out to quick entrypoint. For more
145  * details see monitor.cc.
146  */
GenMonitorEnter(int opt_flags,RegLocation rl_src)147 void ArmMir2Lir::GenMonitorEnter(int opt_flags, RegLocation rl_src) {
148   FlushAllRegs();
149   // FIXME: need separate LoadValues for object references.
150   LoadValueDirectFixed(rl_src, rs_r0);  // Get obj
151   LockCallTemps();  // Prepare for explicit register usage
152   constexpr bool kArchVariantHasGoodBranchPredictor = false;  // TODO: true if cortex-A15.
153   if (kArchVariantHasGoodBranchPredictor) {
154     LIR* null_check_branch = nullptr;
155     if ((opt_flags & MIR_IGNORE_NULL_CHECK) && !(cu_->disable_opt & (1 << kNullCheckElimination))) {
156       null_check_branch = nullptr;  // No null check.
157     } else {
158       // If the null-check fails its handled by the slow-path to reduce exception related meta-data.
159       if (!cu_->compiler_driver->GetCompilerOptions().GetImplicitNullChecks()) {
160         null_check_branch = OpCmpImmBranch(kCondEq, rs_r0, 0, nullptr);
161       }
162     }
163     Load32Disp(rs_rARM_SELF, Thread::ThinLockIdOffset<4>().Int32Value(), rs_r2);
164     NewLIR3(kThumb2Ldrex, rs_r1.GetReg(), rs_r0.GetReg(),
165         mirror::Object::MonitorOffset().Int32Value() >> 2);
166     MarkPossibleNullPointerException(opt_flags);
167     // Zero out the read barrier bits.
168     OpRegRegImm(kOpAnd, rs_r3, rs_r1, LockWord::kReadBarrierStateMaskShiftedToggled);
169     LIR* not_unlocked_branch = OpCmpImmBranch(kCondNe, rs_r3, 0, nullptr);
170     // r1 is zero except for the rb bits here. Copy the read barrier bits into r2.
171     OpRegRegReg(kOpOr, rs_r2, rs_r2, rs_r1);
172     NewLIR4(kThumb2Strex, rs_r1.GetReg(), rs_r2.GetReg(), rs_r0.GetReg(),
173         mirror::Object::MonitorOffset().Int32Value() >> 2);
174     LIR* lock_success_branch = OpCmpImmBranch(kCondEq, rs_r1, 0, nullptr);
175 
176 
177     LIR* slow_path_target = NewLIR0(kPseudoTargetLabel);
178     not_unlocked_branch->target = slow_path_target;
179     if (null_check_branch != nullptr) {
180       null_check_branch->target = slow_path_target;
181     }
182     // TODO: move to a slow path.
183     // Go expensive route - artLockObjectFromCode(obj);
184     LoadWordDisp(rs_rARM_SELF, QUICK_ENTRYPOINT_OFFSET(4, pLockObject).Int32Value(), rs_rARM_LR);
185     ClobberCallerSave();
186     LIR* call_inst = OpReg(kOpBlx, rs_rARM_LR);
187     MarkSafepointPC(call_inst);
188 
189     LIR* success_target = NewLIR0(kPseudoTargetLabel);
190     lock_success_branch->target = success_target;
191     GenMemBarrier(kLoadAny);
192   } else {
193     // Explicit null-check as slow-path is entered using an IT.
194     GenNullCheck(rs_r0, opt_flags);
195     Load32Disp(rs_rARM_SELF, Thread::ThinLockIdOffset<4>().Int32Value(), rs_r2);
196     NewLIR3(kThumb2Ldrex, rs_r1.GetReg(), rs_r0.GetReg(),
197         mirror::Object::MonitorOffset().Int32Value() >> 2);
198     MarkPossibleNullPointerException(opt_flags);
199     // Zero out the read barrier bits.
200     OpRegRegImm(kOpAnd, rs_r3, rs_r1, LockWord::kReadBarrierStateMaskShiftedToggled);
201     // r1 will be zero except for the rb bits if the following
202     // cmp-and-branch branches to eq where r2 will be used. Copy the
203     // read barrier bits into r2.
