1page.title=Dalvik bytecode 2@jd:body 3 4<!-- 5 Copyright 2014 The Android Open Source Project 6 7 Licensed under the Apache License, Version 2.0 (the "License"); 8 you may not use this file except in compliance with the License. 9 You may obtain a copy of the License at 10 11 http://www.apache.org/licenses/LICENSE-2.0 12 13 Unless required by applicable law or agreed to in writing, software 14 distributed under the License is distributed on an "AS IS" BASIS, 15 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 16 See the License for the specific language governing permissions and 17 limitations under the License. 18--> 19<div id="qv-wrapper"> 20 <div id="qv"> 21 <h2>In this document</h2> 22 <ol id="auto-toc"> 23 </ol> 24 </div> 25</div> 26 27<h2 id="design">General design</h2> 28 29<ul> 30<li>The machine model and calling conventions are meant to approximately 31 imitate common real architectures and C-style calling conventions: 32 <ul> 33 <li>The machine is register-based, and frames are fixed in size upon creation. 34 Each frame consists of a particular number of registers (specified by 35 the method) as well as any adjunct data needed to execute the method, 36 such as (but not limited to) the program counter and a reference to the 37 <code>.dex</code> file that contains the method. 38 </li> 39 <li>When used for bit values (such as integers and floating point 40 numbers), registers are considered 32 bits wide. Adjacent register 41 pairs are used for 64-bit values. There is no alignment requirement 42 for register pairs. 43 </li> 44 <li>When used for object references, registers are considered wide enough 45 to hold exactly one such reference. 46 </li> 47 <li>In terms of bitwise representation, <code>(Object) null == (int) 48 0</code>. 49 </li> 50 <li>The <i>N</i> arguments to a method land in the last <i>N</i> registers 51 of the method's invocation frame, in order. Wide arguments consume 52 two registers. Instance methods are passed a <code>this</code> reference 53 as their first argument. 54 </li> 55 </ul> 56<li>The storage unit in the instruction stream is a 16-bit unsigned quantity. 57 Some bits in some instructions are ignored / must-be-zero. 58</li> 59<li>Instructions aren't gratuitously limited to a particular type. For 60 example, instructions that move 32-bit register values without interpretation 61 don't have to specify whether they are moving ints or floats. 62</li> 63<li>There are separately enumerated and indexed constant pools for 64 references to strings, types, fields, and methods. 65</li> 66<li>Bitwise literal data is represented in-line in the instruction stream.</li> 67<li>Because, in practice, it is uncommon for a method to need more than 68 16 registers, and because needing more than eight registers <i>is</i> 69 reasonably common, many instructions are limited to only addressing 70 the first 16 71 registers. When reasonably possible, instructions allow references to 72 up to the first 256 registers. In addition, some instructions have variants 73 that allow for much larger register counts, including a pair of catch-all 74 <code>move</code> instructions that can address registers in the range 75 <code>v0</code> – <code>v65535</code>. 76 In cases where an instruction variant isn't 77 available to address a desired register, it is expected that the register 78 contents get moved from the original register to a low register (before the 79 operation) and/or moved from a low result register to a high register 80 (after the operation). 81</li> 82<li>There are several "pseudo-instructions" that are used to hold 83 variable-length data payloads, which are referred to by regular 84 instructions (for example, 85 <code>fill-array-data</code>). Such instructions must never be 86 encountered during the normal flow of execution. In addition, the 87 instructions must be located on even-numbered bytecode offsets (that is, 88 4-byte aligned). In order to meet this requirement, dex generation tools 89 must emit an extra <code>nop</code> instruction as a spacer if such an 90 instruction would otherwise be unaligned. Finally, though not required, 91 it is expected that most tools will choose to emit these instructions at 92 the ends of methods, since otherwise it would likely be the case that 93 additional instructions would be needed to branch around them. 94</li> 95<li>When installed on a running system, some instructions may be altered, 96 changing their format, as an install-time static linking optimization. 97 This is to allow for faster execution once linkage is known. 98 See the associated 99 <a href="instruction-formats.html">instruction formats document</a> 100 for the suggested variants. The word "suggested" is used advisedly; 101 it is not mandatory to implement these. 