1 /*
2 * Copyright (C) 2012 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 /* This file contains codegen for the X86 ISA */
18
19 #include "codegen_x86.h"
20
21 #include "art_method.h"
22 #include "base/logging.h"
23 #include "dex/quick/dex_file_to_method_inliner_map.h"
24 #include "dex/quick/mir_to_lir-inl.h"
25 #include "driver/compiler_driver.h"
26 #include "driver/compiler_options.h"
27 #include "gc/accounting/card_table.h"
28 #include "mirror/object_array-inl.h"
29 #include "utils/dex_cache_arrays_layout-inl.h"
30 #include "x86_lir.h"
31
32 namespace art {
33
34 /*
35 * The sparse table in the literal pool is an array of <key,displacement>
36 * pairs.
37 */
GenLargeSparseSwitch(MIR * mir,DexOffset table_offset,RegLocation rl_src)38 void X86Mir2Lir::GenLargeSparseSwitch(MIR* mir, DexOffset table_offset, RegLocation rl_src) {
39 GenSmallSparseSwitch(mir, table_offset, rl_src);
40 }
41
42 /*
43 * Code pattern will look something like:
44 *
45 * mov r_val, ..
46 * call 0
47 * pop r_start_of_method
48 * sub r_start_of_method, ..
49 * mov r_key_reg, r_val
50 * sub r_key_reg, low_key
51 * cmp r_key_reg, size-1 ; bound check
52 * ja done
53 * mov r_disp, [r_start_of_method + r_key_reg * 4 + table_offset]
54 * add r_start_of_method, r_disp
55 * jmp r_start_of_method
56 * done:
57 */
GenLargePackedSwitch(MIR * mir,DexOffset table_offset,RegLocation rl_src)58 void X86Mir2Lir::GenLargePackedSwitch(MIR* mir, DexOffset table_offset, RegLocation rl_src) {
59 const uint16_t* table = mir_graph_->GetTable(mir, table_offset);
60 // Add the table to the list - we'll process it later
61 SwitchTable* tab_rec =
62 static_cast<SwitchTable*>(arena_->Alloc(sizeof(SwitchTable), kArenaAllocData));
63 tab_rec->switch_mir = mir;
64 tab_rec->table = table;
65 tab_rec->vaddr = current_dalvik_offset_;
66 int size = table[1];
67 switch_tables_.push_back(tab_rec);
68
69 // Get the switch value
70 rl_src = LoadValue(rl_src, kCoreReg);
71
72 int low_key = s4FromSwitchData(&table[2]);
73 RegStorage keyReg;
74 // Remove the bias, if necessary
75 if (low_key == 0) {
76 keyReg = rl_src.reg;
77 } else {
78 keyReg = AllocTemp();
79 OpRegRegImm(kOpSub, keyReg, rl_src.reg, low_key);
80 }
81
82 // Bounds check - if < 0 or >= size continue following switch
83 OpRegImm(kOpCmp, keyReg, size - 1);
84 LIR* branch_over = OpCondBranch(kCondHi, nullptr);
85
86 RegStorage addr_for_jump;
87 if (cu_->target64) {
88 RegStorage table_base = AllocTempWide();
89 // Load the address of the table into table_base.
90 LIR* lea = RawLIR(current_dalvik_offset_, kX86Lea64RM, table_base.GetReg(), kRIPReg,
91 256, 0, WrapPointer(tab_rec));
92 lea->flags.fixup = kFixupSwitchTable;
93 AppendLIR(lea);
94
95 // Load the offset from the table out of the table.
96 addr_for_jump = AllocTempWide();
97 NewLIR5(kX86MovsxdRA, addr_for_jump.GetReg(), table_base.GetReg(), keyReg.GetReg(), 2, 0);
98
99 // Add the offset from the table to the table base.
100 OpRegReg(kOpAdd, addr_for_jump, table_base);
101 tab_rec->anchor = nullptr; // Unused for x86-64.
102 } else {
103 // Get the PC to a register and get the anchor.
104 LIR* anchor;
105 RegStorage r_pc = GetPcAndAnchor(&anchor);
106
107 // Load the displacement from the switch table.
