1 /*
2 * Copyright (C) 2014 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "reference_processor.h"
18
19 #include "base/time_utils.h"
20 #include "mirror/class-inl.h"
21 #include "mirror/object-inl.h"
22 #include "mirror/reference-inl.h"
23 #include "reference_processor-inl.h"
24 #include "reflection.h"
25 #include "ScopedLocalRef.h"
26 #include "scoped_thread_state_change.h"
27 #include "task_processor.h"
28 #include "utils.h"
29 #include "well_known_classes.h"
30
31 namespace art {
32 namespace gc {
33
34 static constexpr bool kAsyncReferenceQueueAdd = false;
35
ReferenceProcessor()36 ReferenceProcessor::ReferenceProcessor()
37 : process_references_args_(nullptr, nullptr, nullptr),
38 preserving_references_(false),
39 condition_("reference processor condition", *Locks::reference_processor_lock_) ,
40 soft_reference_queue_(Locks::reference_queue_soft_references_lock_),
41 weak_reference_queue_(Locks::reference_queue_weak_references_lock_),
42 finalizer_reference_queue_(Locks::reference_queue_finalizer_references_lock_),
43 phantom_reference_queue_(Locks::reference_queue_phantom_references_lock_),
44 cleared_references_(Locks::reference_queue_cleared_references_lock_) {
45 }
46
EnableSlowPath()47 void ReferenceProcessor::EnableSlowPath() {
48 mirror::Reference::GetJavaLangRefReference()->SetSlowPath(true);
49 }
50
DisableSlowPath(Thread * self)51 void ReferenceProcessor::DisableSlowPath(Thread* self) {
52 mirror::Reference::GetJavaLangRefReference()->SetSlowPath(false);
53 condition_.Broadcast(self);
54 }
55
GetReferent(Thread * self,mirror::Reference * reference)56 mirror::Object* ReferenceProcessor::GetReferent(Thread* self, mirror::Reference* reference) {
57 mirror::Object* const referent = reference->GetReferent();
58 // If the referent is null then it is already cleared, we can just return null since there is no
59 // scenario where it becomes non-null during the reference processing phase.
60 if (UNLIKELY(!SlowPathEnabled()) || referent == nullptr) {
61 return referent;
62 }
63 MutexLock mu(self, *Locks::reference_processor_lock_);
64 while (SlowPathEnabled()) {
65 mirror::HeapReference<mirror::Object>* const referent_addr =
66 reference->GetReferentReferenceAddr();
67 // If the referent became cleared, return it. Don't need barrier since thread roots can't get
68 // updated until after we leave the function due to holding the mutator lock.
69 if (referent_addr->AsMirrorPtr() == nullptr) {
70 return nullptr;
71 }
72 // Try to see if the referent is already marked by using the is_marked_callback. We can return
73 // it to the mutator as long as the GC is not preserving references.
74 IsHeapReferenceMarkedCallback* const is_marked_callback =
75 process_references_args_.is_marked_callback_;
76 if (LIKELY(is_marked_callback != nullptr)) {
77 // If it's null it means not marked, but it could become marked if the referent is reachable
78 // by finalizer referents. So we can not return in this case and must block. Otherwise, we
79 // can return it to the mutator as long as the GC is not preserving references, in which
80 // case only black nodes can be safely returned. If the GC is preserving references, the
81 // mutator could take a white field from a grey or white node and move it somewhere else
82 // in the heap causing corruption since this field would get swept.
83 if (is_marked_callback(referent_addr, process_references_args_.arg_)) {
84 if (!preserving_references_ ||
85 (LIKELY(!reference->IsFinalizerReferenceInstance()) && !reference->IsEnqueued())) {
86 return referent_addr->AsMirrorPtr();
87 }
88 }
89 }
90 condition_.WaitHoldingLocks(self);
91 }
92 return reference->GetReferent();
93 }
94
PreserveSoftReferenceCallback(mirror::HeapReference<mirror::Object> * obj,void * arg)95 bool ReferenceProcessor::PreserveSoftReferenceCallback(mirror::HeapReference<mirror::Object>* obj,
96 void* arg) {
97 auto* const args = reinterpret_cast<ProcessReferencesArgs*>(arg);
98 // TODO: Add smarter logic for preserving soft references.
99 mirror::Object* new_obj = args->mark_callback_(obj->AsMirrorPtr(), args->arg_);
100 DCHECK(new_obj != nullptr);
101 obj->Assign(new_obj);
102 return true;
103 }
104
StartPreservingReferences(Thread * self)105 void ReferenceProcessor::StartPreservingReferences(Thread* self) {
106 MutexLock mu(self, *Locks::reference_processor_lock_);
107 preserving_references_ = true;
108 }
109
StopPreservingReferences(Thread * self)110 void ReferenceProcessor::StopPreservingReferences(Thread* self) {
111 MutexLock mu(self, *Locks::reference_processor_lock_);
112 preserving_references_ = false;
113 // We are done preserving references, some people who are blocked may see a marked referent.