102</li> 103<li>Human-syntax and mnemonics: 104 <ul> 105 <li>Dest-then-source ordering for arguments.</li> 106 <li>Some opcodes have a disambiguating name suffix to indicate the type(s) 107 they operate on: 108 <ul> 109 <li>Type-general 32-bit opcodes are unmarked.</li> 110 <li>Type-general 64-bit opcodes are suffixed with <code>-wide</code>.</li> 111 <li>Type-specific opcodes are suffixed with their type (or a 112 straightforward abbreviation), one of: <code>-boolean</code> 113 <code>-byte</code> <code>-char</code> <code>-short</code> 114 <code>-int</code> <code>-long</code> <code>-float</code> 115 <code>-double</code> <code>-object</code> <code>-string</code> 116 <code>-class</code> <code>-void</code>.</li> 117 </ul> 118 </li> 119 <li>Some opcodes have a disambiguating suffix to distinguish 120 otherwise-identical operations that have different instruction layouts 121 or options. These suffixes are separated from the main names with a slash 122 ("<code>/</code>") and mainly exist at all to make there be a one-to-one 123 mapping with static constants in the code that generates and interprets 124 executables (that is, to reduce ambiguity for humans). 125 </li> 126 <li>In the descriptions here, the width of a value (indicating, e.g., the 127 range of a constant or the number of registers possibly addressed) is 128 emphasized by the use of a character per four bits of width. 129 </li> 130 <li>For example, in the instruction 131 "<code>move-wide/from16 vAA, vBBBB</code>": 132 <ul> 133 <li>"<code>move</code>" is the base opcode, indicating the base operation 134 (move a register's value).</li> 135 <li>"<code>wide</code>" is the name suffix, indicating that it operates 136 on wide (64 bit) data.</li> 137 <li>"<code>from16</code>" is the opcode suffix, indicating a variant 138 that has a 16-bit register reference as a source.</li> 139 <li>"<code>vAA</code>" is the destination register (implied by the 140 operation; again, the rule is that destination arguments always come 141 first), which must be in the range <code>v0</code> – 142 <code>v255</code>.</li> 143 <li>"<code>vBBBB</code>" is the source register, which must be in the 144 range <code>v0</code> – <code>v65535</code>.</li> 145 </ul> 146 </li> 147 </ul> 148</li> 149<li>See the <a href="instruction-formats.html">instruction formats 150 document</a> for more details about the various instruction formats 151 (listed under "Op & Format") as well as details about the opcode 152 syntax. 153</li> 154<li>See the <a href="dex-format.html"><code>.dex</code> file format 155 document</a> for more details about where the bytecode fits into 156 the bigger picture. 157</li> 158</ul> 159 160<h2 id="instructions">Summary of bytecode set</h2> 161 162<table class="instruc"> 163<thead> 164<tr> 165 <th>Op & Format</th> 166 <th>Mnemonic / Syntax</th> 167 <th>Arguments</th> 168 <th>Description</th> 169</tr> 170</thead> 171<tbody> 172<tr> 173 <td>00 10x</td> 174 <td>nop</td> 175 <td> </td> 176 <td>Waste cycles. 177 <p><b>Note:</b> 178 Data-bearing pseudo-instructions are tagged with this opcode, in which 179 case the high-order byte of the opcode unit indicates the nature of 180 the data. See "<code>packed-switch-payload</code> Format", 181 "<code>sparse-switch-payload</code> Format", and 182 "<code>fill-array-data-payload</code> Format" below.</p> 183 </td> 184</tr> 185<tr> 186 <td>01 12x</td> 187 <td>move vA, vB</td> 188 <td><code>A:</code> destination register (4 bits)<br/> 189 <code>B:</code> source register (4 bits)</td> 190 <td>Move the contents of one non-object register to another.</td> 191</tr> 192<tr> 193 <td>02 22x</td> 194 <td>move/from16 vAA, vBBBB</td> 195 <td><code>A:</code> destination register (8 bits)<br/> 196 <code>B:</code> source register (16 bits)</td> 197 <td>Move the contents of one non-object register to another.</td> 198</tr> 199<tr> 200 <td>03 32x</td> 201 <td>move/16 vAAAA, vBBBB</td> 202 <td><code>A:</code> destination register (16 bits)<br/> 203 <code>B:</code> source register (16 bits)</td> 204 <td>Move the contents of one non-object register to another.</td> 205</tr> 206<tr> 207 <td>04 12x</td> 208 <td>move-wide vA, vB</td> 209 <td><code>A:</code> destination register pair (4 bits)<br/> 210 <code>B:</code> source register pair (4 bits)</td> 211 <td>Move the contents of one register-pair to another. 212 <p><b>Note:</b> 213 It is legal to move from <code>v<i>N</i></code> to either 214 <code>v<i>N-1</i></code> or <code>v<i>N+1</i></code>, so implementations 215 must arrange for both halves of a register pair to be read before 216 anything is written.</p> 217 </td> 218</tr> 219<tr> 220 <td>05 22x</td> 221 <td>move-wide/from16 vAA, vBBBB</td> 222 <td><code>A:</code> destination register pair (8 bits)<br/> 223 <code>B:</code> source register pair (16 bits)</td> 224 <td>Move the contents of one register-pair to another. 