1 /*
2 * Copyright (C) 2013 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "semi_space-inl.h"
18
19 #include <climits>
20 #include <functional>
21 #include <numeric>
22 #include <sstream>
23 #include <vector>
24
25 #include "base/logging.h"
26 #include "base/macros.h"
27 #include "base/mutex-inl.h"
28 #include "base/timing_logger.h"
29 #include "gc/accounting/heap_bitmap-inl.h"
30 #include "gc/accounting/mod_union_table.h"
31 #include "gc/accounting/remembered_set.h"
32 #include "gc/accounting/space_bitmap-inl.h"
33 #include "gc/heap.h"
34 #include "gc/reference_processor.h"
35 #include "gc/space/bump_pointer_space.h"
36 #include "gc/space/bump_pointer_space-inl.h"
37 #include "gc/space/image_space.h"
38 #include "gc/space/large_object_space.h"
39 #include "gc/space/space-inl.h"
40 #include "indirect_reference_table.h"
41 #include "intern_table.h"
42 #include "jni_internal.h"
43 #include "mark_sweep-inl.h"
44 #include "monitor.h"
45 #include "mirror/reference-inl.h"
46 #include "mirror/object-inl.h"
47 #include "runtime.h"
48 #include "thread-inl.h"
49 #include "thread_list.h"
50
51 using ::art::mirror::Object;
52
53 namespace art {
54 namespace gc {
55 namespace collector {
56
57 static constexpr bool kProtectFromSpace = true;
58 static constexpr bool kStoreStackTraces = false;
59 static constexpr size_t kBytesPromotedThreshold = 4 * MB;
60 static constexpr size_t kLargeObjectBytesAllocatedThreshold = 16 * MB;
61
BindBitmaps()62 void SemiSpace::BindBitmaps() {
63 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
64 WriterMutexLock mu(self_, *Locks::heap_bitmap_lock_);
65 // Mark all of the spaces we never collect as immune.
66 for (const auto& space : GetHeap()->GetContinuousSpaces()) {
67 if (space->GetGcRetentionPolicy() == space::kGcRetentionPolicyNeverCollect ||
68 space->GetGcRetentionPolicy() == space::kGcRetentionPolicyFullCollect) {
69 CHECK(immune_region_.AddContinuousSpace(space)) << "Failed to add space " << *space;
70 } else if (space->GetLiveBitmap() != nullptr) {
71 if (space == to_space_ || collect_from_space_only_) {
72 if (collect_from_space_only_) {
73 // Bind the bitmaps of the main free list space and the non-moving space we are doing a
74 // bump pointer space only collection.
75 CHECK(space == GetHeap()->GetPrimaryFreeListSpace() ||
76 space == GetHeap()->GetNonMovingSpace());
77 }
78 CHECK(space->IsContinuousMemMapAllocSpace());
79 space->AsContinuousMemMapAllocSpace()->BindLiveToMarkBitmap();
80 }
81 }
82 }
83 if (collect_from_space_only_) {
84 // We won't collect the large object space if a bump pointer space only collection.
85 is_large_object_space_immune_ = true;
86 }
87 }
88
SemiSpace(Heap * heap,bool generational,const std::string & name_prefix)89 SemiSpace::SemiSpace(Heap* heap, bool generational, const std::string& name_prefix)
90 : GarbageCollector(heap,
91 name_prefix + (name_prefix.empty() ? "" : " ") + "marksweep + semispace"),
92 to_space_(nullptr),
93 from_space_(nullptr),
94 generational_(generational),
95 last_gc_to_space_end_(nullptr),
96 bytes_promoted_(0),
97 bytes_promoted_since_last_whole_heap_collection_(0),
98 large_object_bytes_allocated_at_last_whole_heap_collection_(0),
99 collect_from_space_only_(generational),
100 collector_name_(name_),
101 swap_semi_spaces_(true) {
102 }
103
RunPhases()104 void SemiSpace::RunPhases() {
105 Thread* self = Thread::Current();
106 InitializePhase();
107 // Semi-space collector is special since it is sometimes called with the mutators suspended
108 // during the zygote creation and collector transitions. If we already exclusively hold the
109 // mutator lock, then we can't lock it again since it will cause a deadlock.
110 if (Locks::mutator_lock_->IsExclusiveHeld(self)) {
111 GetHeap()->PreGcVerificationPaused(this);
112 GetHeap()->PrePauseRosAllocVerification(this);
113 MarkingPhase();
114 ReclaimPhase();
115 GetHeap()->PostGcVerificationPaused(this);
116 } else {
117 Locks::mutator_lock_->AssertNotHeld(self);
118 {
119 ScopedPause pause(this);
120 GetHeap()->PreGcVerificationPaused(this);
121 GetHeap()->PrePauseRosAllocVerification(this);
122 MarkingPhase();
123 }
124 {
125 ReaderMutexLock mu(self, *Locks::mutator_lock_);
126 ReclaimPhase();
127 }
128 GetHeap()->PostGcVerification(this);
129 }
130 FinishPhase();
131 }
132
InitializePhase()133 void SemiSpace::InitializePhase() {
134 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
135 mark_stack_ = heap_->GetMarkStack();
136 DCHECK(mark_stack_ != nullptr);
137 immune_region_.Reset();
138 is_large_object_space_immune_ = false;
139 saved_bytes_ = 0;
140 bytes_moved_ = 0;
141 objects_moved_ = 0;
142 self_ = Thread::Current();
143 CHECK(from_space_->CanMoveObjects()) << "Attempting to move from " << *from_space_;
144 // Set the initial bitmap.