108 addr_for_jump = AllocTemp();
109 NewLIR5(kX86PcRelLoadRA, addr_for_jump.GetReg(), r_pc.GetReg(), keyReg.GetReg(),
110 2, WrapPointer(tab_rec));
111 // Add displacement and r_pc to get the address.
112 OpRegReg(kOpAdd, addr_for_jump, r_pc);
113 tab_rec->anchor = anchor;
114 }
115
116 // ..and go!
117 NewLIR1(kX86JmpR, addr_for_jump.GetReg());
118
119 /* branch_over target here */
120 LIR* target = NewLIR0(kPseudoTargetLabel);
121 branch_over->target = target;
122 }
123
GenMoveException(RegLocation rl_dest)124 void X86Mir2Lir::GenMoveException(RegLocation rl_dest) {
125 int ex_offset = cu_->target64 ?
126 Thread::ExceptionOffset<8>().Int32Value() :
127 Thread::ExceptionOffset<4>().Int32Value();
128 RegLocation rl_result = EvalLoc(rl_dest, kRefReg, true);
129 NewLIR2(cu_->target64 ? kX86Mov64RT : kX86Mov32RT, rl_result.reg.GetReg(), ex_offset);
130 NewLIR2(cu_->target64 ? kX86Mov64TI : kX86Mov32TI, ex_offset, 0);
131 StoreValue(rl_dest, rl_result);
132 }
133
UnconditionallyMarkGCCard(RegStorage tgt_addr_reg)134 void X86Mir2Lir::UnconditionallyMarkGCCard(RegStorage tgt_addr_reg) {
135 DCHECK_EQ(tgt_addr_reg.Is64Bit(), cu_->target64);
136 RegStorage reg_card_base = AllocTempRef();
137 RegStorage reg_card_no = AllocTempRef();
138 int ct_offset = cu_->target64 ?
139 Thread::CardTableOffset<8>().Int32Value() :
140 Thread::CardTableOffset<4>().Int32Value();
141 NewLIR2(cu_->target64 ? kX86Mov64RT : kX86Mov32RT, reg_card_base.GetReg(), ct_offset);
142 OpRegRegImm(kOpLsr, reg_card_no, tgt_addr_reg, gc::accounting::CardTable::kCardShift);
143 StoreBaseIndexed(reg_card_base, reg_card_no, reg_card_base, 0, kUnsignedByte);
144 FreeTemp(reg_card_base);
145 FreeTemp(reg_card_no);
146 }
147
DwarfCoreReg(bool is_x86_64,int num)148 static dwarf::Reg DwarfCoreReg(bool is_x86_64, int num) {
149 return is_x86_64 ? dwarf::Reg::X86_64Core(num) : dwarf::Reg::X86Core(num);
150 }
151
GenEntrySequence(RegLocation * ArgLocs,RegLocation rl_method)152 void X86Mir2Lir::GenEntrySequence(RegLocation* ArgLocs, RegLocation rl_method) {
153 /*
154 * On entry, rX86_ARG0, rX86_ARG1, rX86_ARG2 are live. Let the register
155 * allocation mechanism know so it doesn't try to use any of them when
156 * expanding the frame or flushing. This leaves the utility
157 * code with no spare temps.
158 */
159 const RegStorage arg0 = TargetReg32(kArg0);
160 const RegStorage arg1 = TargetReg32(kArg1);
161 const RegStorage arg2 = TargetReg32(kArg2);
162 LockTemp(arg0);
163 LockTemp(arg1);
164 LockTemp(arg2);
165
166 /*
167 * We can safely skip the stack overflow check if we're
168 * a leaf *and* our frame size < fudge factor.
169 */
170 const InstructionSet isa = cu_->target64 ? kX86_64 : kX86;
171 bool skip_overflow_check = mir_graph_->MethodIsLeaf() && !FrameNeedsStackCheck(frame_size_, isa);
172 const RegStorage rs_rSP = cu_->target64 ? rs_rX86_SP_64 : rs_rX86_SP_32;
173
174 // If we doing an implicit stack overflow check, perform the load immediately
175 // before the stack pointer is decremented and anything is saved.
