1 /*
2 * Copyright (C) 2014 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "barrier.h"
18 #include "monitor.h"
19
20 #include <string>
21
22 #include "atomic.h"
23 #include "base/time_utils.h"
24 #include "class_linker-inl.h"
25 #include "common_runtime_test.h"
26 #include "handle_scope-inl.h"
27 #include "mirror/class-inl.h"
28 #include "mirror/string-inl.h" // Strings are easiest to allocate
29 #include "scoped_thread_state_change.h"
30 #include "thread_pool.h"
31
32 namespace art {
33
34 class MonitorTest : public CommonRuntimeTest {
35 protected:
SetUpRuntimeOptions(RuntimeOptions * options)36 void SetUpRuntimeOptions(RuntimeOptions *options) OVERRIDE {
37 // Use a smaller heap
38 for (std::pair<std::string, const void*>& pair : *options) {
39 if (pair.first.find("-Xmx") == 0) {
40 pair.first = "-Xmx4M"; // Smallest we can go.
41 }
42 }
43 options->push_back(std::make_pair("-Xint", nullptr));
44 }
45 public:
46 std::unique_ptr<Monitor> monitor_;
47 Handle<mirror::String> object_;
48 Handle<mirror::String> second_object_;
49 Handle<mirror::String> watchdog_object_;
50 // One exception test is for waiting on another Thread's lock. This is used to race-free &
51 // loop-free pass
52 Thread* thread_;
53 std::unique_ptr<Barrier> barrier_;
54 std::unique_ptr<Barrier> complete_barrier_;
55 bool completed_;
56 };
57
58 // Fill the heap.
59 static const size_t kMaxHandles = 1000000; // Use arbitrary large amount for now.
FillHeap(Thread * self,ClassLinker * class_linker,std::unique_ptr<StackHandleScope<kMaxHandles>> * hsp,std::vector<MutableHandle<mirror::Object>> * handles)60 static void FillHeap(Thread* self, ClassLinker* class_linker,
61 std::unique_ptr<StackHandleScope<kMaxHandles>>* hsp,
62 std::vector<MutableHandle<mirror::Object>>* handles)
63 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
64 Runtime::Current()->GetHeap()->SetIdealFootprint(1 * GB);
65
66 hsp->reset(new StackHandleScope<kMaxHandles>(self));
67 // Class java.lang.Object.
68 Handle<mirror::Class> c((*hsp)->NewHandle(class_linker->FindSystemClass(self,
69 "Ljava/lang/Object;")));
70 // Array helps to fill memory faster.
71 Handle<mirror::Class> ca((*hsp)->NewHandle(class_linker->FindSystemClass(self,
72 "[Ljava/lang/Object;")));
73
74 // Start allocating with 128K
75 size_t length = 128 * KB / 4;
76 while (length > 10) {
77 MutableHandle<mirror::Object> h((*hsp)->NewHandle<mirror::Object>(
78 mirror::ObjectArray<mirror::Object>::Alloc(self, ca.Get(), length / 4)));
79 if (self->IsExceptionPending() || h.Get() == nullptr) {
80 self->ClearException();
81
82 // Try a smaller length
83 length = length / 8;
84 // Use at most half the reported free space.
85 size_t mem = Runtime::Current()->GetHeap()->GetFreeMemory();
86 if (length * 8 > mem) {
87 length = mem / 8;
88 }
89 } else {
90 handles->push_back(h);
91 }
92 }
93
94 // Allocate simple objects till it fails.
95 while (!self->IsExceptionPending()) {
96 MutableHandle<mirror::Object> h = (*hsp)->NewHandle<mirror::Object>(c->AllocObject(self));
97 if (!self->IsExceptionPending() && h.Get() != nullptr) {
98 handles->push_back(h);
99 }
100 }
101 self->ClearException();
102 }
103
104 // Check that an exception can be thrown correctly.
105 // This test is potentially racy, but the timeout is long enough that it should work.