145 to_space_live_bitmap_ = to_space_->GetLiveBitmap();
146 {
147 // TODO: I don't think we should need heap bitmap lock to Get the mark bitmap.
148 ReaderMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
149 mark_bitmap_ = heap_->GetMarkBitmap();
150 }
151 if (generational_) {
152 promo_dest_space_ = GetHeap()->GetPrimaryFreeListSpace();
153 }
154 fallback_space_ = GetHeap()->GetNonMovingSpace();
155 }
156
ProcessReferences(Thread * self)157 void SemiSpace::ProcessReferences(Thread* self) {
158 WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
159 GetHeap()->GetReferenceProcessor()->ProcessReferences(
160 false, GetTimings(), GetCurrentIteration()->GetClearSoftReferences(),
161 &HeapReferenceMarkedCallback, &MarkObjectCallback, &ProcessMarkStackCallback, this);
162 }
163
MarkingPhase()164 void SemiSpace::MarkingPhase() {
165 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
166 CHECK(Locks::mutator_lock_->IsExclusiveHeld(self_));
167 if (kStoreStackTraces) {
168 Locks::mutator_lock_->AssertExclusiveHeld(self_);
169 // Store the stack traces into the runtime fault string in case we Get a heap corruption
170 // related crash later.
171 ThreadState old_state = self_->SetStateUnsafe(kRunnable);
172 std::ostringstream oss;
173 Runtime* runtime = Runtime::Current();
174 runtime->GetThreadList()->DumpForSigQuit(oss);
175 runtime->GetThreadList()->DumpNativeStacks(oss);
176 runtime->SetFaultMessage(oss.str());
177 CHECK_EQ(self_->SetStateUnsafe(old_state), kRunnable);
178 }
179 // Revoke the thread local buffers since the GC may allocate into a RosAllocSpace and this helps
180 // to prevent fragmentation.
181 RevokeAllThreadLocalBuffers();
182 if (generational_) {
183 if (GetCurrentIteration()->GetGcCause() == kGcCauseExplicit ||
184 GetCurrentIteration()->GetGcCause() == kGcCauseForNativeAlloc ||
185 GetCurrentIteration()->GetClearSoftReferences()) {
186 // If an explicit, native allocation-triggered, or last attempt
187 // collection, collect the whole heap.
188 collect_from_space_only_ = false;
189 }
190 if (!collect_from_space_only_) {
191 VLOG(heap) << "Whole heap collection";
192 name_ = collector_name_ + " whole";
193 } else {
194 VLOG(heap) << "Bump pointer space only collection";
195 name_ = collector_name_ + " bps";
196 }
197 }
198
199 if (!collect_from_space_only_) {
200 // If non-generational, always clear soft references.
201 // If generational, clear soft references if a whole heap collection.
202 GetCurrentIteration()->SetClearSoftReferences(true);
203 }
204 Locks::mutator_lock_->AssertExclusiveHeld(self_);
205 if (generational_) {
206 // If last_gc_to_space_end_ is out of the bounds of the from-space
207 // (the to-space from last GC), then point it to the beginning of
208 // the from-space. For example, the very first GC or the
209 // pre-zygote compaction.
210 if (!from_space_->HasAddress(reinterpret_cast<mirror::Object*>(last_gc_to_space_end_))) {
211 last_gc_to_space_end_ = from_space_->Begin();
212 }
213 // Reset this before the marking starts below.
214 bytes_promoted_ = 0;
215 }
216 // Assume the cleared space is already empty.
217 BindBitmaps();
218 // Process dirty cards and add dirty cards to mod-union tables.
219 heap_->ProcessCards(GetTimings(), kUseRememberedSet && generational_, false, true);
220 // Clear the whole card table since we can not Get any additional dirty cards during the
221 // paused GC. This saves memory but only works for pause the world collectors.
222 t.NewTiming("ClearCardTable");
223 heap_->GetCardTable()->ClearCardTable();
224 // Need to do this before the checkpoint since we don't want any threads to add references to
225 // the live stack during the recursive mark.
226 if (kUseThreadLocalAllocationStack) {
227 TimingLogger::ScopedTiming t2("RevokeAllThreadLocalAllocationStacks", GetTimings());
228 heap_->RevokeAllThreadLocalAllocationStacks(self_);
229 }
230 heap_->SwapStacks(self_);
231 {
232 WriterMutexLock mu(self_, *Locks::heap_bitmap_lock_);
233 MarkRoots();
234 // Recursively mark remaining objects.
235 MarkReachableObjects();
236 }
237 ProcessReferences(self_);
238 {
239 ReaderMutexLock mu(self_, *Locks::heap_bitmap_lock_);
240 SweepSystemWeaks();
241 }
242 // Revoke buffers before measuring how many objects were moved since the TLABs need to be revoked
243 // before they are properly counted.