114 condition_.Broadcast(self);
115 }
116
117 // Process reference class instances and schedule finalizations.
ProcessReferences(bool concurrent,TimingLogger * timings,bool clear_soft_references,IsHeapReferenceMarkedCallback * is_marked_callback,MarkObjectCallback * mark_object_callback,ProcessMarkStackCallback * process_mark_stack_callback,void * arg)118 void ReferenceProcessor::ProcessReferences(bool concurrent, TimingLogger* timings,
119 bool clear_soft_references,
120 IsHeapReferenceMarkedCallback* is_marked_callback,
121 MarkObjectCallback* mark_object_callback,
122 ProcessMarkStackCallback* process_mark_stack_callback,
123 void* arg) {
124 TimingLogger::ScopedTiming t(concurrent ? __FUNCTION__ : "(Paused)ProcessReferences", timings);
125 Thread* self = Thread::Current();
126 {
127 MutexLock mu(self, *Locks::reference_processor_lock_);
128 process_references_args_.is_marked_callback_ = is_marked_callback;
129 process_references_args_.mark_callback_ = mark_object_callback;
130 process_references_args_.arg_ = arg;
131 CHECK_EQ(SlowPathEnabled(), concurrent) << "Slow path must be enabled iff concurrent";
132 }
133 // Unless required to clear soft references with white references, preserve some white referents.
134 if (!clear_soft_references) {
135 TimingLogger::ScopedTiming split(concurrent ? "ForwardSoftReferences" :
136 "(Paused)ForwardSoftReferences", timings);
137 if (concurrent) {
138 StartPreservingReferences(self);
139 }
140 soft_reference_queue_.ForwardSoftReferences(&PreserveSoftReferenceCallback,
141 &process_references_args_);
142 process_mark_stack_callback(arg);
143 if (concurrent) {
144 StopPreservingReferences(self);
145 }
146 }
147 // Clear all remaining soft and weak references with white referents.
148 soft_reference_queue_.ClearWhiteReferences(&cleared_references_, is_marked_callback, arg);
149 weak_reference_queue_.ClearWhiteReferences(&cleared_references_, is_marked_callback, arg);
150 {
151 TimingLogger::ScopedTiming t2(concurrent ? "EnqueueFinalizerReferences" :
152 "(Paused)EnqueueFinalizerReferences", timings);
153 if (concurrent) {
154 StartPreservingReferences(self);
155 }
156 // Preserve all white objects with finalize methods and schedule them for finalization.
157 finalizer_reference_queue_.EnqueueFinalizerReferences(&cleared_references_, is_marked_callback,
158 mark_object_callback, arg);
159 process_mark_stack_callback(arg);
160 if (concurrent) {
161 StopPreservingReferences(self);
162 }
163 }
164 // Clear all finalizer referent reachable soft and weak references with white referents.
165 soft_reference_queue_.ClearWhiteReferences(&cleared_references_, is_marked_callback, arg);
166 weak_reference_queue_.ClearWhiteReferences(&cleared_references_, is_marked_callback, arg);
167 // Clear all phantom references with white referents.
168 phantom_reference_queue_.ClearWhiteReferences(&cleared_references_, is_marked_callback, arg);
169 // At this point all reference queues other than the cleared references should be empty.
170 DCHECK(soft_reference_queue_.IsEmpty());
171 DCHECK(weak_reference_queue_.IsEmpty());
172 DCHECK(finalizer_reference_queue_.IsEmpty());
173 DCHECK(phantom_reference_queue_.IsEmpty());
174 {
175 MutexLock mu(self, *Locks::reference_processor_lock_);
176 // Need to always do this since the next GC may be concurrent. Doing this for only concurrent
177 // could result in a stale is_marked_callback_ being called before the reference processing
178 // starts since there is a small window of time where slow_path_enabled_ is enabled but the
179 // callback isn't yet set.
180 process_references_args_.is_marked_callback_ = nullptr;
181 if (concurrent) {
182 // Done processing, disable the slow path and broadcast to the waiters.
183 DisableSlowPath(self);
184 }
185 }
186 }
187
188 // Process the "referent" field in a java.lang.ref.Reference. If the referent has not yet been
189 // marked, put it on the appropriate list in the heap for later processing.
DelayReferenceReferent(mirror::Class * klass,mirror::Reference * ref,IsHeapReferenceMarkedCallback * is_marked_callback,void * arg)190 void ReferenceProcessor::DelayReferenceReferent(mirror::Class* klass, mirror::Reference* ref,
191 IsHeapReferenceMarkedCallback* is_marked_callback,
192 void* arg) {
193 // klass can be the class of the old object if the visitor already updated the class of ref.