204     OpRegRegReg(kOpOr, rs_r2, rs_r2, rs_r1);
205     OpRegImm(kOpCmp, rs_r3, 0);
206 
207     LIR* it = OpIT(kCondEq, "");
208     NewLIR4(kThumb2Strex/*eq*/, rs_r1.GetReg(), rs_r2.GetReg(), rs_r0.GetReg(),
209         mirror::Object::MonitorOffset().Int32Value() >> 2);
210     OpEndIT(it);
211     OpRegImm(kOpCmp, rs_r1, 0);
212     it = OpIT(kCondNe, "T");
213     // Go expensive route - artLockObjectFromCode(self, obj);
214     LoadWordDisp/*ne*/(rs_rARM_SELF, QUICK_ENTRYPOINT_OFFSET(4, pLockObject).Int32Value(),
215                        rs_rARM_LR);
216     ClobberCallerSave();
217     LIR* call_inst = OpReg(kOpBlx/*ne*/, rs_rARM_LR);
218     OpEndIT(it);
219     MarkSafepointPC(call_inst);
220     GenMemBarrier(kLoadAny);
221   }
222 }
223 
224 /*
225  * Handle thin locked -> unlocked transition inline or else call out to quick entrypoint. For more
226  * details see monitor.cc. Note the code below doesn't use ldrex/strex as the code holds the lock
227  * and can only give away ownership if its suspended.
228  */
GenMonitorExit(int opt_flags,RegLocation rl_src)229 void ArmMir2Lir::GenMonitorExit(int opt_flags, RegLocation rl_src) {
230   FlushAllRegs();
231   LoadValueDirectFixed(rl_src, rs_r0);  // Get obj
232   LockCallTemps();  // Prepare for explicit register usage
233   LIR* null_check_branch = nullptr;
234   Load32Disp(rs_rARM_SELF, Thread::ThinLockIdOffset<4>().Int32Value(), rs_r2);
235   constexpr bool kArchVariantHasGoodBranchPredictor = false;  // TODO: true if cortex-A15.
236   if (kArchVariantHasGoodBranchPredictor) {
237     if ((opt_flags & MIR_IGNORE_NULL_CHECK) && !(cu_->disable_opt & (1 << kNullCheckElimination))) {
238       null_check_branch = nullptr;  // No null check.
239     } else {
240       // If the null-check fails its handled by the slow-path to reduce exception related meta-data.
241       if (!cu_->compiler_driver->GetCompilerOptions().GetImplicitNullChecks()) {
242         null_check_branch = OpCmpImmBranch(kCondEq, rs_r0, 0, nullptr);
243       }
244     }
245     if (!kUseReadBarrier) {
246       Load32Disp(rs_r0, mirror::Object::MonitorOffset().Int32Value(), rs_r1);  // Get lock
247     } else {
248       NewLIR3(kThumb2Ldrex, rs_r1.GetReg(), rs_r0.GetReg(),
249               mirror::Object::MonitorOffset().Int32Value() >> 2);
250     }
251     MarkPossibleNullPointerException(opt_flags);
252     // Zero out the read barrier bits.
253     OpRegRegImm(kOpAnd, rs_r3, rs_r1, LockWord::kReadBarrierStateMaskShiftedToggled);
254     // Zero out except the read barrier bits.
255     OpRegRegImm(kOpAnd, rs_r1, rs_r1, LockWord::kReadBarrierStateMaskShifted);
256     LIR* slow_unlock_branch = OpCmpBranch(kCondNe, rs_r3, rs_r2, nullptr);
257     GenMemBarrier(kAnyStore);
258     LIR* unlock_success_branch;
259     if (!kUseReadBarrier) {
260       Store32Disp(rs_r0, mirror::Object::MonitorOffset().Int32Value(), rs_r1);
261       unlock_success_branch = OpUnconditionalBranch(nullptr);
262     } else {
263       NewLIR4(kThumb2Strex, rs_r2.GetReg(), rs_r1.GetReg(), rs_r0.GetReg(),
264               mirror::Object::MonitorOffset().Int32Value() >> 2);
265       unlock_success_branch = OpCmpImmBranch(kCondEq, rs_r2, 0, nullptr);
266     }
267     LIR* slow_path_target = NewLIR0(kPseudoTargetLabel);
268     slow_unlock_branch->target = slow_path_target;
269     if (null_check_branch != nullptr) {
270       null_check_branch->target = slow_path_target;
271     }
272     // TODO: move to a slow path.
273     // Go expensive route - artUnlockObjectFromCode(obj);
274     LoadWordDisp(rs_rARM_SELF, QUICK_ENTRYPOINT_OFFSET(4, pUnlockObject).Int32Value(), rs_rARM_LR);
275     ClobberCallerSave();
276     LIR* call_inst = OpReg(kOpBlx, rs_rARM_LR);
277     MarkSafepointPC(call_inst);
278 
279     LIR* success_target = NewLIR0(kPseudoTargetLabel);
280     unlock_success_branch->target = success_target;
281   } else {
282     // Explicit null-check as slow-path is entered using an IT.