244 RevokeAllThreadLocalBuffers();
245 GetHeap()->RecordFreeRevoke(); // this is for the non-moving rosalloc space used by GSS.
246 // Record freed memory.
247 const int64_t from_bytes = from_space_->GetBytesAllocated();
248 const int64_t to_bytes = bytes_moved_;
249 const uint64_t from_objects = from_space_->GetObjectsAllocated();
250 const uint64_t to_objects = objects_moved_;
251 CHECK_LE(to_objects, from_objects);
252 // Note: Freed bytes can be negative if we copy form a compacted space to a free-list backed
253 // space.
254 RecordFree(ObjectBytePair(from_objects - to_objects, from_bytes - to_bytes));
255 // Clear and protect the from space.
256 from_space_->Clear();
257 if (kProtectFromSpace && !from_space_->IsRosAllocSpace()) {
258 // Protect with PROT_NONE.
259 VLOG(heap) << "Protecting from_space_ : " << *from_space_;
260 from_space_->GetMemMap()->Protect(PROT_NONE);
261 } else {
262 // If RosAllocSpace, we'll leave it as PROT_READ here so the
263 // rosaloc verification can read the metadata magic number and
264 // protect it with PROT_NONE later in FinishPhase().
265 VLOG(heap) << "Protecting from_space_ with PROT_READ : " << *from_space_;
266 from_space_->GetMemMap()->Protect(PROT_READ);
267 }
268 heap_->PreSweepingGcVerification(this);
269 if (swap_semi_spaces_) {
270 heap_->SwapSemiSpaces();
271 }
272 }
273
274 class SemiSpaceScanObjectVisitor {
275 public:
SemiSpaceScanObjectVisitor(SemiSpace * ss)276 explicit SemiSpaceScanObjectVisitor(SemiSpace* ss) : semi_space_(ss) {}
operator ()(Object * obj) const277 void operator()(Object* obj) const EXCLUSIVE_LOCKS_REQUIRED(Locks::mutator_lock_,
278 Locks::heap_bitmap_lock_) {
279 DCHECK(obj != nullptr);
280 semi_space_->ScanObject(obj);
281 }
282 private:
283 SemiSpace* const semi_space_;
284 };
285
286 // Used to verify that there's no references to the from-space.
287 class SemiSpaceVerifyNoFromSpaceReferencesVisitor {
288 public:
SemiSpaceVerifyNoFromSpaceReferencesVisitor(space::ContinuousMemMapAllocSpace * from_space)289 explicit SemiSpaceVerifyNoFromSpaceReferencesVisitor(space::ContinuousMemMapAllocSpace* from_space) :
290 from_space_(from_space) {}
291
operator ()(Object * obj,MemberOffset offset,bool) const292 void operator()(Object* obj, MemberOffset offset, bool /* is_static */) const
293 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) ALWAYS_INLINE {
294 mirror::Object* ref = obj->GetFieldObject<mirror::Object>(offset);
295 if (from_space_->HasAddress(ref)) {
296 Runtime::Current()->GetHeap()->DumpObject(LOG(INFO), obj);
297 LOG(FATAL) << ref << " found in from space";
298 }
299 }
300 private:
301 space::ContinuousMemMapAllocSpace* from_space_;
302 };
303
VerifyNoFromSpaceReferences(Object * obj)304 void SemiSpace::VerifyNoFromSpaceReferences(Object* obj) {
305 DCHECK(!from_space_->HasAddress(obj)) << "Scanning object " << obj << " in from space";
306 SemiSpaceVerifyNoFromSpaceReferencesVisitor visitor(from_space_);
307 obj->VisitReferences<kMovingClasses>(visitor, VoidFunctor());
308 }
309
310 class SemiSpaceVerifyNoFromSpaceReferencesObjectVisitor {
311 public:
SemiSpaceVerifyNoFromSpaceReferencesObjectVisitor(SemiSpace * ss)312 explicit SemiSpaceVerifyNoFromSpaceReferencesObjectVisitor(SemiSpace* ss) : semi_space_(ss) {}
operator ()(Object * obj) const313 void operator()(Object* obj) const
314 SHARED_LOCKS_REQUIRED(Locks::heap_bitmap_lock_, Locks::mutator_lock_) {
315 DCHECK(obj != nullptr);
316 semi_space_->VerifyNoFromSpaceReferences(obj);
317 }
318 private:
319 SemiSpace* const semi_space_;
320 };
321
MarkReachableObjects()322 void SemiSpace::MarkReachableObjects() {
323 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
324 {
325 TimingLogger::ScopedTiming t2("MarkStackAsLive", GetTimings());
326 accounting::ObjectStack* live_stack = heap_->GetLiveStack();
327 heap_->MarkAllocStackAsLive(live_stack);
328 live_stack->Reset();
329 }
330 for (auto& space : heap_->GetContinuousSpaces()) {
331 // If the space is immune then we need to mark the references to other spaces.
332 accounting::ModUnionTable* table = heap_->FindModUnionTableFromSpace(space);
333 if (table != nullptr) {
334 // TODO: Improve naming.