225 <p><b>Note:</b> 226 Implementation considerations are the same as <code>move-wide</code>, 227 above.</p> 228 </td> 229</tr> 230<tr> 231 <td>06 32x</td> 232 <td>move-wide/16 vAAAA, vBBBB</td> 233 <td><code>A:</code> destination register pair (16 bits)<br/> 234 <code>B:</code> source register pair (16 bits)</td> 235 <td>Move the contents of one register-pair to another. 236 <p><b>Note:</b> 237 Implementation considerations are the same as <code>move-wide</code>, 238 above.</p> 239 </td> 240</tr> 241<tr> 242 <td>07 12x</td> 243 <td>move-object vA, vB</td> 244 <td><code>A:</code> destination register (4 bits)<br/> 245 <code>B:</code> source register (4 bits)</td> 246 <td>Move the contents of one object-bearing register to another.</td> 247</tr> 248<tr> 249 <td>08 22x</td> 250 <td>move-object/from16 vAA, vBBBB</td> 251 <td><code>A:</code> destination register (8 bits)<br/> 252 <code>B:</code> source register (16 bits)</td> 253 <td>Move the contents of one object-bearing register to another.</td> 254</tr> 255<tr> 256 <td>09 32x</td> 257 <td>move-object/16 vAAAA, vBBBB</td> 258 <td><code>A:</code> destination register (16 bits)<br/> 259 <code>B:</code> source register (16 bits)</td> 260 <td>Move the contents of one object-bearing register to another.</td> 261</tr> 262<tr> 263 <td>0a 11x</td> 264 <td>move-result vAA</td> 265 <td><code>A:</code> destination register (8 bits)</td> 266 <td>Move the single-word non-object result of the most recent 267 <code>invoke-<i>kind</i></code> into the indicated register. 268 This must be done as the instruction immediately after an 269 <code>invoke-<i>kind</i></code> whose (single-word, non-object) result 270 is not to be ignored; anywhere else is invalid.</td> 271</tr> 272<tr> 273 <td>0b 11x</td> 274 <td>move-result-wide vAA</td> 275 <td><code>A:</code> destination register pair (8 bits)</td> 276 <td>Move the double-word result of the most recent 277 <code>invoke-<i>kind</i></code> into the indicated register pair. 278 This must be done as the instruction immediately after an 279 <code>invoke-<i>kind</i></code> whose (double-word) result 280 is not to be ignored; anywhere else is invalid.</td> 281</tr> 282<tr> 283 <td>0c 11x</td> 284 <td>move-result-object vAA</td> 285 <td><code>A:</code> destination register (8 bits)</td> 286 <td>Move the object result of the most recent <code>invoke-<i>kind</i></code> 287 into the indicated register. This must be done as the instruction 288 immediately after an <code>invoke-<i>kind</i></code> or 289 <code>filled-new-array</code> 290 whose (object) result is not to be ignored; anywhere else is invalid.</td> 291</tr> 292<tr> 293 <td>0d 11x</td> 294 <td>move-exception vAA</td> 295 <td><code>A:</code> destination register (8 bits)</td> 296 <td>Save a just-caught exception into the given register. This must 297 be the first instruction of any exception handler whose caught 298 exception is not to be ignored, and this instruction must <i>only</i> 299 ever occur as the first instruction of an exception handler; anywhere 300 else is invalid.</td> 301</tr> 302<tr> 303 <td>0e 10x</td> 304 <td>return-void</td> 305 <td> </td> 306 <td>Return from a <code>void</code> method.</td> 307</tr> 308<tr> 309 <td>0f 11x</td> 310 <td>return vAA</td> 311 <td><code>A:</code> return value register (8 bits)</td> 312 <td>Return from a single-width (32-bit) non-object value-returning 313 method. 314 </td> 315</tr> 316<tr> 317 <td>10 11x</td> 318 <td>return-wide vAA</td> 319 <td><code>A:</code> return value register-pair (8 bits)</td> 320 <td>Return from a double-width (64-bit) value-returning method.</td> 321</tr> 322<tr> 323 <td>11 11x</td> 324 <td>return-object vAA</td> 325 <td><code>A:</code> return value register (8 bits)</td> 326 <td>Return from an object-returning method.</td> 327</tr> 328<tr> 329 <td>12 11n</td> 330 <td>const/4 vA, #+B</td> 331 <td><code>A:</code> destination register (4 bits)<br/> 332 <code>B:</code> signed int (4 bits)</td> 333 <td>Move the given literal value (sign-extended to 32 bits) into 334 the specified register.</td> 335</tr> 336<tr> 337 <td>13 21s</td> 338 <td>const/16 vAA, #+BBBB</td> 339 <td><code>A:</code> destination register (8 bits)<br/> 340 <code>B:</code> signed int (16 bits)</td> 341 <td>Move the given literal value (sign-extended to 32 bits) into 342 the specified register.</td> 343</tr> 344<tr> 345 <td>14 31i</td> 346 <td>const vAA, #+BBBBBBBB</td> 347 <td><code>A:</code> destination register (8 bits)<br/> 348 <code>B:</code> arbitrary 32-bit constant</td> 349 <td>Move the given literal value into the specified register.