283     GenNullCheck(rs_r0, opt_flags);
284     if (!kUseReadBarrier) {
285       Load32Disp(rs_r0, mirror::Object::MonitorOffset().Int32Value(), rs_r1);  // Get lock
286     } else {
287       // If we use read barriers, we need to use atomic instructions.
288       NewLIR3(kThumb2Ldrex, rs_r1.GetReg(), rs_r0.GetReg(),
289               mirror::Object::MonitorOffset().Int32Value() >> 2);
290     }
291     MarkPossibleNullPointerException(opt_flags);
292     Load32Disp(rs_rARM_SELF, Thread::ThinLockIdOffset<4>().Int32Value(), rs_r2);
293     // Zero out the read barrier bits.
294     OpRegRegImm(kOpAnd, rs_r3, rs_r1, LockWord::kReadBarrierStateMaskShiftedToggled);
295     // Zero out except the read barrier bits.
296     OpRegRegImm(kOpAnd, rs_r1, rs_r1, LockWord::kReadBarrierStateMaskShifted);
297     // Is lock unheld on lock or held by us (==thread_id) on unlock?
298     OpRegReg(kOpCmp, rs_r3, rs_r2);
299     if (!kUseReadBarrier) {
300       LIR* it = OpIT(kCondEq, "EE");
301       if (GenMemBarrier(kAnyStore)) {
302         UpdateIT(it, "TEE");
303       }
304       Store32Disp/*eq*/(rs_r0, mirror::Object::MonitorOffset().Int32Value(), rs_r1);
305       // Go expensive route - UnlockObjectFromCode(obj);
306       LoadWordDisp/*ne*/(rs_rARM_SELF, QUICK_ENTRYPOINT_OFFSET(4, pUnlockObject).Int32Value(),
307                          rs_rARM_LR);
308       ClobberCallerSave();
309       LIR* call_inst = OpReg(kOpBlx/*ne*/, rs_rARM_LR);
310       OpEndIT(it);
311       MarkSafepointPC(call_inst);
312     } else {
313       // If we use read barriers, we need to use atomic instructions.
314       LIR* it = OpIT(kCondEq, "");
315       if (GenMemBarrier(kAnyStore)) {
316         UpdateIT(it, "T");
317       }
318       NewLIR4/*eq*/(kThumb2Strex, rs_r2.GetReg(), rs_r1.GetReg(), rs_r0.GetReg(),
319                     mirror::Object::MonitorOffset().Int32Value() >> 2);
320       OpEndIT(it);
321       // Since we know r2 wasn't zero before the above it instruction,
322       // if r2 is zero here, we know r3 was equal to r2 and the strex
323       // suceeded (we're done). Otherwise (either r3 wasn't equal to r2
324       // or the strex failed), call the entrypoint.
325       OpRegImm(kOpCmp, rs_r2, 0);
326       LIR* it2 = OpIT(kCondNe, "T");
327       // Go expensive route - UnlockObjectFromCode(obj);
328       LoadWordDisp/*ne*/(rs_rARM_SELF, QUICK_ENTRYPOINT_OFFSET(4, pUnlockObject).Int32Value(),
329                          rs_rARM_LR);
330       ClobberCallerSave();
331       LIR* call_inst = OpReg(kOpBlx/*ne*/, rs_rARM_LR);
332       OpEndIT(it2);
333       MarkSafepointPC(call_inst);
334     }
335   }
336 }
337 
GenMoveException(RegLocation rl_dest)338 void ArmMir2Lir::GenMoveException(RegLocation rl_dest) {
339   int ex_offset = Thread::ExceptionOffset<4>().Int32Value();
340   RegLocation rl_result = EvalLoc(rl_dest, kRefReg, true);
341   RegStorage reset_reg = AllocTempRef();
342   LoadRefDisp(rs_rARM_SELF, ex_offset, rl_result.reg, kNotVolatile);
343   LoadConstant(reset_reg, 0);
344   StoreRefDisp(rs_rARM_SELF, ex_offset, reset_reg, kNotVolatile);
345   FreeTemp(reset_reg);
346   StoreValue(rl_dest, rl_result);
347 }
348 
UnconditionallyMarkGCCard(RegStorage tgt_addr_reg)349 void ArmMir2Lir::UnconditionallyMarkGCCard(RegStorage tgt_addr_reg) {
350   RegStorage reg_card_base = AllocTemp();
351   RegStorage reg_card_no = AllocTemp();
352   LoadWordDisp(rs_rARM_SELF, Thread::CardTableOffset<4>().Int32Value(), reg_card_base);
353   OpRegRegImm(kOpLsr, reg_card_no, tgt_addr_reg, gc::accounting::CardTable::kCardShift);
354   StoreBaseIndexed(reg_card_base, reg_card_no, reg_card_base, 0, kUnsignedByte);
355   FreeTemp(reg_card_base);
356   FreeTemp(reg_card_no);
357 }
358 
DwarfCoreReg(int num)359 static dwarf::Reg DwarfCoreReg(int num) {
360   return dwarf::Reg::ArmCore(num);
361 }
362 
DwarfFpReg(int num)363 static dwarf::Reg DwarfFpReg(int num) {
364   return dwarf::Reg::ArmFp(num);
365 }
366 
GenEntrySequence(RegLocation * ArgLocs,RegLocation rl_method)367 void ArmMir2Lir::GenEntrySequence(RegLocation* ArgLocs, RegLocation rl_method) {