176 if (!skip_overflow_check &&
177 cu_->compiler_driver->GetCompilerOptions().GetImplicitStackOverflowChecks()) {
178 // Implicit stack overflow check.
179 // test eax,[esp + -overflow]
180 int overflow = GetStackOverflowReservedBytes(isa);
181 NewLIR3(kX86Test32RM, rs_rAX.GetReg(), rs_rSP.GetReg(), -overflow);
182 MarkPossibleStackOverflowException();
183 }
184
185 /* Build frame, return address already on stack */
186 cfi_.SetCurrentCFAOffset(GetInstructionSetPointerSize(cu_->instruction_set));
187 OpRegImm(kOpSub, rs_rSP, frame_size_ - GetInstructionSetPointerSize(cu_->instruction_set));
188 cfi_.DefCFAOffset(frame_size_);
189
190 /* Spill core callee saves */
191 SpillCoreRegs();
192 SpillFPRegs();
193 if (!skip_overflow_check) {
194 class StackOverflowSlowPath : public LIRSlowPath {
195 public:
196 StackOverflowSlowPath(Mir2Lir* m2l, LIR* branch, size_t sp_displace)
197 : LIRSlowPath(m2l, branch), sp_displace_(sp_displace) {
198 }
199 void Compile() OVERRIDE {
200 m2l_->ResetRegPool();
201 m2l_->ResetDefTracking();
202 GenerateTargetLabel(kPseudoThrowTarget);
203 const RegStorage local_rs_rSP = cu_->target64 ? rs_rX86_SP_64 : rs_rX86_SP_32;
204 m2l_->OpRegImm(kOpAdd, local_rs_rSP, sp_displace_);
205 m2l_->cfi().AdjustCFAOffset(-sp_displace_);
206 m2l_->ClobberCallerSave();
207 // Assumes codegen and target are in thumb2 mode.
208 m2l_->CallHelper(RegStorage::InvalidReg(), kQuickThrowStackOverflow,
209 false /* MarkSafepointPC */, false /* UseLink */);
210 m2l_->cfi().AdjustCFAOffset(sp_displace_);
211 }
212
213 private:
214 const size_t sp_displace_;
215 };
216 if (!cu_->compiler_driver->GetCompilerOptions().GetImplicitStackOverflowChecks()) {
217 // TODO: for large frames we should do something like:
218 // spill ebp
219 // lea ebp, [esp + frame_size]
220 // cmp ebp, fs:[stack_end_]
221 // jcc stack_overflow_exception
222 // mov esp, ebp
223 // in case a signal comes in that's not using an alternate signal stack and the large frame
224 // may have moved us outside of the reserved area at the end of the stack.
225 // cmp rs_rX86_SP, fs:[stack_end_]; jcc throw_slowpath
226 if (cu_->target64) {
227 OpRegThreadMem(kOpCmp, rs_rX86_SP_64, Thread::StackEndOffset<8>());
228 } else {
229 OpRegThreadMem(kOpCmp, rs_rX86_SP_32, Thread::StackEndOffset<4>());
230 }
231 LIR* branch = OpCondBranch(kCondUlt, nullptr);
232 AddSlowPath(
233 new(arena_)StackOverflowSlowPath(this, branch,
234 frame_size_ -
235 GetInstructionSetPointerSize(cu_->instruction_set)));
236 }
237 }
238
239 FlushIns(ArgLocs, rl_method);
240
241 // We can promote the PC of an anchor for PC-relative addressing to a register
242 // if it's used at least twice. Without investigating where we should lazily
243 // load the reference, we conveniently load it after flushing inputs.
244 if (pc_rel_base_reg_.Valid()) {
245 DCHECK(!cu_->target64);
246 setup_pc_rel_base_reg_ = OpLoadPc(pc_rel_base_reg_);
247 }
248
249 FreeTemp(arg0);
250 FreeTemp(arg1);
251 FreeTemp(arg2);
252 }
253
GenExitSequence()254 void X86Mir2Lir::GenExitSequence() {
255 cfi_.RememberState();
256 /*
257 * In the exit path, rX86_RET0/rX86_RET1 are live - make sure they aren't
258 * allocated by the register utilities as temps.