</td> 350</tr> 351<tr> 352 <td>15 21h</td> 353 <td>const/high16 vAA, #+BBBB0000</td> 354 <td><code>A:</code> destination register (8 bits)<br/> 355 <code>B:</code> signed int (16 bits)</td> 356 <td>Move the given literal value (right-zero-extended to 32 bits) into 357 the specified register.</td> 358</tr> 359<tr> 360 <td>16 21s</td> 361 <td>const-wide/16 vAA, #+BBBB</td> 362 <td><code>A:</code> destination register (8 bits)<br/> 363 <code>B:</code> signed int (16 bits)</td> 364 <td>Move the given literal value (sign-extended to 64 bits) into 365 the specified register-pair.</td> 366</tr> 367<tr> 368 <td>17 31i</td> 369 <td>const-wide/32 vAA, #+BBBBBBBB</td> 370 <td><code>A:</code> destination register (8 bits)<br/> 371 <code>B:</code> signed int (32 bits)</td> 372 <td>Move the given literal value (sign-extended to 64 bits) into 373 the specified register-pair.</td> 374</tr> 375<tr> 376 <td>18 51l</td> 377 <td>const-wide vAA, #+BBBBBBBBBBBBBBBB</td> 378 <td><code>A:</code> destination register (8 bits)<br/> 379 <code>B:</code> arbitrary double-width (64-bit) constant</td> 380 <td>Move the given literal value into 381 the specified register-pair.</td> 382</tr> 383<tr> 384 <td>19 21h</td> 385 <td>const-wide/high16 vAA, #+BBBB000000000000</td> 386 <td><code>A:</code> destination register (8 bits)<br/> 387 <code>B:</code> signed int (16 bits)</td> 388 <td>Move the given literal value (right-zero-extended to 64 bits) into 389 the specified register-pair.</td> 390</tr> 391<tr> 392 <td>1a 21c</td> 393 <td>const-string vAA, string@BBBB</td> 394 <td><code>A:</code> destination register (8 bits)<br/> 395 <code>B:</code> string index</td> 396 <td>Move a reference to the string specified by the given index into the 397 specified register.</td> 398</tr> 399<tr> 400 <td>1b 31c</td> 401 <td>const-string/jumbo vAA, string@BBBBBBBB</td> 402 <td><code>A:</code> destination register (8 bits)<br/> 403 <code>B:</code> string index</td> 404 <td>Move a reference to the string specified by the given index into the 405 specified register.</td> 406</tr> 407<tr> 408 <td>1c 21c</td> 409 <td>const-class vAA, type@BBBB</td> 410 <td><code>A:</code> destination register (8 bits)<br/> 411 <code>B:</code> type index</td> 412 <td>Move a reference to the class specified by the given index into the 413 specified register. In the case where the indicated type is primitive, 414 this will store a reference to the primitive type's degenerate 415 class.</td> 416</tr> 417<tr> 418 <td>1d 11x</td> 419 <td>monitor-enter vAA</td> 420 <td><code>A:</code> reference-bearing register (8 bits)</td> 421 <td>Acquire the monitor for the indicated object.</td> 422</tr> 423<tr> 424 <td>1e 11x</td> 425 <td>monitor-exit vAA</td> 426 <td><code>A:</code> reference-bearing register (8 bits)</td> 427 <td>Release the monitor for the indicated object. 428 <p><b>Note:</b> 429 If this instruction needs to throw an exception, it must do 430 so as if the pc has already advanced past the instruction. 431 It may be useful to think of this as the instruction successfully 432 executing (in a sense), and the exception getting thrown <i>after</i> 433 the instruction but <i>before</i> the next one gets a chance to 434 run. This definition makes it possible for a method to use 435 a monitor cleanup catch-all (e.g., <code>finally</code>) block as 436 the monitor cleanup for that block itself, as a way to handle the 437 arbitrary exceptions that might get thrown due to the historical 438 implementation of <code>Thread.stop()</code>, while still managing 439 to have proper monitor hygiene.</p> 440 </td> 441</tr> 442<tr> 443 <td>1f 21c</td> 444 <td>check-cast vAA, type@BBBB</td> 445 <td><code>A:</code> reference-bearing register (8 bits)<br/> 446 <code>B:</code> type index (16 bits)</td> 447 <td>Throw a <code>ClassCastException</code> if the reference in the 448 given register cannot be cast to the indicated type. 449 <p><b>Note:</b> Since <code>A</code> must always be a reference 450 (and not a primitive value), this will necessarily fail at runtime 451 (that is, it will throw an exception) if <code>B</code> refers to a 452 primitive type.</p> 453 </td> 454</tr> 455<tr> 456 <td>20 22c</td> 457 <td>instance-of vA, vB, type@CCCC</td> 458 <td><code>A:</code> destination register (4 bits)<br/> 459 <code>B:</code> reference-bearing register (4 bits)<br/> 460 <code>C:</code> type index (16 bits)</td> 461 <td>Store in the given destination register <code>1</code> 462 if the indicated reference is an instance of the given type, 463 or <code>0</code> if not. 464 <p><b>Note:</b> Since <code>B</code> must always be a reference 465 (and not a primitive value), this will always result 466 in <code>0</code> being stored if <code>C</code> refers to a primitive 467 type.