335 TimingLogger::ScopedTiming t2(
336 space->IsZygoteSpace() ? "UpdateAndMarkZygoteModUnionTable" :
337 "UpdateAndMarkImageModUnionTable",
338 GetTimings());
339 table->UpdateAndMarkReferences(MarkHeapReferenceCallback, this);
340 DCHECK(GetHeap()->FindRememberedSetFromSpace(space) == nullptr);
341 } else if (collect_from_space_only_ && space->GetLiveBitmap() != nullptr) {
342 // If the space has no mod union table (the non-moving space and main spaces when the bump
343 // pointer space only collection is enabled,) then we need to scan its live bitmap or dirty
344 // cards as roots (including the objects on the live stack which have just marked in the live
345 // bitmap above in MarkAllocStackAsLive().)
346 DCHECK(space == heap_->GetNonMovingSpace() || space == heap_->GetPrimaryFreeListSpace())
347 << "Space " << space->GetName() << " "
348 << "generational_=" << generational_ << " "
349 << "collect_from_space_only_=" << collect_from_space_only_;
350 accounting::RememberedSet* rem_set = GetHeap()->FindRememberedSetFromSpace(space);
351 CHECK_EQ(rem_set != nullptr, kUseRememberedSet);
352 if (rem_set != nullptr) {
353 TimingLogger::ScopedTiming t2("UpdateAndMarkRememberedSet", GetTimings());
354 rem_set->UpdateAndMarkReferences(MarkHeapReferenceCallback, DelayReferenceReferentCallback,
355 from_space_, this);
356 if (kIsDebugBuild) {
357 // Verify that there are no from-space references that
358 // remain in the space, that is, the remembered set (and the
359 // card table) didn't miss any from-space references in the
360 // space.
361 accounting::ContinuousSpaceBitmap* live_bitmap = space->GetLiveBitmap();
362 SemiSpaceVerifyNoFromSpaceReferencesObjectVisitor visitor(this);
363 live_bitmap->VisitMarkedRange(reinterpret_cast<uintptr_t>(space->Begin()),
364 reinterpret_cast<uintptr_t>(space->End()),
365 visitor);
366 }
367 } else {
368 TimingLogger::ScopedTiming t2("VisitLiveBits", GetTimings());
369 accounting::ContinuousSpaceBitmap* live_bitmap = space->GetLiveBitmap();
370 SemiSpaceScanObjectVisitor visitor(this);
371 live_bitmap->VisitMarkedRange(reinterpret_cast<uintptr_t>(space->Begin()),
372 reinterpret_cast<uintptr_t>(space->End()),
373 visitor);
374 }
375 }
376 }
377
378 CHECK_EQ(is_large_object_space_immune_, collect_from_space_only_);
379 space::LargeObjectSpace* los = GetHeap()->GetLargeObjectsSpace();
380 if (is_large_object_space_immune_ && los != nullptr) {
381 TimingLogger::ScopedTiming t2("VisitLargeObjects", GetTimings());
382 DCHECK(collect_from_space_only_);
383 // Delay copying the live set to the marked set until here from
384 // BindBitmaps() as the large objects on the allocation stack may
385 // be newly added to the live set above in MarkAllocStackAsLive().
386 los->CopyLiveToMarked();
387
388 // When the large object space is immune, we need to scan the
389 // large object space as roots as they contain references to their
390 // classes (primitive array classes) that could move though they
391 // don't contain any other references.
392 accounting::LargeObjectBitmap* large_live_bitmap = los->GetLiveBitmap();
393 SemiSpaceScanObjectVisitor visitor(this);
394 large_live_bitmap->VisitMarkedRange(reinterpret_cast<uintptr_t>(los->Begin()),
395 reinterpret_cast<uintptr_t>(los->End()),
396 visitor);
397 }
398 // Recursively process the mark stack.
399 ProcessMarkStack();
400 }
401
ReclaimPhase()402 void SemiSpace::ReclaimPhase() {
403 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
404 WriterMutexLock mu(self_, *Locks::heap_bitmap_lock_);
405 // Reclaim unmarked objects.
406 Sweep(false);
407 // Swap the live and mark bitmaps for each space which we modified space. This is an
408 // optimization that enables us to not clear live bits inside of the sweep. Only swaps unbound
409 // bitmaps.
410 SwapBitmaps();
411 // Unbind the live and mark bitmaps.
412 GetHeap()->UnBindBitmaps();
413 if (saved_bytes_ > 0) {
414 VLOG(heap) << "Avoided dirtying " << PrettySize(saved_bytes_);
415 }
416 if (generational_) {
417 // Record the end (top) of the to space so we can distinguish
418 // between objects that were allocated since the last GC and the
419 // older objects.