368   DCHECK_EQ(cfi_.GetCurrentCFAOffset(), 0);  // empty stack.
369   int spill_count = num_core_spills_ + num_fp_spills_;
370   /*
371    * On entry, r0, r1, r2 & r3 are live.  Let the register allocation
372    * mechanism know so it doesn't try to use any of them when
373    * expanding the frame or flushing.  This leaves the utility
374    * code with a single temp: r12.  This should be enough.
375    */
376   LockTemp(rs_r0);
377   LockTemp(rs_r1);
378   LockTemp(rs_r2);
379   LockTemp(rs_r3);
380 
381   /*
382    * We can safely skip the stack overflow check if we're
383    * a leaf *and* our frame size < fudge factor.
384    */
385   bool skip_overflow_check = mir_graph_->MethodIsLeaf() && !FrameNeedsStackCheck(frame_size_, kArm);
386   const size_t kStackOverflowReservedUsableBytes = GetStackOverflowReservedBytes(kArm);
387   bool large_frame = (static_cast<size_t>(frame_size_) > kStackOverflowReservedUsableBytes);
388   bool generate_explicit_stack_overflow_check = large_frame ||
389     !cu_->compiler_driver->GetCompilerOptions().GetImplicitStackOverflowChecks();
390   if (!skip_overflow_check) {
391     if (generate_explicit_stack_overflow_check) {
392       if (!large_frame) {
393         /* Load stack limit */
394         LockTemp(rs_r12);
395         Load32Disp(rs_rARM_SELF, Thread::StackEndOffset<4>().Int32Value(), rs_r12);
396       }
397     } else {
398       // Implicit stack overflow check.
399       // Generate a load from [sp, #-overflowsize].  If this is in the stack
400       // redzone we will get a segmentation fault.
401       //
402       // Caveat coder: if someone changes the kStackOverflowReservedBytes value
403       // we need to make sure that it's loadable in an immediate field of
404       // a sub instruction.  Otherwise we will get a temp allocation and the
405       // code size will increase.
406       //
407       // This is done before the callee save instructions to avoid any possibility
408       // of these overflowing.  This uses r12 and that's never saved in a callee
409       // save.
410       OpRegRegImm(kOpSub, rs_r12, rs_rARM_SP, GetStackOverflowReservedBytes(kArm));
411       Load32Disp(rs_r12, 0, rs_r12);
412       MarkPossibleStackOverflowException();
413     }
414   }
415   /* Spill core callee saves */
416   if (core_spill_mask_ != 0u) {
417     if ((core_spill_mask_ & ~(0xffu | (1u << rs_rARM_LR.GetRegNum()))) == 0u) {
418       // Spilling only low regs and/or LR, use 16-bit PUSH.
419       constexpr int lr_bit_shift = rs_rARM_LR.GetRegNum() - 8;
420       NewLIR1(kThumbPush,
421               (core_spill_mask_ & ~(1u << rs_rARM_LR.GetRegNum())) |
422               ((core_spill_mask_ & (1u << rs_rARM_LR.GetRegNum())) >> lr_bit_shift));
423     } else if (IsPowerOfTwo(core_spill_mask_)) {
424       // kThumb2Push cannot be used to spill a single register.