259 */
260 LockTemp(rs_rX86_RET0);
261 LockTemp(rs_rX86_RET1);
262
263 UnSpillCoreRegs();
264 UnSpillFPRegs();
265 /* Remove frame except for return address */
266 const RegStorage rs_rSP = cu_->target64 ? rs_rX86_SP_64 : rs_rX86_SP_32;
267 int adjust = frame_size_ - GetInstructionSetPointerSize(cu_->instruction_set);
268 OpRegImm(kOpAdd, rs_rSP, adjust);
269 cfi_.AdjustCFAOffset(-adjust);
270 // There is only the return PC on the stack now.
271 NewLIR0(kX86Ret);
272 // The CFI should be restored for any code that follows the exit block.
273 cfi_.RestoreState();
274 cfi_.DefCFAOffset(frame_size_);
275 }
276
GenSpecialExitSequence()277 void X86Mir2Lir::GenSpecialExitSequence() {
278 NewLIR0(kX86Ret);
279 }
280
GenSpecialEntryForSuspend()281 void X86Mir2Lir::GenSpecialEntryForSuspend() {
282 // Keep 16-byte stack alignment, there's already the return address, so
283 // - for 32-bit push EAX, i.e. ArtMethod*, ESI, EDI,
284 // - for 64-bit push RAX, i.e. ArtMethod*.
285 const int kRegSize = cu_->target64 ? 8 : 4;
286 cfi_.SetCurrentCFAOffset(kRegSize); // Return address.
287 if (!cu_->target64) {
288 DCHECK(!IsTemp(rs_rSI));
289 DCHECK(!IsTemp(rs_rDI));
290 core_spill_mask_ =
291 (1u << rs_rDI.GetRegNum()) | (1u << rs_rSI.GetRegNum()) | (1u << rs_rRET.GetRegNum());
292 num_core_spills_ = 3u;
293 } else {
294 core_spill_mask_ = (1u << rs_rRET.GetRegNum());
295 num_core_spills_ = 1u;
296 }
297 fp_spill_mask_ = 0u;
298 num_fp_spills_ = 0u;
299 frame_size_ = 16u;
300 core_vmap_table_.clear();
301 fp_vmap_table_.clear();
302 if (!cu_->target64) {
303 NewLIR1(kX86Push32R, rs_rDI.GetReg());
304 cfi_.AdjustCFAOffset(kRegSize);
305 cfi_.RelOffset(DwarfCoreReg(cu_->target64, rs_rDI.GetRegNum()), 0);
306 NewLIR1(kX86Push32R, rs_rSI.GetReg());
307 cfi_.AdjustCFAOffset(kRegSize);
308 cfi_.RelOffset(DwarfCoreReg(cu_->target64, rs_rSI.GetRegNum()), 0);
309 }
310 NewLIR1(kX86Push32R, TargetReg(kArg0, kRef).GetReg()); // ArtMethod*
311 cfi_.AdjustCFAOffset(kRegSize);
312 // Do not generate CFI for scratch register.
313 }
314
GenSpecialExitForSuspend()315 void X86Mir2Lir::GenSpecialExitForSuspend() {
316 const int kRegSize = cu_->target64 ? 8 : 4;
317 // Pop the frame. (ArtMethod* no longer needed but restore it anyway.)
318 NewLIR1(kX86Pop32R, TargetReg(kArg0, kRef).GetReg()); // ArtMethod*
319 cfi_.AdjustCFAOffset(-kRegSize);
320 if (!cu_->target64) {
321 NewLIR1(kX86Pop32R, rs_rSI.GetReg());
322 cfi_.AdjustCFAOffset(-kRegSize);
323 cfi_.Restore(DwarfCoreReg(cu_->target64, rs_rSI.GetRegNum()));
324 NewLIR1(kX86Pop32R, rs_rDI.GetReg());
325 cfi_.AdjustCFAOffset(-kRegSize);
326 cfi_.Restore(DwarfCoreReg(cu_->target64, rs_rDI.GetRegNum()));
327 }
328 }
329
GenImplicitNullCheck(RegStorage reg,int opt_flags)330 void X86Mir2Lir::GenImplicitNullCheck(RegStorage reg, int opt_flags) {
331 if (!(cu_->disable_opt & (1 << kNullCheckElimination)) && (opt_flags & MIR_IGNORE_NULL_CHECK)) {
332 return;
333 }
334 // Implicit null pointer check.