420 last_gc_to_space_end_ = to_space_->End();
421 }
422 }
423
ResizeMarkStack(size_t new_size)424 void SemiSpace::ResizeMarkStack(size_t new_size) {
425 std::vector<StackReference<Object>> temp(mark_stack_->Begin(), mark_stack_->End());
426 CHECK_LE(mark_stack_->Size(), new_size);
427 mark_stack_->Resize(new_size);
428 for (auto& obj : temp) {
429 mark_stack_->PushBack(obj.AsMirrorPtr());
430 }
431 }
432
MarkStackPush(Object * obj)433 inline void SemiSpace::MarkStackPush(Object* obj) {
434 if (UNLIKELY(mark_stack_->Size() >= mark_stack_->Capacity())) {
435 ResizeMarkStack(mark_stack_->Capacity() * 2);
436 }
437 // The object must be pushed on to the mark stack.
438 mark_stack_->PushBack(obj);
439 }
440
CopyAvoidingDirtyingPages(void * dest,const void * src,size_t size)441 static inline size_t CopyAvoidingDirtyingPages(void* dest, const void* src, size_t size) {
442 if (LIKELY(size <= static_cast<size_t>(kPageSize))) {
443 // We will dirty the current page and somewhere in the middle of the next page. This means
444 // that the next object copied will also dirty that page.
445 // TODO: Worth considering the last object copied? We may end up dirtying one page which is
446 // not necessary per GC.
447 memcpy(dest, src, size);
448 return 0;
449 }
450 size_t saved_bytes = 0;
451 uint8_t* byte_dest = reinterpret_cast<uint8_t*>(dest);
452 if (kIsDebugBuild) {
453 for (size_t i = 0; i < size; ++i) {
454 CHECK_EQ(byte_dest[i], 0U);
455 }
456 }
457 // Process the start of the page. The page must already be dirty, don't bother with checking.
458 const uint8_t* byte_src = reinterpret_cast<const uint8_t*>(src);
459 const uint8_t* limit = byte_src + size;
460 size_t page_remain = AlignUp(byte_dest, kPageSize) - byte_dest;
461 // Copy the bytes until the start of the next page.
462 memcpy(dest, src, page_remain);
463 byte_src += page_remain;
464 byte_dest += page_remain;
465 DCHECK_ALIGNED(reinterpret_cast<uintptr_t>(byte_dest), kPageSize);
466 DCHECK_ALIGNED(reinterpret_cast<uintptr_t>(byte_dest), sizeof(uintptr_t));
467 DCHECK_ALIGNED(reinterpret_cast<uintptr_t>(byte_src), sizeof(uintptr_t));
468 while (byte_src + kPageSize < limit) {
469 bool all_zero = true;
470 uintptr_t* word_dest = reinterpret_cast<uintptr_t*>(byte_dest);
471 const uintptr_t* word_src = reinterpret_cast<const uintptr_t*>(byte_src);
472 for (size_t i = 0; i < kPageSize / sizeof(*word_src); ++i) {
473 // Assumes the destination of the copy is all zeros.
474 if (word_src[i] != 0) {
475 all_zero = false;
476 word_dest[i] = word_src[i];
477 }
478 }
479 if (all_zero) {
480 // Avoided copying into the page since it was all zeros.
481 saved_bytes += kPageSize;
482 }
483 byte_src += kPageSize;
484 byte_dest += kPageSize;
485 }
486 // Handle the part of the page at the end.
487 memcpy(byte_dest, byte_src, limit - byte_src);
488 return saved_bytes;
489 }
490
MarkNonForwardedObject(mirror::Object * obj)491 mirror::Object* SemiSpace::MarkNonForwardedObject(mirror::Object* obj) {
492 const size_t object_size = obj->SizeOf();
493 size_t bytes_allocated, dummy;
494 mirror::Object* forward_address = nullptr;
495 if (generational_ && reinterpret_cast<uint8_t*>(obj) < last_gc_to_space_end_) {
496 // If it's allocated before the last GC (older), move
497 // (pseudo-promote) it to the main free list space (as sort
498 // of an old generation.)
499 forward_address = promo_dest_space_->AllocThreadUnsafe(self_, object_size, &bytes_allocated,
500 nullptr, &dummy);
501 if (UNLIKELY(forward_address == nullptr)) {
502 // If out of space, fall back to the to-space.
503 forward_address = to_space_->AllocThreadUnsafe(self_, object_size, &bytes_allocated, nullptr,
504 &dummy);
505 // No logic for marking the bitmap, so it must be null.
506 DCHECK(to_space_live_bitmap_ == nullptr);
507 } else {
508 bytes_promoted_ += bytes_allocated;
509 // Dirty the card at the destionation as it may contain
510 // references (including the class pointer) to the bump pointer
511 // space.
512 GetHeap()->WriteBarrierEveryFieldOf(forward_address);
513 // Handle the bitmaps marking.
514 accounting::ContinuousSpaceBitmap* live_bitmap = promo_dest_space_->GetLiveBitmap();
515 DCHECK(live_bitmap != nullptr);
516 accounting::ContinuousSpaceBitmap* mark_bitmap = promo_dest_space_->GetMarkBitmap();
517 DCHECK(mark_bitmap != nullptr);
518 DCHECK(!live_bitmap->Test(forward_address));
519 if (collect_from_space_only_) {
520 // If collecting the bump pointer spaces only, live_bitmap == mark_bitmap.