425       NewLIR1(kThumb2Push1, CTZ(core_spill_mask_));
426     } else {
427       NewLIR1(kThumb2Push, core_spill_mask_);
428     }
429     cfi_.AdjustCFAOffset(num_core_spills_ * kArmPointerSize);
430     cfi_.RelOffsetForMany(DwarfCoreReg(0), 0, core_spill_mask_, kArmPointerSize);
431   }
432   /* Need to spill any FP regs? */
433   if (num_fp_spills_ != 0u) {
434     /*
435      * NOTE: fp spills are a little different from core spills in that
436      * they are pushed as a contiguous block.  When promoting from
437      * the fp set, we must allocate all singles from s16..highest-promoted
438      */
439     NewLIR1(kThumb2VPushCS, num_fp_spills_);
440     cfi_.AdjustCFAOffset(num_fp_spills_ * kArmPointerSize);
441     cfi_.RelOffsetForMany(DwarfFpReg(0), 0, fp_spill_mask_, kArmPointerSize);
442   }
443 
444   const int spill_size = spill_count * 4;
445   const int frame_size_without_spills = frame_size_ - spill_size;
446   if (!skip_overflow_check) {
447     if (generate_explicit_stack_overflow_check) {
448       class StackOverflowSlowPath : public LIRSlowPath {
449        public:
450         StackOverflowSlowPath(Mir2Lir* m2l, LIR* branch, bool restore_lr, size_t sp_displace)
451             : LIRSlowPath(m2l, branch), restore_lr_(restore_lr),
452               sp_displace_(sp_displace) {
453         }
454         void Compile() OVERRIDE {
455           m2l_->ResetRegPool();
456           m2l_->ResetDefTracking();
457           GenerateTargetLabel(kPseudoThrowTarget);
458           if (restore_lr_) {
459             m2l_->LoadWordDisp(rs_rARM_SP, sp_displace_ - 4, rs_rARM_LR);
460           }
461           m2l_->OpRegImm(kOpAdd, rs_rARM_SP, sp_displace_);
462           m2l_->cfi().AdjustCFAOffset(-sp_displace_);
463           m2l_->ClobberCallerSave();
464           ThreadOffset<4> func_offset = QUICK_ENTRYPOINT_OFFSET(4, pThrowStackOverflow);
465           // Load the entrypoint directly into the pc instead of doing a load + branch. Assumes
466           // codegen and target are in thumb2 mode.
467           // NOTE: native pointer.
468           m2l_->LoadWordDisp(rs_rARM_SELF, func_offset.Int32Value(), rs_rARM_PC);
469           m2l_->cfi().AdjustCFAOffset(sp_displace_);
470         }
471 
472        private:
473         const bool restore_lr_;
474         const size_t sp_displace_;
475       };
476       if (large_frame) {
477         // Note: may need a temp reg, and we only have r12 free at this point.
478         OpRegRegImm(kOpSub, rs_rARM_LR, rs_rARM_SP, frame_size_without_spills);
479         Load32Disp(rs_rARM_SELF, Thread::StackEndOffset<4>().Int32Value(), rs_r12);
480         LIR* branch = OpCmpBranch(kCondUlt, rs_rARM_LR, rs_r12, nullptr);
481         // Need to restore LR since we used it as a temp.
482         AddSlowPath(new(arena_)StackOverflowSlowPath(this, branch, true, spill_size));
483         OpRegCopy(rs_rARM_SP, rs_rARM_LR);     // Establish stack
484         cfi_.AdjustCFAOffset(frame_size_without_spills);
485       } else {
486         /*
487          * If the frame is small enough we are guaranteed to have enough space that remains to
488          * handle signals on the user stack.  However, we may not have any free temp
489          * registers at this point, so we'll temporarily add LR to the temp pool.
490          */
491         DCHECK(!GetRegInfo(rs_rARM_LR)->IsTemp());
492         MarkTemp(rs_rARM_LR);
493         FreeTemp(rs_rARM_LR);
494         OpRegRegImm(kOpSub, rs_rARM_SP, rs_rARM_SP, frame_size_without_spills);
495         cfi_.AdjustCFAOffset(frame_size_without_spills);
496         Clobber(rs_rARM_LR);
497         UnmarkTemp(rs_rARM_LR);
498         LIR* branch = OpCmpBranch(kCondUlt, rs_rARM_SP, rs_r12, nullptr);
499         AddSlowPath(new(arena_)StackOverflowSlowPath(this, branch, false, frame_size_));
500       }
501     } else {
502       // Implicit stack overflow check has already been done.  Just make room on the
503       // stack for the frame now.
