1 /* s_erff.c -- float version of s_erf.c.
2  * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
3  */
4 
5 /*
6  * ====================================================
7  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
8  *
9  * Developed at SunPro, a Sun Microsystems, Inc. business.
10  * Permission to use, copy, modify, and distribute this
11  * software is freely granted, provided that this notice
12  * is preserved.
13  * ====================================================
14  */
15 
16 #include <sys/cdefs.h>
17 __FBSDID("$FreeBSD$");
18 
19 #include "math.h"
20 #include "math_private.h"
21 
22 /* XXX Prevent compilers from erroneously constant folding: */
23 static const volatile float tiny = 1e-30;
24 
25 static const float
26 half= 0.5,
27 one = 1,
28 two = 2,
29 erx = 8.42697144e-01,			/* 0x3f57bb00 */
30 /*
31  * In the domain [0, 2**-14], only the first term in the power series
32  * expansion of erf(x) is used.  The magnitude of the first neglected
33  * terms is less than 2**-42.
34  */
35 efx = 1.28379166e-01, /* 0x3e0375d4 */
36 efx8= 1.02703333e+00, /* 0x3f8375d4 */
37 /*
38  * Domain [0, 0.84375], range ~[-5.4419e-10, 5.5179e-10]:
39  * |(erf(x) - x)/x - pp(x)/qq(x)| < 2**-31
40  */
41 pp0  =  1.28379166e-01, /* 0x3e0375d4 */
42 pp1  = -3.36030394e-01, /* 0xbeac0c2d */
43 pp2  = -1.86261395e-03, /* 0xbaf422f4 */
44 qq1  =  3.12324315e-01, /* 0x3e9fe8f9 */
45 qq2  =  2.16070414e-02, /* 0x3cb10140 */
46 qq3  = -1.98859372e-03, /* 0xbb025311 */
47 /*
48  * Domain [0.84375, 1.25], range ~[-1.023e-9, 1.023e-9]:
49  * |(erf(x) - erx) - pa(x)/qa(x)| < 2**-31
50  */
51 pa0  =  3.65041046e-06, /* 0x3674f993 */
52 pa1  =  4.15109307e-01, /* 0x3ed48935 */
53 pa2  = -2.09395722e-01, /* 0xbe566bd5 */
54 pa3  =  8.67677554e-02, /* 0x3db1b34b */
55 qa1  =  4.95560974e-01, /* 0x3efdba2b */
56 qa2  =  3.71248513e-01, /* 0x3ebe1449 */
57 qa3  =  3.92478965e-02, /* 0x3d20c267 */
58 /*
59  * Domain [1.25,1/0.35], range ~[-4.821e-9, 4.927e-9]:
60  * |log(x*erfc(x)) + x**2 + 0.5625 - ra(x)/sa(x)| < 2**-28
61  */
62 ra0  = -9.88156721e-03, /* 0xbc21e64c */
63 ra1  = -5.43658376e-01, /* 0xbf0b2d32 */
64 ra2  = -1.66828310e+00, /* 0xbfd58a4d */
65 ra3  = -6.91554189e-01, /* 0xbf3109b2 */
66 sa1  =  4.48581553e+00, /* 0x408f8bcd */
67 sa2  =  4.10799170e+00, /* 0x408374ab */
68 sa3  =  5.53855181e-01, /* 0x3f0dc974 */
69 /*
70  * Domain [2.85715, 11], range ~[-1.484e-9, 1.505e-9]:
71  * |log(x*erfc(x)) + x**2 + 0.5625 - rb(x)/sb(x)| < 2**-30
72  */
73 rb0  = -9.86496918e-03, /* 0xbc21a0ae */
74 rb1  = -5.48049808e-01, /* 0xbf0c4cfe */
75 rb2  = -1.84115684e+00, /* 0xbfebab07 */
76 sb1  =  4.87132740e+00, /* 0x409be1ea */
77 sb2  =  3.04982710e+00, /* 0x4043305e */
78 sb3  = -7.61900663e-01; /* 0xbf430bec */
79 
80 float
erff(float x)81 erff(float x)
82 {
83 	int32_t hx,ix,i;
84 	float R,S,P,Q,s,y,z,r;
85 	GET_FLOAT_WORD(hx,x);
86 	ix = hx&0x7fffffff;