521 DCHECK_EQ(live_bitmap, mark_bitmap);
522
523 // If a bump pointer space only collection, delay the live
524 // bitmap marking of the promoted object until it's popped off
525 // the mark stack (ProcessMarkStack()). The rationale: we may
526 // be in the middle of scanning the objects in the promo
527 // destination space for
528 // non-moving-space-to-bump-pointer-space references by
529 // iterating over the marked bits of the live bitmap
530 // (MarkReachableObjects()). If we don't delay it (and instead
531 // mark the promoted object here), the above promo destination
532 // space scan could encounter the just-promoted object and
533 // forward the references in the promoted object's fields even
534 // through it is pushed onto the mark stack. If this happens,
535 // the promoted object would be in an inconsistent state, that
536 // is, it's on the mark stack (gray) but its fields are
537 // already forwarded (black), which would cause a
538 // DCHECK(!to_space_->HasAddress(obj)) failure below.
539 } else {
540 // Mark forward_address on the live bit map.
541 live_bitmap->Set(forward_address);
542 // Mark forward_address on the mark bit map.
543 DCHECK(!mark_bitmap->Test(forward_address));
544 mark_bitmap->Set(forward_address);
545 }
546 }
547 } else {
548 // If it's allocated after the last GC (younger), copy it to the to-space.
549 forward_address = to_space_->AllocThreadUnsafe(self_, object_size, &bytes_allocated, nullptr,
550 &dummy);
551 if (forward_address != nullptr && to_space_live_bitmap_ != nullptr) {
552 to_space_live_bitmap_->Set(forward_address);
553 }
554 }
555 // If it's still null, attempt to use the fallback space.
556 if (UNLIKELY(forward_address == nullptr)) {
557 forward_address = fallback_space_->AllocThreadUnsafe(self_, object_size, &bytes_allocated,
558 nullptr, &dummy);
559 CHECK(forward_address != nullptr) << "Out of memory in the to-space and fallback space.";
560 accounting::ContinuousSpaceBitmap* bitmap = fallback_space_->GetLiveBitmap();
561 if (bitmap != nullptr) {
562 bitmap->Set(forward_address);
563 }
564 }
565 ++objects_moved_;
566 bytes_moved_ += bytes_allocated;
567 // Copy over the object and add it to the mark stack since we still need to update its
568 // references.
569 saved_bytes_ +=
570 CopyAvoidingDirtyingPages(reinterpret_cast<void*>(forward_address), obj, object_size);
571 if (kUseBakerOrBrooksReadBarrier) {
572 obj->AssertReadBarrierPointer();
573 if (kUseBrooksReadBarrier) {
574 DCHECK_EQ(forward_address->GetReadBarrierPointer(), obj);
575 forward_address->SetReadBarrierPointer(forward_address);
576 }
577 forward_address->AssertReadBarrierPointer();
578 }
579 DCHECK(to_space_->HasAddress(forward_address) ||
580 fallback_space_->HasAddress(forward_address) ||
581 (generational_ && promo_dest_space_->HasAddress(forward_address)))
582 << forward_address << "\n" << GetHeap()->DumpSpaces();
583 return forward_address;
584 }
585
ProcessMarkStackCallback(void * arg)586 void SemiSpace::ProcessMarkStackCallback(void* arg) {
587 reinterpret_cast<SemiSpace*>(arg)->ProcessMarkStack();
588 }
589
MarkObjectCallback(mirror::Object * root,void * arg)590 mirror::Object* SemiSpace::MarkObjectCallback(mirror::Object* root, void* arg) {
591 auto ref = StackReference<mirror::Object>::FromMirrorPtr(root);
592 reinterpret_cast<SemiSpace*>(arg)->MarkObject(&ref);
593 return ref.AsMirrorPtr();
594 }
595
MarkHeapReferenceCallback(mirror::HeapReference<mirror::Object> * obj_ptr,void * arg)596 void SemiSpace::MarkHeapReferenceCallback(mirror::HeapReference<mirror::Object>* obj_ptr,
597 void* arg) {
598 reinterpret_cast<SemiSpace*>(arg)->MarkObject(obj_ptr);
599 }
600
DelayReferenceReferentCallback(mirror::Class * klass,mirror::Reference * ref,void * arg)601 void SemiSpace::DelayReferenceReferentCallback(mirror::Class* klass, mirror::Reference* ref,
602 void* arg) {
603 reinterpret_cast<SemiSpace*>(arg)->DelayReferenceReferent(klass, ref);
604 }
605
VisitRoots(mirror::Object *** roots,size_t count,const RootInfo & info ATTRIBUTE_UNUSED)606 void SemiSpace::VisitRoots(mirror::Object*** roots, size_t count,
607 const RootInfo& info ATTRIBUTE_UNUSED) {
608 for (size_t i = 0; i < count; ++i) {
609 auto* root = roots[i];
610 auto ref = StackReference<mirror::Object>::FromMirrorPtr(*root);
611 MarkObject(&ref);
612 if (*root != ref.AsMirrorPtr()) {
613 *root = ref.AsMirrorPtr();
614 }
615 }
616 }
617
VisitRoots(mirror::CompressedReference<mirror::Object> ** roots,size_t count,const RootInfo & info ATTRIBUTE_UNUSED)618 void SemiSpace::VisitRoots(mirror::CompressedReference<mirror::Object>** roots, size_t count,
619 const RootInfo& info ATTRIBUTE_UNUSED) {
620 for (size_t i = 0; i < count; ++i) {
621 MarkObject(roots[i]);
622 }
623 }
624
625 // Marks all objects in the root set.