194 DCHECK(klass != nullptr);
195 DCHECK(klass->IsTypeOfReferenceClass());
196 mirror::HeapReference<mirror::Object>* referent = ref->GetReferentReferenceAddr();
197 if (referent->AsMirrorPtr() != nullptr && !is_marked_callback(referent, arg)) {
198 Thread* self = Thread::Current();
199 // TODO: Remove these locks, and use atomic stacks for storing references?
200 // We need to check that the references haven't already been enqueued since we can end up
201 // scanning the same reference multiple times due to dirty cards.
202 if (klass->IsSoftReferenceClass()) {
203 soft_reference_queue_.AtomicEnqueueIfNotEnqueued(self, ref);
204 } else if (klass->IsWeakReferenceClass()) {
205 weak_reference_queue_.AtomicEnqueueIfNotEnqueued(self, ref);
206 } else if (klass->IsFinalizerReferenceClass()) {
207 finalizer_reference_queue_.AtomicEnqueueIfNotEnqueued(self, ref);
208 } else if (klass->IsPhantomReferenceClass()) {
209 phantom_reference_queue_.AtomicEnqueueIfNotEnqueued(self, ref);
210 } else {
211 LOG(FATAL) << "Invalid reference type " << PrettyClass(klass) << " " << std::hex
212 << klass->GetAccessFlags();
213 }
214 }
215 }
216
UpdateRoots(IsMarkedCallback * callback,void * arg)217 void ReferenceProcessor::UpdateRoots(IsMarkedCallback* callback, void* arg) {
218 cleared_references_.UpdateRoots(callback, arg);
219 }
220
221 class ClearedReferenceTask : public HeapTask {
222 public:
ClearedReferenceTask(jobject cleared_references)223 explicit ClearedReferenceTask(jobject cleared_references)
224 : HeapTask(NanoTime()), cleared_references_(cleared_references) {
225 }
Run(Thread * thread)226 virtual void Run(Thread* thread) {
227 ScopedObjectAccess soa(thread);
228 jvalue args[1];
229 args[0].l = cleared_references_;
230 InvokeWithJValues(soa, nullptr, WellKnownClasses::java_lang_ref_ReferenceQueue_add, args);
231 soa.Env()->DeleteGlobalRef(cleared_references_);
232 }
233
234 private:
235 const jobject cleared_references_;
236 };
237
EnqueueClearedReferences(Thread * self)238 void ReferenceProcessor::EnqueueClearedReferences(Thread* self) {
239 Locks::mutator_lock_->AssertNotHeld(self);
240 // When a runtime isn't started there are no reference queues to care about so ignore.
241 if (!cleared_references_.IsEmpty()) {
242 if (LIKELY(Runtime::Current()->IsStarted())) {
243 jobject cleared_references;
244 {
245 ReaderMutexLock mu(self, *Locks::mutator_lock_);
246 cleared_references = self->GetJniEnv()->vm->AddGlobalRef(
247 self, cleared_references_.GetList());
248 }
249 if (kAsyncReferenceQueueAdd) {
250 // TODO: This can cause RunFinalization to terminate before newly freed objects are
251 // finalized since they may not be enqueued by the time RunFinalization starts.
252 Runtime::Current()->GetHeap()->GetTaskProcessor()->AddTask(
253 self, new ClearedReferenceTask(cleared_references));
254 } else {
255 ClearedReferenceTask task(cleared_references);
256 task.Run(self);
257 }
258 }
259 cleared_references_.Clear();
260 }
261 }
262
MakeCircularListIfUnenqueued(mirror::FinalizerReference * reference)263 bool ReferenceProcessor::MakeCircularListIfUnenqueued(mirror::FinalizerReference* reference) {
264 Thread* self = Thread::Current();
265 MutexLock mu(self, *Locks::reference_processor_lock_);
266 // Wait untul we are done processing reference.
267 while (SlowPathEnabled()) {
268 condition_.WaitHoldingLocks(self);
269 }
270 // At this point, since the sentinel of the reference is live, it is guaranteed to not be
271 // enqueued if we just finished processing references. Otherwise, we may be doing the main GC
272 // phase. Since we are holding the reference processor lock, it guarantees that reference
273 // processing can't begin. The GC could have just enqueued the reference one one of the internal
274 // GC queues, but since we hold the lock finalizer_reference_queue_ lock it also prevents this
275 // race.
276 MutexLock mu2(self, *Locks::reference_queue_finalizer_references_lock_);
277 if (!reference->IsEnqueued()) {
278 CHECK(reference->IsFinalizerReferenceInstance());
279 if (Runtime::Current()->IsActiveTransaction()) {
280 reference->SetPendingNext<true>(reference);
281 } else {
282 reference->SetPendingNext<false>(reference);
283 }
284 return true;
285 }
286 return false;
287 }
288
289 } // namespace gc
290 } // namespace art
291