106
107 class CreateTask : public Task {
108 public:
CreateTask(MonitorTest * monitor_test,uint64_t initial_sleep,int64_t millis,bool expected)109 explicit CreateTask(MonitorTest* monitor_test, uint64_t initial_sleep, int64_t millis,
110 bool expected) :
111 monitor_test_(monitor_test), initial_sleep_(initial_sleep), millis_(millis),
112 expected_(expected) {}
113
Run(Thread * self)114 void Run(Thread* self) {
115 {
116 ScopedObjectAccess soa(self);
117
118 monitor_test_->thread_ = self; // Pass the Thread.
119 monitor_test_->object_.Get()->MonitorEnter(self); // Lock the object. This should transition
120 LockWord lock_after = monitor_test_->object_.Get()->GetLockWord(false); // it to thinLocked.
121 LockWord::LockState new_state = lock_after.GetState();
122
123 // Cannot use ASSERT only, as analysis thinks we'll keep holding the mutex.
124 if (LockWord::LockState::kThinLocked != new_state) {
125 monitor_test_->object_.Get()->MonitorExit(self); // To appease analysis.
126 ASSERT_EQ(LockWord::LockState::kThinLocked, new_state); // To fail the test.
127 return;
128 }
129
130 // Force a fat lock by running identity hashcode to fill up lock word.
131 monitor_test_->object_.Get()->IdentityHashCode();
132 LockWord lock_after2 = monitor_test_->object_.Get()->GetLockWord(false);
133 LockWord::LockState new_state2 = lock_after2.GetState();
134
135 // Cannot use ASSERT only, as analysis thinks we'll keep holding the mutex.
136 if (LockWord::LockState::kFatLocked != new_state2) {
137 monitor_test_->object_.Get()->MonitorExit(self); // To appease analysis.
138 ASSERT_EQ(LockWord::LockState::kFatLocked, new_state2); // To fail the test.
139 return;
140 }
141 } // Need to drop the mutator lock to use the barrier.
142
143 monitor_test_->barrier_->Wait(self); // Let the other thread know we're done.
144
145 {
146 ScopedObjectAccess soa(self);
147
148 // Give the other task a chance to do its thing.
149 NanoSleep(initial_sleep_ * 1000 * 1000);
150
151 // Now try to Wait on the Monitor.
152 Monitor::Wait(self, monitor_test_->object_.Get(), millis_, 0, true,
153 ThreadState::kTimedWaiting);
154
155 // Check the exception status against what we expect.
156 EXPECT_EQ(expected_, self->IsExceptionPending());
157 if (expected_) {
158 self->ClearException();
159 }
160 }
161
162 monitor_test_->complete_barrier_->Wait(self); // Wait for test completion.
163
164 {
165 ScopedObjectAccess soa(self);
166 monitor_test_->object_.Get()->MonitorExit(self); // Release the object. Appeases analysis.
167 }
168 }
169
Finalize()170 void Finalize() {
171 delete this;
172 }
173
174 private:
175 MonitorTest* monitor_test_;
176 uint64_t initial_sleep_;
177 int64_t millis_;
178 bool expected_;
179 };
180
181
182 class UseTask : public Task {
183 public:
UseTask(MonitorTest * monitor_test,uint64_t initial_sleep,int64_t millis,bool expected)184 UseTask(MonitorTest* monitor_test, uint64_t initial_sleep, int64_t millis, bool expected) :
185 monitor_test_(monitor_test), initial_sleep_(initial_sleep), millis_(millis),
186 expected_(expected) {}
187
Run(Thread * self)188 void Run(Thread* self) {
189 monitor_test_->barrier_->Wait(self); // Wait for the other thread to set up the monitor.
190
191 {
192 ScopedObjectAccess soa(self);
193
194 // Give the other task a chance to do its thing.
195 NanoSleep(initial_sleep_ * 1000 * 1000);
196
197 Monitor::Wait(self, monitor_test_->object_.Get(), millis_, 0, true,
198 ThreadState::kTimedWaiting);
199
200 // Check the exception status against what we expect.