MarkRoots()626 void SemiSpace::MarkRoots() {
627 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
628 Runtime::Current()->VisitRoots(this);
629 }
630
HeapReferenceMarkedCallback(mirror::HeapReference<mirror::Object> * object,void * arg)631 bool SemiSpace::HeapReferenceMarkedCallback(mirror::HeapReference<mirror::Object>* object,
632 void* arg) {
633 mirror::Object* obj = object->AsMirrorPtr();
634 mirror::Object* new_obj =
635 reinterpret_cast<SemiSpace*>(arg)->GetMarkedForwardAddress(obj);
636 if (new_obj == nullptr) {
637 return false;
638 }
639 if (new_obj != obj) {
640 // Write barrier is not necessary since it still points to the same object, just at a different
641 // address.
642 object->Assign(new_obj);
643 }
644 return true;
645 }
646
MarkedForwardingAddressCallback(mirror::Object * object,void * arg)647 mirror::Object* SemiSpace::MarkedForwardingAddressCallback(mirror::Object* object, void* arg) {
648 return reinterpret_cast<SemiSpace*>(arg)->GetMarkedForwardAddress(object);
649 }
650
SweepSystemWeaks()651 void SemiSpace::SweepSystemWeaks() {
652 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
653 Runtime::Current()->SweepSystemWeaks(MarkedForwardingAddressCallback, this);
654 }
655
ShouldSweepSpace(space::ContinuousSpace * space) const656 bool SemiSpace::ShouldSweepSpace(space::ContinuousSpace* space) const {
657 return space != from_space_ && space != to_space_;
658 }
659
Sweep(bool swap_bitmaps)660 void SemiSpace::Sweep(bool swap_bitmaps) {
661 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
662 DCHECK(mark_stack_->IsEmpty());
663 for (const auto& space : GetHeap()->GetContinuousSpaces()) {
664 if (space->IsContinuousMemMapAllocSpace()) {
665 space::ContinuousMemMapAllocSpace* alloc_space = space->AsContinuousMemMapAllocSpace();
666 if (!ShouldSweepSpace(alloc_space)) {
667 continue;
668 }
669 TimingLogger::ScopedTiming split(
670 alloc_space->IsZygoteSpace() ? "SweepZygoteSpace" : "SweepAllocSpace", GetTimings());
671 RecordFree(alloc_space->Sweep(swap_bitmaps));
672 }
673 }
674 if (!is_large_object_space_immune_) {
675 SweepLargeObjects(swap_bitmaps);
676 }
677 }
678
SweepLargeObjects(bool swap_bitmaps)679 void SemiSpace::SweepLargeObjects(bool swap_bitmaps) {
680 DCHECK(!is_large_object_space_immune_);
681 space::LargeObjectSpace* los = heap_->GetLargeObjectsSpace();
682 if (los != nullptr) {
683 TimingLogger::ScopedTiming split("SweepLargeObjects", GetTimings());
684 RecordFreeLOS(los->Sweep(swap_bitmaps));
685 }
686 }
687
688 // Process the "referent" field in a java.lang.ref.Reference. If the referent has not yet been
689 // marked, put it on the appropriate list in the heap for later processing.
DelayReferenceReferent(mirror::Class * klass,mirror::Reference * reference)690 void SemiSpace::DelayReferenceReferent(mirror::Class* klass, mirror::Reference* reference) {
691 heap_->GetReferenceProcessor()->DelayReferenceReferent(klass, reference,
692 &HeapReferenceMarkedCallback, this);
693 }
694
695 class SemiSpaceMarkObjectVisitor {
696 public:
SemiSpaceMarkObjectVisitor(SemiSpace * collector)697 explicit SemiSpaceMarkObjectVisitor(SemiSpace* collector) : collector_(collector) {
698 }
699
operator ()(Object * obj,MemberOffset offset,bool) const700 void operator()(Object* obj, MemberOffset offset, bool /* is_static */) const ALWAYS_INLINE
701 EXCLUSIVE_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
702 // Object was already verified when we scanned it.
703 collector_->MarkObject(obj->GetFieldObjectReferenceAddr<kVerifyNone>(offset));
704 }
705
operator ()(mirror::Class * klass,mirror::Reference * ref) const706 void operator()(mirror::Class* klass, mirror::Reference* ref) const
707 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
708 EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) {
709 collector_->DelayReferenceReferent(klass, ref);
710 }
711
712 private:
713 SemiSpace* const collector_;
714 };
715
716 // Visit all of the references of an object and update.
ScanObject(Object * obj)717 void SemiSpace::ScanObject(Object* obj) {
718 DCHECK(!from_space_->HasAddress(obj)) << "Scanning object " << obj << " in from space";
719 SemiSpaceMarkObjectVisitor visitor(this);
720 obj->VisitReferences<kMovingClasses>(visitor, visitor);
721 }
722
723 // Scan anything that's on the mark stack.