87 	if(ix>=0x7f800000) {		/* erff(nan)=nan */
88 	    i = ((u_int32_t)hx>>31)<<1;
89 	    return (float)(1-i)+one/x;	/* erff(+-inf)=+-1 */
90 	}
91 
92 	if(ix < 0x3f580000) {		/* |x|<0.84375 */
93 	    if(ix < 0x38800000) { 	/* |x|<2**-14 */
94 	        if (ix < 0x04000000)	/* |x|<0x1p-119 */
95 		    return (8*x+efx8*x)/8;	/* avoid spurious underflow */
96 		return x + efx*x;
97 	    }
98 	    z = x*x;
99 	    r = pp0+z*(pp1+z*pp2);
100 	    s = one+z*(qq1+z*(qq2+z*qq3));
101 	    y = r/s;
102 	    return x + x*y;
103 	}
104 	if(ix < 0x3fa00000) {		/* 0.84375 <= |x| < 1.25 */
105 	    s = fabsf(x)-one;
106 	    P = pa0+s*(pa1+s*(pa2+s*pa3));
107 	    Q = one+s*(qa1+s*(qa2+s*qa3));
108 	    if(hx>=0) return erx + P/Q; else return -erx - P/Q;
109 	}
110 	if (ix >= 0x40800000) {		/* inf>|x|>=4 */
111 	    if(hx>=0) return one-tiny; else return tiny-one;
112 	}
113 	x = fabsf(x);
114  	s = one/(x*x);
115 	if(ix< 0x4036db8c) {	/* |x| < 2.85715 ~ 1/0.35 */
116 	    R=ra0+s*(ra1+s*(ra2+s*ra3));
117 	    S=one+s*(sa1+s*(sa2+s*sa3));
118 	} else {	/* |x| >= 2.85715 ~ 1/0.35 */
119 	    R=rb0+s*(rb1+s*rb2);
120 	    S=one+s*(sb1+s*(sb2+s*sb3));
121 	}
122 	SET_FLOAT_WORD(z,hx&0xffffe000);
123 	r  = expf(-z*z-0.5625F)*expf((z-x)*(z+x)+R/S);
124 	if(hx>=0) return one-r/x; else return  r/x-one;
125 }
126 
127 float
erfcf(float x)128 erfcf(float x)
129 {
130 	int32_t hx,ix;
131 	float R,S,P,Q,s,y,z,r;
132 	GET_FLOAT_WORD(hx,x);
133 	ix = hx&0x7fffffff;
134 	if(ix>=0x7f800000) {			/* erfcf(nan)=nan */
135 						/* erfcf(+-inf)=0,2 */
136 	    return (float)(((u_int32_t)hx>>31)<<1)+one/x;
137 	}
138 
139 	if(ix < 0x3f580000) {		/* |x|<0.84375 */
140 	    if(ix < 0x33800000)  	/* |x|<2**-24 */
141 		return one-x;
142 	    z = x*x;
143 	    r = pp0+z*(pp1+z*pp2);
144 	    s = one+z*(qq1+z*(qq2+z*qq3));
145 	    y = r/s;
146 	    if(hx < 0x3e800000) {  	/* x<1/4 */
147 		return one-(x+x*y);
148 	    } else {
149 		r = x*y;
150 		r += (x-half);
151 	        return half - r ;
152 	    }
153 	}
154 	if(ix < 0x3fa00000) {		/* 0.84375 <= |x| < 1.25 */
155 	    s = fabsf(x)-one;
156 	    P = pa0+s*(pa1+s*(pa2+s*pa3));
157 	    Q = one+s*(qa1+s*(qa2+s*qa3));
158 	    if(hx>=0) {
159 	        z  = one-erx; return z - P/Q;
160 	    } else {
161 		z = erx+P/Q; return one+z;
162 	    }
163 	}
164 	if (ix < 0x41300000) {		/* |x|<11 */
165 	    x = fabsf(x);
166  	    s = one/(x*x);
167 	    if(ix< 0x4036db8c) {	/* |x| < 2.85715 ~ 1/.35 */
168 		R=ra0+s*(ra1+s*(ra2+s*ra3));
169 		S=one+s*(sa1+s*(sa2+s*sa3));
170 	    } else {			/* |x| >= 2.85715 ~ 1/.35 */
171 		if(hx<0&&ix>=0x40a00000) return two-tiny;/* x < -5 */
172 		R=rb0+s*(rb1+s*rb2);
173 		S=one+s*(sb1+s*(sb2+s*sb3));
174 	    }
175 	    SET_FLOAT_WORD(z,hx&0xffffe000);
176 	    r  = expf(-z*z-0.5625F)*expf((z-x)*(z+x)+R/S);
177 	    if(hx>0) return r/x; else return two-r/x;
178 	} else {
179 	    if(hx>0) return tiny*tiny; else return two-tiny;
180 	}
181 }
182