201 EXPECT_EQ(expected_, self->IsExceptionPending());
202 if (expected_) {
203 self->ClearException();
204 }
205 }
206
207 monitor_test_->complete_barrier_->Wait(self); // Wait for test completion.
208 }
209
Finalize()210 void Finalize() {
211 delete this;
212 }
213
214 private:
215 MonitorTest* monitor_test_;
216 uint64_t initial_sleep_;
217 int64_t millis_;
218 bool expected_;
219 };
220
221 class InterruptTask : public Task {
222 public:
InterruptTask(MonitorTest * monitor_test,uint64_t initial_sleep,uint64_t millis)223 InterruptTask(MonitorTest* monitor_test, uint64_t initial_sleep, uint64_t millis) :
224 monitor_test_(monitor_test), initial_sleep_(initial_sleep), millis_(millis) {}
225
Run(Thread * self)226 void Run(Thread* self) {
227 monitor_test_->barrier_->Wait(self); // Wait for the other thread to set up the monitor.
228
229 {
230 ScopedObjectAccess soa(self);
231
232 // Give the other task a chance to do its thing.
233 NanoSleep(initial_sleep_ * 1000 * 1000);
234
235 // Interrupt the other thread.
236 monitor_test_->thread_->Interrupt(self);
237
238 // Give it some more time to get to the exception code.
239 NanoSleep(millis_ * 1000 * 1000);
240
241 // Now try to Wait.
242 Monitor::Wait(self, monitor_test_->object_.Get(), 10, 0, true,
243 ThreadState::kTimedWaiting);
244
245 // No check here, as depending on scheduling we may or may not fail.
246 if (self->IsExceptionPending()) {
247 self->ClearException();
248 }
249 }
250
251 monitor_test_->complete_barrier_->Wait(self); // Wait for test completion.
252 }
253
Finalize()254 void Finalize() {
255 delete this;
256 }
257
258 private:
259 MonitorTest* monitor_test_;
260 uint64_t initial_sleep_;
261 uint64_t millis_;
262 };
263
264 class WatchdogTask : public Task {
265 public:
WatchdogTask(MonitorTest * monitor_test)266 explicit WatchdogTask(MonitorTest* monitor_test) : monitor_test_(monitor_test) {}
267
Run(Thread * self)268 void Run(Thread* self) {
269 ScopedObjectAccess soa(self);
270
271 monitor_test_->watchdog_object_.Get()->MonitorEnter(self); // Lock the object.
272
273 monitor_test_->watchdog_object_.Get()->Wait(self, 30 * 1000, 0); // Wait for 30s, or being
274 // woken up.
275
276 monitor_test_->watchdog_object_.Get()->MonitorExit(self); // Release the lock.
277
278 if (!monitor_test_->completed_) {
279 LOG(FATAL) << "Watchdog timeout!";
280 }
281 }
282
Finalize()283 void Finalize() {
284 delete this;
285 }
286
287 private:
288 MonitorTest* monitor_test_;
289 };
290
CommonWaitSetup(MonitorTest * test,ClassLinker * class_linker,uint64_t create_sleep,int64_t c_millis,bool c_expected,bool interrupt,uint64_t use_sleep,int64_t u_millis,bool u_expected,const char * pool_name)291 static void CommonWaitSetup(MonitorTest* test, ClassLinker* class_linker, uint64_t create_sleep,
292 int64_t c_millis, bool c_expected, bool interrupt, uint64_t use_sleep,
293 int64_t u_millis, bool u_expected, const char* pool_name) {
294 // First create the object we lock. String is easiest.
295 StackHandleScope<3> hs(Thread::Current());
296 {
297 ScopedObjectAccess soa(Thread::Current());
298 test->object_ = hs.NewHandle(mirror::String::AllocFromModifiedUtf8(Thread::Current(),
299 "hello, world!"));
300 test->watchdog_object_ = hs.NewHandle(mirror::String::AllocFromModifiedUtf8(Thread::Current(),
301 "hello, world!"));
302 }
303
304 // Create the barrier used to synchronize.