</td> 468</tr> 469<tr> 470 <td>21 12x</td> 471 <td>array-length vA, vB</td> 472 <td><code>A:</code> destination register (4 bits)<br/> 473 <code>B:</code> array reference-bearing register (4 bits)</td> 474 <td>Store in the given destination register the length of the indicated 475 array, in entries</td> 476</tr> 477<tr> 478 <td>22 21c</td> 479 <td>new-instance vAA, type@BBBB</td> 480 <td><code>A:</code> destination register (8 bits)<br/> 481 <code>B:</code> type index</td> 482 <td>Construct a new instance of the indicated type, storing a 483 reference to it in the destination. The type must refer to a 484 non-array class.</td> 485</tr> 486<tr> 487 <td>23 22c</td> 488 <td>new-array vA, vB, type@CCCC</td> 489 <td><code>A:</code> destination register (8 bits)<br/> 490 <code>B:</code> size register<br/> 491 <code>C:</code> type index</td> 492 <td>Construct a new array of the indicated type and size. The type 493 must be an array type.</td> 494</tr> 495<tr> 496 <td>24 35c</td> 497 <td>filled-new-array {vC, vD, vE, vF, vG}, type@BBBB</td> 498 <td> 499 <code>A:</code> array size and argument word count (4 bits)<br/> 500 <code>B:</code> type index (16 bits)<br/> 501 <code>C..G:</code> argument registers (4 bits each) 502 </td> 503 <td>Construct an array of the given type and size, filling it with the 504 supplied contents. The type must be an array type. The array's 505 contents must be single-word (that is, 506 no arrays of <code>long</code> or <code>double</code>, but reference 507 types are acceptable). The constructed 508 instance is stored as a "result" in the same way that the method invocation 509 instructions store their results, so the constructed instance must 510 be moved to a register with an immediately subsequent 511 <code>move-result-object</code> instruction (if it is to be used).</td> 512</tr> 513<tr> 514 <td>25 3rc</td> 515 <td>filled-new-array/range {vCCCC .. vNNNN}, type@BBBB</td> 516 <td><code>A:</code> array size and argument word count (8 bits)<br/> 517 <code>B:</code> type index (16 bits)<br/> 518 <code>C:</code> first argument register (16 bits)<br/> 519 <code>N = A + C - 1</code></td> 520 <td>Construct an array of the given type and size, filling it with 521 the supplied contents. Clarifications and restrictions are the same 522 as <code>filled-new-array</code>, described above.</td> 523</tr> 524<tr> 525 <td>26 31t</td> 526 <td>fill-array-data vAA, +BBBBBBBB <i>(with supplemental data as specified 527 below in "<code>fill-array-data-payload</code> Format")</i></td> 528 <td><code>A:</code> array reference (8 bits)<br/> 529 <code>B:</code> signed "branch" offset to table data pseudo-instruction 530 (32 bits) 531 </td> 532 <td>Fill the given array with the indicated data. The reference must be 533 to an array of primitives, and the data table must match it in type and 534 must contain no more elements than will fit in the array. That is, 535 the array may be larger than the table, and if so, only the initial 536 elements of the array are set, leaving the remainder alone. 537 </td> 538</tr> 539<tr> 540 <td>27 11x</td> 541 <td>throw vAA</td> 542 <td><code>A:</code> exception-bearing register (8 bits)<br/></td> 543 <td>Throw the indicated exception.</td> 544</tr> 545<tr> 546 <td>28 10t</td> 547 <td>goto +AA</td> 548 <td><code>A:</code> signed branch offset (8 bits)</td> 549 <td>Unconditionally jump to the indicated instruction. 550 <p><b>Note:</b> 551 The branch offset must not be <code>0</code>. (A spin 552 loop may be legally constructed either with <code>goto/32</code> or 553 by including a <code>nop</code> as a target before the branch.)</p> 554 </td> 555</tr> 556<tr> 557 <td>29 20t</td> 558 <td>goto/16 +AAAA</td> 559 <td><code>A:</code> signed branch offset (16 bits)<br/></td> 560 <td>Unconditionally jump to the indicated instruction. 561 <p><b>Note:</b> 562 The branch offset must not be <code>0</code>. (A spin 563 loop may be legally constructed either with <code>goto/32</code> or 564 by including a <code>nop</code> as a target before the branch.)</p> 565 </td> 566</tr> 567<tr> 568 <td>2a 30t</td> 569 <td>goto/32 +AAAAAAAA</td> 570 <td><code>A:</code> signed branch offset (32 bits)<br/></td> 571 <td>Unconditionally jump to the indicated instruction.</td> 572</tr> 573<tr> 574 <td>2b 31t</td> 575 <td>packed-switch vAA, +BBBBBBBB <i>(with supplemental data as 576 specified below in "<code>packed-switch-payload</code> Format")</i></td> 577 <td><code>A:</code> register to test<br/> 578 <code>B:</code> signed "branch" offset to table data pseudo-instruction 579 (32 bits) 580 </td> 581 <td>Jump to a new instruction based on the value in the 582 given register, using a table of offsets corresponding to each value 583 in a particular integral range, or fall through to the next 584 instruction if there is no match. 