504       OpRegImm(kOpSub, rs_rARM_SP, frame_size_without_spills);
505       cfi_.AdjustCFAOffset(frame_size_without_spills);
506     }
507   } else {
508     OpRegImm(kOpSub, rs_rARM_SP, frame_size_without_spills);
509     cfi_.AdjustCFAOffset(frame_size_without_spills);
510   }
511 
512   FlushIns(ArgLocs, rl_method);
513 
514   // We can promote a PC-relative reference to dex cache arrays to a register
515   // if it's used at least twice. Without investigating where we should lazily
516   // load the reference, we conveniently load it after flushing inputs.
517   if (dex_cache_arrays_base_reg_.Valid()) {
518     OpPcRelDexCacheArrayAddr(cu_->dex_file, dex_cache_arrays_min_offset_,
519                              dex_cache_arrays_base_reg_);
520   }
521 
522   FreeTemp(rs_r0);
523   FreeTemp(rs_r1);
524   FreeTemp(rs_r2);
525   FreeTemp(rs_r3);
526   FreeTemp(rs_r12);
527 }
528 
GenExitSequence()529 void ArmMir2Lir::GenExitSequence() {
530   cfi_.RememberState();
531   int spill_count = num_core_spills_ + num_fp_spills_;
532 
533   /*
534    * In the exit path, r0/r1 are live - make sure they aren't
535    * allocated by the register utilities as temps.
536    */
537   LockTemp(rs_r0);
538   LockTemp(rs_r1);
539 
540   int adjust = frame_size_ - (spill_count * kArmPointerSize);
541   OpRegImm(kOpAdd, rs_rARM_SP, adjust);
542   cfi_.AdjustCFAOffset(-adjust);
543   /* Need to restore any FP callee saves? */
544   if (num_fp_spills_) {
545     NewLIR1(kThumb2VPopCS, num_fp_spills_);
546     cfi_.AdjustCFAOffset(-num_fp_spills_ * kArmPointerSize);
547     cfi_.RestoreMany(DwarfFpReg(0), fp_spill_mask_);
548   }
549   bool unspill_LR_to_PC = (core_spill_mask_ & (1 << rs_rARM_LR.GetRegNum())) != 0;
550   if (unspill_LR_to_PC) {
551     core_spill_mask_ &= ~(1 << rs_rARM_LR.GetRegNum());
552     core_spill_mask_ |= (1 << rs_rARM_PC.GetRegNum());
553   }
554   if (core_spill_mask_ != 0u) {
555     if ((core_spill_mask_ & ~(0xffu | (1u << rs_rARM_PC.GetRegNum()))) == 0u) {
556       // Unspilling only low regs and/or PC, use 16-bit POP.
557       constexpr int pc_bit_shift = rs_rARM_PC.GetRegNum() - 8;
558       NewLIR1(kThumbPop,
559               (core_spill_mask_ & ~(1u << rs_rARM_PC.GetRegNum())) |
560               ((core_spill_mask_ & (1u << rs_rARM_PC.GetRegNum())) >> pc_bit_shift));
561     } else if (IsPowerOfTwo(core_spill_mask_)) {
562       // kThumb2Pop cannot be used to unspill a single register.
563       NewLIR1(kThumb2Pop1, CTZ(core_spill_mask_));
564     } else {
565       NewLIR1(kThumb2Pop, core_spill_mask_);
566     }
567     // If we pop to PC, there is no further epilogue code.
568     if (!unspill_LR_to_PC) {
569       cfi_.AdjustCFAOffset(-num_core_spills_ * kArmPointerSize);
570       cfi_.RestoreMany(DwarfCoreReg(0), core_spill_mask_);
571       DCHECK_EQ(cfi_.GetCurrentCFAOffset(), 0);  // empty stack.
572     }
573   }
574   if (!unspill_LR_to_PC) {
575     /* We didn't pop to rARM_PC, so must do a bv rARM_LR */
576     NewLIR1(kThumbBx, rs_rARM_LR.GetReg());
577   }
578   // The CFI should be restored for any code that follows the exit block.
579   cfi_.RestoreState();
580   cfi_.DefCFAOffset(frame_size_);
581 }
582 
GenSpecialExitSequence()583 void ArmMir2Lir::GenSpecialExitSequence() {
584   NewLIR1(kThumbBx, rs_rARM_LR.GetReg());
585 }
586 
GenSpecialEntryForSuspend()587 void ArmMir2Lir::GenSpecialEntryForSuspend() {
588   // Keep 16-byte stack alignment - push r0, i.e. ArtMethod*, r5, r6, lr.