305 test->barrier_ = std::unique_ptr<Barrier>(new Barrier(2));
306 test->complete_barrier_ = std::unique_ptr<Barrier>(new Barrier(3));
307 test->completed_ = false;
308
309 // Fill the heap.
310 std::unique_ptr<StackHandleScope<kMaxHandles>> hsp;
311 std::vector<MutableHandle<mirror::Object>> handles;
312 {
313 Thread* self = Thread::Current();
314 ScopedObjectAccess soa(self);
315
316 // Our job: Fill the heap, then try Wait.
317 FillHeap(self, class_linker, &hsp, &handles);
318
319 // Now release everything.
320 auto it = handles.begin();
321 auto end = handles.end();
322
323 for ( ; it != end; ++it) {
324 it->Assign(nullptr);
325 }
326 } // Need to drop the mutator lock to allow barriers.
327
328 Thread* self = Thread::Current();
329 ThreadPool thread_pool(pool_name, 3);
330 thread_pool.AddTask(self, new CreateTask(test, create_sleep, c_millis, c_expected));
331 if (interrupt) {
332 thread_pool.AddTask(self, new InterruptTask(test, use_sleep, static_cast<uint64_t>(u_millis)));
333 } else {
334 thread_pool.AddTask(self, new UseTask(test, use_sleep, u_millis, u_expected));
335 }
336 thread_pool.AddTask(self, new WatchdogTask(test));
337 thread_pool.StartWorkers(self);
338
339 // Wait on completion barrier.
340 test->complete_barrier_->Wait(Thread::Current());
341 test->completed_ = true;
342
343 // Wake the watchdog.
344 {
345 ScopedObjectAccess soa(Thread::Current());
346
347 test->watchdog_object_.Get()->MonitorEnter(self); // Lock the object.
348 test->watchdog_object_.Get()->NotifyAll(self); // Wake up waiting parties.
349 test->watchdog_object_.Get()->MonitorExit(self); // Release the lock.
350 }
351
352 thread_pool.StopWorkers(self);
353 }
354
355
356 // First test: throwing an exception when trying to wait in Monitor with another thread.
TEST_F(MonitorTest,CheckExceptionsWait1)357 TEST_F(MonitorTest, CheckExceptionsWait1) {
358 // Make the CreateTask wait 10ms, the UseTask wait 10ms.
359 // => The use task will get the lock first and get to self == owner check.
360 // This will lead to OOM and monitor error messages in the log.
361 ScopedLogSeverity sls(LogSeverity::FATAL);
362 CommonWaitSetup(this, class_linker_, 10, 50, false, false, 2, 50, true,
363 "Monitor test thread pool 1");
364 }
365
366 // Second test: throwing an exception for invalid wait time.
TEST_F(MonitorTest,CheckExceptionsWait2)367 TEST_F(MonitorTest, CheckExceptionsWait2) {
368 // Make the CreateTask wait 0ms, the UseTask wait 10ms.
369 // => The create task will get the lock first and get to ms >= 0
370 // This will lead to OOM and monitor error messages in the log.
371 ScopedLogSeverity sls(LogSeverity::FATAL);
372 CommonWaitSetup(this, class_linker_, 0, -1, true, false, 10, 50, true,
373 "Monitor test thread pool 2");
374 }
375
376 // Third test: throwing an interrupted-exception.
TEST_F(MonitorTest,CheckExceptionsWait3)377 TEST_F(MonitorTest, CheckExceptionsWait3) {
378 // Make the CreateTask wait 0ms, then Wait for a long time. Make the InterruptTask wait 10ms,
379 // after which it will interrupt the create task and then wait another 10ms.
380 // => The create task will get to the interrupted-exception throw.
381 // This will lead to OOM and monitor error messages in the log.
382 ScopedLogSeverity sls(LogSeverity::FATAL);
383 CommonWaitSetup(this, class_linker_, 0, 500, true, true, 10, 50, true,
384 "Monitor test thread pool 3");
385 }
386
387 } // namespace art
388