585 </td> 586</tr> 587<tr> 588 <td>2c 31t</td> 589 <td>sparse-switch vAA, +BBBBBBBB <i>(with supplemental data as 590 specified below in "<code>sparse-switch-payload</code> Format")</i></td> 591 <td><code>A:</code> register to test<br/> 592 <code>B:</code> signed "branch" offset to table data pseudo-instruction 593 (32 bits) 594 </td> 595 <td>Jump to a new instruction based on the value in the given 596 register, using an ordered table of value-offset pairs, or fall 597 through to the next instruction if there is no match. 598 </td> 599</tr> 600<tr> 601 <td>2d..31 23x</td> 602 <td>cmp<i>kind</i> vAA, vBB, vCC<br/> 603 2d: cmpl-float <i>(lt bias)</i><br/> 604 2e: cmpg-float <i>(gt bias)</i><br/> 605 2f: cmpl-double <i>(lt bias)</i><br/> 606 30: cmpg-double <i>(gt bias)</i><br/> 607 31: cmp-long 608 </td> 609 <td><code>A:</code> destination register (8 bits)<br/> 610 <code>B:</code> first source register or pair<br/> 611 <code>C:</code> second source register or pair</td> 612 <td>Perform the indicated floating point or <code>long</code> comparison, 613 setting <code>a</code> to <code>0</code> if <code>b == c</code>, 614 <code>1</code> if <code>b > c</code>, 615 or <code>-1</code> if <code>b < c</code>. 616 The "bias" listed for the floating point operations 617 indicates how <code>NaN</code> comparisons are treated: "gt bias" 618 instructions return <code>1</code> for <code>NaN</code> comparisons, 619 and "lt bias" instructions return <code>-1</code>. 620 <p>For example, to check to see if floating point 621 <code>x < y</code> it is advisable to use 622 <code>cmpg-float</code>; a result of <code>-1</code> indicates that 623 the test was true, and the other values indicate it was false either 624 due to a valid comparison or because one of the values was 625 <code>NaN</code>.</p> 626 </td> 627</tr> 628<tr> 629 <td>32..37 22t</td> 630 <td>if-<i>test</i> vA, vB, +CCCC<br/> 631 32: if-eq<br/> 632 33: if-ne<br/> 633 34: if-lt<br/> 634 35: if-ge<br/> 635 36: if-gt<br/> 636 37: if-le<br/> 637 </td> 638 <td><code>A:</code> first register to test (4 bits)<br/> 639 <code>B:</code> second register to test (4 bits)<br/> 640 <code>C:</code> signed branch offset (16 bits)</td> 641 <td>Branch to the given destination if the given two registers' values 642 compare as specified. 643 <p><b>Note:</b> 644 The branch offset must not be <code>0</code>. (A spin 645 loop may be legally constructed either by branching around a 646 backward <code>goto</code> or by including a <code>nop</code> as 647 a target before the branch.)</p> 648 </td> 649</tr> 650<tr> 651 <td>38..3d 21t</td> 652 <td>if-<i>test</i>z vAA, +BBBB<br/> 653 38: if-eqz<br/> 654 39: if-nez<br/> 655 3a: if-ltz<br/> 656 3b: if-gez<br/> 657 3c: if-gtz<br/> 658 3d: if-lez<br/> 659 </td> 660 <td><code>A:</code> register to test (8 bits)<br/> 661 <code>B:</code> signed branch offset (16 bits)</td> 662 <td>Branch to the given destination if the given register's value compares 663 with 0 as specified. 664 <p><b>Note:</b> 665 The branch offset must not be <code>0</code>. (A spin 666 loop may be legally constructed either by branching around a 667 backward <code>goto</code> or by including a <code>nop</code> as 668 a target before the branch.)</p> 669 </td> 670</tr> 671<tr> 672 <td>3e..43 10x</td> 673 <td><i>(unused)</i></td> 674 <td> </td> 675 <td><i>(unused)</i></td> 676</tr> 677<tr> 678 <td>44..51 23x</td> 679 <td><i>arrayop</i> vAA, vBB, vCC<br/> 680 44: aget<br/> 681 45: aget-wide<br/> 682 46: aget-object<br/> 683 47: aget-boolean<br/> 684 48: aget-byte<br/> 685 49: aget-char<br/> 686 4a: aget-short<br/> 687 4b: aput<br/> 688 4c: aput-wide<br/> 689 4d: aput-object<br/> 690 4e: aput-boolean<br/> 691 4f: aput-byte<br/> 692 50: aput-char<br/> 693 51: aput-short 694 </td> 695 <td><code>A:</code> value register or pair; may be source or dest 696 (8 bits)<br/> 697 <code>B:</code> array register (8 bits)<br/> 698 <code>C:</code> index register (8 bits)</td> 699 <td>Perform the identified array operation at the identified index of 700 the given array, loading or storing into the value register.</td> 701</tr> 702<tr> 703 <td>52..5f 22c</td> 704 <td>i<i>instanceop</i> vA, vB, field@CCCC<br/> 705 52: iget<br/> 706 53: iget-wide<br/> 707 54: iget-object<br/> 708 55: iget-boolean<br/> 709 56: iget-byte<br/> 710 57: iget-char<br/> 711 58: iget-short<br/> 712 59: iput<br/> 713 5a: iput-wide<br/> 714 5b: iput-object<br/> 715 5c: iput-boolean<br/> 716 5d: iput-byte<br/> 717 5e: iput-char<br/> 718 5f: iput-short 719 </td> 720 <td><code>A:</code> value register or pair; may be source or dest 721 (4 bits)<br/> 722 <code>B:</code> object register (4 bits)<br/> 723 <code>C:</code> instance field reference index (16 bits)</td> 724 <td>Perform the identified object instance field operation with 725 the identified field, loading or storing into the value register. 