589   DCHECK(!IsTemp(rs_r5));
590   DCHECK(!IsTemp(rs_r6));
591   core_spill_mask_ =
592       (1u << rs_r5.GetRegNum()) | (1u << rs_r6.GetRegNum()) | (1u << rs_rARM_LR.GetRegNum());
593   num_core_spills_ = 3u;
594   fp_spill_mask_ = 0u;
595   num_fp_spills_ = 0u;
596   frame_size_ = 16u;
597   core_vmap_table_.clear();
598   fp_vmap_table_.clear();
599   NewLIR1(kThumbPush, (1u << rs_r0.GetRegNum()) |                 // ArtMethod*
600           (core_spill_mask_ & ~(1u << rs_rARM_LR.GetRegNum())) |  // Spills other than LR.
601           (1u << 8));                                             // LR encoded for 16-bit push.
602   cfi_.AdjustCFAOffset(frame_size_);
603   // Do not generate CFI for scratch register r0.
604   cfi_.RelOffsetForMany(DwarfCoreReg(0), 4, core_spill_mask_, kArmPointerSize);
605 }
606 
GenSpecialExitForSuspend()607 void ArmMir2Lir::GenSpecialExitForSuspend() {
608   // Pop the frame. (ArtMethod* no longer needed but restore it anyway.)
609   NewLIR1(kThumb2Pop, (1u << rs_r0.GetRegNum()) | core_spill_mask_);  // 32-bit because of LR.
610   cfi_.AdjustCFAOffset(-frame_size_);
611   cfi_.RestoreMany(DwarfCoreReg(0), core_spill_mask_);
612 }
613 
ArmUseRelativeCall(CompilationUnit * cu,const MethodReference & target_method)614 static bool ArmUseRelativeCall(CompilationUnit* cu, const MethodReference& target_method) {
615   // Emit relative calls only within a dex file due to the limited range of the BL insn.
616   return cu->dex_file == target_method.dex_file;
617 }
618 
619 /*
620  * Bit of a hack here - in the absence of a real scheduling pass,
621  * emit the next instruction in static & direct invoke sequences.
622  */
ArmNextSDCallInsn(CompilationUnit * cu,CallInfo * info,int state,const MethodReference & target_method,uint32_t unused_idx ATTRIBUTE_UNUSED,uintptr_t direct_code,uintptr_t direct_method,InvokeType type)623 int ArmMir2Lir::ArmNextSDCallInsn(CompilationUnit* cu, CallInfo* info,
624                                   int state, const MethodReference& target_method,
625                                   uint32_t unused_idx ATTRIBUTE_UNUSED,
626                                   uintptr_t direct_code, uintptr_t direct_method,
627                                   InvokeType type) {
628   ArmMir2Lir* cg = static_cast<ArmMir2Lir*>(cu->cg.get());
629   if (info->string_init_offset != 0) {
630     RegStorage arg0_ref = cg->TargetReg(kArg0, kRef);
631     switch (state) {
632     case 0: {  // Grab target method* from thread pointer
633       cg->LoadRefDisp(rs_rARM_SELF, info->string_init_offset, arg0_ref, kNotVolatile);
634       break;
635     }
636     case 1:  // Grab the code from the method*
637       if (direct_code == 0) {
638         // kInvokeTgt := arg0_ref->entrypoint
639         cg->LoadWordDisp(arg0_ref,
640                          ArtMethod::EntryPointFromQuickCompiledCodeOffset(
641                              kArmPointerSize).Int32Value(), cg->TargetPtrReg(kInvokeTgt));
642       }
643       break;
644     default:
645       return -1;
646     }
647   } else if (direct_code != 0 && direct_method != 0) {
648     switch (state) {
649     case 0:  // Get the current Method* [sets kArg0]
650       if (direct_code != static_cast<uintptr_t>(-1)) {
651         cg->LoadConstant(cg->TargetPtrReg(kInvokeTgt), direct_code);
652       } else if (ArmUseRelativeCall(cu, target_method)) {
653         // Defer to linker patch.
654       } else {
655         cg->LoadCodeAddress(target_method, type, kInvokeTgt);
656       }
657       if (direct_method != static_cast<uintptr_t>(-1)) {
658         cg->LoadConstant(cg->TargetReg(kArg0, kRef), direct_method);
659       } else {
660         cg->LoadMethodAddress(target_method, type, kArg0);
661       }
662       break;
663     default:
664       return -1;
665     }
666   } else {
667     bool use_pc_rel = cg->CanUseOpPcRelDexCacheArrayLoad();
668     RegStorage arg0_ref = cg->TargetReg(kArg0, kRef);
669     switch (state) {
670     case 0:  // Get the current Method* [sets kArg0]
671       // TUNING: we can save a reg copy if Method* has been promoted.