335 // test eax,[arg1+0]
336 NewLIR3(kX86Test32RM, rs_rAX.GetReg(), reg.GetReg(), 0);
337 MarkPossibleNullPointerException(opt_flags);
338 }
339
340 /*
341 * Bit of a hack here - in the absence of a real scheduling pass,
342 * emit the next instruction in static & direct invoke sequences.
343 */
X86NextSDCallInsn(CompilationUnit * cu,CallInfo * info,int state,const MethodReference & target_method,uint32_t,uintptr_t direct_code ATTRIBUTE_UNUSED,uintptr_t direct_method,InvokeType type)344 int X86Mir2Lir::X86NextSDCallInsn(CompilationUnit* cu, CallInfo* info,
345 int state, const MethodReference& target_method,
346 uint32_t,
347 uintptr_t direct_code ATTRIBUTE_UNUSED, uintptr_t direct_method,
348 InvokeType type) {
349 X86Mir2Lir* cg = static_cast<X86Mir2Lir*>(cu->cg.get());
350 if (info->string_init_offset != 0) {
351 RegStorage arg0_ref = cg->TargetReg(kArg0, kRef);
352 switch (state) {
353 case 0: { // Grab target method* from thread pointer
354 cg->NewLIR2(kX86Mov32RT, arg0_ref.GetReg(), info->string_init_offset);
355 break;
356 }
357 default:
358 return -1;
359 }
360 } else if (direct_method != 0) {
361 switch (state) {
362 case 0: // Get the current Method* [sets kArg0]
363 if (direct_method != static_cast<uintptr_t>(-1)) {
364 auto target_reg = cg->TargetReg(kArg0, kRef);
365 if (target_reg.Is64Bit()) {
366 cg->LoadConstantWide(target_reg, direct_method);
367 } else {
368 cg->LoadConstant(target_reg, direct_method);
369 }
370 } else {
371 cg->LoadMethodAddress(target_method, type, kArg0);
372 }
373 break;
374 default:
375 return -1;
376 }
377 } else if (cg->CanUseOpPcRelDexCacheArrayLoad()) {
378 switch (state) {
379 case 0: {
380 CHECK_EQ(cu->dex_file, target_method.dex_file);
381 size_t offset = cg->dex_cache_arrays_layout_.MethodOffset(target_method.dex_method_index);
382 cg->OpPcRelDexCacheArrayLoad(cu->dex_file, offset, cg->TargetReg(kArg0, kRef),
383 cu->target64);
384 break;
385 }
386 default:
387 return -1;
388 }
389 } else {
390 RegStorage arg0_ref = cg->TargetReg(kArg0, kRef);
391 switch (state) {
392 case 0: // Get the current Method* [sets kArg0]
393 // TUNING: we can save a reg copy if Method* has been promoted.
394 cg->LoadCurrMethodDirect(arg0_ref);
395 break;
396 case 1: // Get method->dex_cache_resolved_methods_
397 cg->LoadRefDisp(arg0_ref,
398 ArtMethod::DexCacheResolvedMethodsOffset().Int32Value(),
399 arg0_ref,
400 kNotVolatile);
401 break;
402 case 2: {
403 // Grab target method*
404 CHECK_EQ(cu->dex_file, target_method.dex_file);
405 const size_t pointer_size = GetInstructionSetPointerSize(cu->instruction_set);
406 cg->LoadWordDisp(arg0_ref,
407 mirror::Array::DataOffset(pointer_size).Uint32Value() +
408 target_method.dex_method_index * pointer_size,
409 arg0_ref);
410 break;
411 }
412 default:
413 return -1;
414 }
415 }
416 return state + 1;
417 }
418
GetNextSDCallInsn()419 NextCallInsn X86Mir2Lir::GetNextSDCallInsn() {
420 return X86NextSDCallInsn;
421 }
422
423 } // namespace art
424