726 <p><b>Note:</b> These opcodes are reasonable candidates for static linking, 727 altering the field argument to be a more direct offset.</p> 728 </td> 729</tr> 730<tr> 731 <td>60..6d 21c</td> 732 <td>s<i>staticop</i> vAA, field@BBBB<br/> 733 60: sget<br/> 734 61: sget-wide<br/> 735 62: sget-object<br/> 736 63: sget-boolean<br/> 737 64: sget-byte<br/> 738 65: sget-char<br/> 739 66: sget-short<br/> 740 67: sput<br/> 741 68: sput-wide<br/> 742 69: sput-object<br/> 743 6a: sput-boolean<br/> 744 6b: sput-byte<br/> 745 6c: sput-char<br/> 746 6d: sput-short 747 </td> 748 <td><code>A:</code> value register or pair; may be source or dest 749 (8 bits)<br/> 750 <code>B:</code> static field reference index (16 bits)</td> 751 <td>Perform the identified object static field operation with the identified 752 static field, loading or storing into the value register. 753 <p><b>Note:</b> These opcodes are reasonable candidates for static linking, 754 altering the field argument to be a more direct offset.</p> 755 </td> 756</tr> 757<tr> 758 <td>6e..72 35c</td> 759 <td>invoke-<i>kind</i> {vC, vD, vE, vF, vG}, meth@BBBB<br/> 760 6e: invoke-virtual<br/> 761 6f: invoke-super<br/> 762 70: invoke-direct<br/> 763 71: invoke-static<br/> 764 72: invoke-interface 765 </td> 766 <td> 767 <code>A:</code> argument word count (4 bits)<br/> 768 <code>B:</code> method reference index (16 bits)<br/> 769 <code>C..G:</code> argument registers (4 bits each) 770 </td> 771 <td>Call the indicated method. The result (if any) may be stored 772 with an appropriate <code>move-result*</code> variant as the immediately 773 subsequent instruction. 774 <p><code>invoke-virtual</code> is used to invoke a normal virtual 775 method (a method that is not <code>private</code>, <code>static</code>, 776 or <code>final</code>, and is also not a constructor).</p> 777 <p><code>invoke-super</code> is used to invoke the closest superclass's 778 virtual method (as opposed to the one with the same <code>method_id</code> 779 in the calling class). The same method restrictions hold as for 780 <code>invoke-virtual</code>.</p> 781 <p><code>invoke-direct</code> is used to invoke a non-<code>static</code> 782 direct method (that is, an instance method that is by its nature 783 non-overridable, namely either a <code>private</code> instance method 784 or a constructor).</p> 785 <p><code>invoke-static</code> is used to invoke a <code>static</code> 786 method (which is always considered a direct method).</p> 787 <p><code>invoke-interface</code> is used to invoke an 788 <code>interface</code> method, that is, on an object whose concrete 789 class isn't known, using a <code>method_id</code> that refers to 790 an <code>interface</code>.</p> 791 <p><b>Note:</b> These opcodes are reasonable candidates for static linking, 792 altering the method argument to be a more direct offset 793 (or pair thereof).</p> 794 </td> 795</tr> 796<tr> 797 <td>73 10x</td> 798 <td><i>(unused)</i></td> 799 <td> </td> 800 <td><i>(unused)</i></td> 801</tr> 802<tr> 803 <td>74..78 3rc</td> 804 <td>invoke-<i>kind</i>/range {vCCCC .. vNNNN}, meth@BBBB<br/> 805 74: invoke-virtual/range<br/> 806 75: invoke-super/range<br/> 807 76: invoke-direct/range<br/> 808 77: invoke-static/range<br/> 809 78: invoke-interface/range 810 </td> 811 <td><code>A:</code> argument word count (8 bits)<br/> 812 <code>B:</code> method reference index (16 bits)<br/> 813 <code>C:</code> first argument register (16 bits)<br/> 814 <code>N = A + C - 1</code></td> 815 <td>Call the indicated method. See first <code>invoke-<i>kind</i></code> 816 description above for details, caveats, and suggestions. 817 </td> 818</tr> 819<tr> 820 <td>79..7a 10x</td> 821 <td><i>(unused)</i></td> 822 <td> </td> 823 <td><i>(unused)</i></td> 824</tr> 825<tr> 826 <td>7b..8f 12x</td> 827 <td><i>unop</i> vA, vB<br/> 828 7b: neg-int<br/> 829 7c: not-int<br/> 830 7d: neg-long<br/> 831 7e: not-long<br/> 832 7f: neg-float<br/> 833 80: neg-double<br/> 834 81: int-to-long<br/> 835 82: int-to-float<br/> 836 83: int-to-double<br/> 837 84: long-to-int<br/> 838 85: long-to-float<br/> 839 86: long-to-double<br/> 840 87: float-to-int<br/> 841 88: float-to-long<br/> 842 89: float-to-double<br/> 843 8a: double-to-int<br/> 844 8b: double-to-long<br/> 845 8c: double-to-float<br/> 846 8d: int-to-byte<br/> 847 8e: int-to-char<br/> 848 8f: int-to-short 849 </td> 850 <td><code>A:</code> destination register or pair (4 bits)<br/> 851 <code>B:</code> source register or pair (4 bits)</td> 852 <td>Perform the identified unary operation on the source register, 853 storing the result in the destination register.