672       if (!use_pc_rel) {
673         cg->LoadCurrMethodDirect(arg0_ref);
674         break;
675       }
676       ++state;
677       FALLTHROUGH_INTENDED;
678     case 1:  // Get method->dex_cache_resolved_methods_
679       if (!use_pc_rel) {
680         cg->LoadRefDisp(arg0_ref,
681                         ArtMethod::DexCacheResolvedMethodsOffset().Int32Value(),
682                         arg0_ref,
683                         kNotVolatile);
684       }
685       // Set up direct code if known.
686       if (direct_code != 0) {
687         if (direct_code != static_cast<uintptr_t>(-1)) {
688           cg->LoadConstant(cg->TargetPtrReg(kInvokeTgt), direct_code);
689         } else if (ArmUseRelativeCall(cu, target_method)) {
690           // Defer to linker patch.
691         } else {
692           CHECK_LT(target_method.dex_method_index, target_method.dex_file->NumMethodIds());
693           cg->LoadCodeAddress(target_method, type, kInvokeTgt);
694         }
695       }
696       if (!use_pc_rel || direct_code != 0) {
697         break;
698       }
699       ++state;
700       FALLTHROUGH_INTENDED;
701     case 2:  // Grab target method*
702       CHECK_EQ(cu->dex_file, target_method.dex_file);
703       if (!use_pc_rel) {
704         cg->LoadRefDisp(arg0_ref,
705                         mirror::ObjectArray<mirror::Object>::OffsetOfElement(
706                             target_method.dex_method_index).Int32Value(),
707                         arg0_ref,
708                         kNotVolatile);
709       } else {
710         size_t offset = cg->dex_cache_arrays_layout_.MethodOffset(target_method.dex_method_index);
711         cg->OpPcRelDexCacheArrayLoad(cu->dex_file, offset, arg0_ref, false);
712       }
713       break;
714     case 3:  // Grab the code from the method*
715       if (direct_code == 0) {
716         // kInvokeTgt := arg0_ref->entrypoint
717         cg->LoadWordDisp(arg0_ref,
718                          ArtMethod::EntryPointFromQuickCompiledCodeOffset(
719                              kArmPointerSize).Int32Value(), cg->TargetPtrReg(kInvokeTgt));
720       }
721       break;
722     default:
723       return -1;
724     }
725   }
726   return state + 1;
727 }
728 
GetNextSDCallInsn()729 NextCallInsn ArmMir2Lir::GetNextSDCallInsn() {
730   return ArmNextSDCallInsn;
731 }
732 
CallWithLinkerFixup(const MethodReference & target_method,InvokeType type)733 LIR* ArmMir2Lir::CallWithLinkerFixup(const MethodReference& target_method, InvokeType type) {
734   // For ARM, just generate a relative BL instruction that will be filled in at 'link time'.
735   // If the target turns out to be too far, the linker will generate a thunk for dispatch.
736   int target_method_idx = target_method.dex_method_index;
737   const DexFile* target_dex_file = target_method.dex_file;
738 
739   // Generate the call instruction and save index, dex_file, and type.
740   // NOTE: Method deduplication takes linker patches into account, so we can just pass 0
741   // as a placeholder for the offset.
742   LIR* call = RawLIR(current_dalvik_offset_, kThumb2Bl, 0,
743                      target_method_idx, WrapPointer(target_dex_file), type);
744   AppendLIR(call);
745   call_method_insns_.push_back(call);
746   return call;
747 }
748 
GenCallInsn(const MirMethodLoweringInfo & method_info)749 LIR* ArmMir2Lir::GenCallInsn(const MirMethodLoweringInfo& method_info) {
750   LIR* call_insn;
751   if (method_info.FastPath() && ArmUseRelativeCall(cu_, method_info.GetTargetMethod()) &&
752       (method_info.GetSharpType() == kDirect || method_info.GetSharpType() == kStatic) &&
753       method_info.DirectCode() == static_cast<uintptr_t>(-1)) {
754     call_insn = CallWithLinkerFixup(method_info.GetTargetMethod(), method_info.GetSharpType());
755   } else {
756     call_insn = OpReg(kOpBlx, TargetPtrReg(kInvokeTgt));
757   }
758   return call_insn;
759 }
760 
761 }  // namespace art
762