ProcessMarkStack()724 void SemiSpace::ProcessMarkStack() {
725 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
726 accounting::ContinuousSpaceBitmap* live_bitmap = nullptr;
727 if (collect_from_space_only_) {
728 // If a bump pointer space only collection (and the promotion is
729 // enabled,) we delay the live-bitmap marking of promoted objects
730 // from MarkObject() until this function.
731 live_bitmap = promo_dest_space_->GetLiveBitmap();
732 DCHECK(live_bitmap != nullptr);
733 accounting::ContinuousSpaceBitmap* mark_bitmap = promo_dest_space_->GetMarkBitmap();
734 DCHECK(mark_bitmap != nullptr);
735 DCHECK_EQ(live_bitmap, mark_bitmap);
736 }
737 while (!mark_stack_->IsEmpty()) {
738 Object* obj = mark_stack_->PopBack();
739 if (collect_from_space_only_ && promo_dest_space_->HasAddress(obj)) {
740 // obj has just been promoted. Mark the live bitmap for it,
741 // which is delayed from MarkObject().
742 DCHECK(!live_bitmap->Test(obj));
743 live_bitmap->Set(obj);
744 }
745 ScanObject(obj);
746 }
747 }
748
GetMarkedForwardAddress(mirror::Object * obj) const749 inline Object* SemiSpace::GetMarkedForwardAddress(mirror::Object* obj) const
750 SHARED_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) {
751 // All immune objects are assumed marked.
752 if (from_space_->HasAddress(obj)) {
753 // Returns either the forwarding address or null.
754 return GetForwardingAddressInFromSpace(obj);
755 } else if (collect_from_space_only_ || immune_region_.ContainsObject(obj) ||
756 to_space_->HasAddress(obj)) {
757 return obj; // Already forwarded, must be marked.
758 }
759 return mark_bitmap_->Test(obj) ? obj : nullptr;
760 }
761
SetToSpace(space::ContinuousMemMapAllocSpace * to_space)762 void SemiSpace::SetToSpace(space::ContinuousMemMapAllocSpace* to_space) {
763 DCHECK(to_space != nullptr);
764 to_space_ = to_space;
765 }
766
SetFromSpace(space::ContinuousMemMapAllocSpace * from_space)767 void SemiSpace::SetFromSpace(space::ContinuousMemMapAllocSpace* from_space) {
768 DCHECK(from_space != nullptr);
769 from_space_ = from_space;
770 }
771
FinishPhase()772 void SemiSpace::FinishPhase() {
773 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
774 if (kProtectFromSpace && from_space_->IsRosAllocSpace()) {
775 VLOG(heap) << "Protecting from_space_ with PROT_NONE : " << *from_space_;
776 from_space_->GetMemMap()->Protect(PROT_NONE);
777 }
778 // Null the "to" and "from" spaces since compacting from one to the other isn't valid until
779 // further action is done by the heap.
780 to_space_ = nullptr;
781 from_space_ = nullptr;
782 CHECK(mark_stack_->IsEmpty());
783 mark_stack_->Reset();
784 space::LargeObjectSpace* los = GetHeap()->GetLargeObjectsSpace();
785 if (generational_) {
786 // Decide whether to do a whole heap collection or a bump pointer
787 // only space collection at the next collection by updating
788 // collect_from_space_only_.
789 if (collect_from_space_only_) {
790 // Disable collect_from_space_only_ if the bytes promoted since the
791 // last whole heap collection or the large object bytes
792 // allocated exceeds a threshold.
793 bytes_promoted_since_last_whole_heap_collection_ += bytes_promoted_;
794 bool bytes_promoted_threshold_exceeded =
795 bytes_promoted_since_last_whole_heap_collection_ >= kBytesPromotedThreshold;
796 uint64_t current_los_bytes_allocated = los != nullptr ? los->GetBytesAllocated() : 0U;
797 uint64_t last_los_bytes_allocated =
798 large_object_bytes_allocated_at_last_whole_heap_collection_;
799 bool large_object_bytes_threshold_exceeded =
800 current_los_bytes_allocated >=
801 last_los_bytes_allocated + kLargeObjectBytesAllocatedThreshold;
802 if (bytes_promoted_threshold_exceeded || large_object_bytes_threshold_exceeded) {
803 collect_from_space_only_ = false;
804 }
805 } else {
806 // Reset the counters.
807 bytes_promoted_since_last_whole_heap_collection_ = bytes_promoted_;
808 large_object_bytes_allocated_at_last_whole_heap_collection_ =
809 los != nullptr ? los->GetBytesAllocated() : 0U;
810 collect_from_space_only_ = true;
811 }
812 }
813 // Clear all of the spaces' mark bitmaps.
814 WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
815 heap_->ClearMarkedObjects();
816 }
817
RevokeAllThreadLocalBuffers()818 void SemiSpace::RevokeAllThreadLocalBuffers() {
819 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
820 GetHeap()->RevokeAllThreadLocalBuffers();
821 }
822
823 } // namespace collector
824 } // namespace gc
825 } // namespace art
826