</td> 854</tr> 855 856<tr> 857 <td>90..af 23x</td> 858 <td><i>binop</i> vAA, vBB, vCC<br/> 859 90: add-int<br/> 860 91: sub-int<br/> 861 92: mul-int<br/> 862 93: div-int<br/> 863 94: rem-int<br/> 864 95: and-int<br/> 865 96: or-int<br/> 866 97: xor-int<br/> 867 98: shl-int<br/> 868 99: shr-int<br/> 869 9a: ushr-int<br/> 870 9b: add-long<br/> 871 9c: sub-long<br/> 872 9d: mul-long<br/> 873 9e: div-long<br/> 874 9f: rem-long<br/> 875 a0: and-long<br/> 876 a1: or-long<br/> 877 a2: xor-long<br/> 878 a3: shl-long<br/> 879 a4: shr-long<br/> 880 a5: ushr-long<br/> 881 a6: add-float<br/> 882 a7: sub-float<br/> 883 a8: mul-float<br/> 884 a9: div-float<br/> 885 aa: rem-float<br/> 886 ab: add-double<br/> 887 ac: sub-double<br/> 888 ad: mul-double<br/> 889 ae: div-double<br/> 890 af: rem-double 891 </td> 892 <td><code>A:</code> destination register or pair (8 bits)<br/> 893 <code>B:</code> first source register or pair (8 bits)<br/> 894 <code>C:</code> second source register or pair (8 bits)</td> 895 <td>Perform the identified binary operation on the two source registers, 896 storing the result in the destination register.</td> 897</tr> 898<tr> 899 <td>b0..cf 12x</td> 900 <td><i>binop</i>/2addr vA, vB<br/> 901 b0: add-int/2addr<br/> 902 b1: sub-int/2addr<br/> 903 b2: mul-int/2addr<br/> 904 b3: div-int/2addr<br/> 905 b4: rem-int/2addr<br/> 906 b5: and-int/2addr<br/> 907 b6: or-int/2addr<br/> 908 b7: xor-int/2addr<br/> 909 b8: shl-int/2addr<br/> 910 b9: shr-int/2addr<br/> 911 ba: ushr-int/2addr<br/> 912 bb: add-long/2addr<br/> 913 bc: sub-long/2addr<br/> 914 bd: mul-long/2addr<br/> 915 be: div-long/2addr<br/> 916 bf: rem-long/2addr<br/> 917 c0: and-long/2addr<br/> 918 c1: or-long/2addr<br/> 919 c2: xor-long/2addr<br/> 920 c3: shl-long/2addr<br/> 921 c4: shr-long/2addr<br/> 922 c5: ushr-long/2addr<br/> 923 c6: add-float/2addr<br/> 924 c7: sub-float/2addr<br/> 925 c8: mul-float/2addr<br/> 926 c9: div-float/2addr<br/> 927 ca: rem-float/2addr<br/> 928 cb: add-double/2addr<br/> 929 cc: sub-double/2addr<br/> 930 cd: mul-double/2addr<br/> 931 ce: div-double/2addr<br/> 932 cf: rem-double/2addr 933 </td> 934 <td><code>A:</code> destination and first source register or pair 935 (4 bits)<br/> 936 <code>B:</code> second source register or pair (4 bits)</td> 937 <td>Perform the identified binary operation on the two source registers, 938 storing the result in the first source register.</td> 939</tr> 940<tr> 941 <td>d0..d7 22s</td> 942 <td><i>binop</i>/lit16 vA, vB, #+CCCC<br/> 943 d0: add-int/lit16<br/> 944 d1: rsub-int (reverse subtract)<br/> 945 d2: mul-int/lit16<br/> 946 d3: div-int/lit16<br/> 947 d4: rem-int/lit16<br/> 948 d5: and-int/lit16<br/> 949 d6: or-int/lit16<br/> 950 d7: xor-int/lit16 951 </td> 952 <td><code>A:</code> destination register (4 bits)<br/> 953 <code>B:</code> source register (4 bits)<br/> 954 <code>C:</code> signed int constant (16 bits)</td> 955 <td>Perform the indicated binary op on the indicated register (first 956 argument) and literal value (second argument), storing the result in 957 the destination register. 958 <p><b>Note:</b> 959 <code>rsub-int</code> does not have a suffix since this version is the 960 main opcode of its family. Also, see below for details on its semantics. 961 </p> 962 </td> 963</tr> 964<tr> 965 <td>d8..e2 22b</td> 966 <td><i>binop</i>/lit8 vAA, vBB, #+CC<br/> 967 d8: add-int/lit8<br/> 968 d9: rsub-int/lit8<br/> 969 da: mul-int/lit8<br/> 970 db: div-int/lit8<br/> 971 dc: rem-int/lit8<br/> 972 dd: and-int/lit8<br/> 973 de: or-int/lit8<br/> 974 df: xor-int/lit8<br/> 975 e0: shl-int/lit8<br/> 976 e1: shr-int/lit8<br/> 977 e2: ushr-int/lit8 978 </td> 979 <td><code>A:</code> destination register (8 bits)<br/> 980 <code>B:</code> source register (8 bits)<br/> 981 <code>C:</code> signed int constant (8 bits)</td> 982 <td>Perform the indicated binary op on the indicated register (first 983 argument) and literal value (second argument), storing the result 984 in the destination register. 985 <p><b>Note:</b> See below for details on the semantics of 986 <code>rsub-int</code>.</p> 987 </td> 988</tr> 989<tr> 990 <td>e3..ff 10x</td> 991 <td><i>(unused)</i></td> 992 <td> </td> 993 <td><i>(unused)</i></td> 994</tr> 995</tbody> 996</table> 997 998<h2 id="packed-switch">packed-switch-payload format</h2> 999 1000<table class="supplement"> 1001<thead> 1002<tr> 1003 <th>Name</th> 1004 <th>Format</th> 1005 <th>Description</th> 1006</tr> 1007</thead> 1008<tbody> 1009<tr> 1010 <td>ident</td> 1011 <td>ushort = 0x0100</td> 1012 <td>identifying pseudo-opcode</td> 1013</tr> 1014<tr> 1015 <td>size</td> 1016 <td>ushort</td> 1017 <td>number of entries in the table</td> 1018</tr> 1019<tr> 1020 <td>first_key</td> 1021 <td>int</td> 1022 <td>first (and lowest) switch case value</td> 1023</tr> 1024<tr> 1025 <td>targets</td> 1026 <td>int[]</td> 1027 <td>list of <code>size</code> relative branch targets. The targets are 1028 relative to the address of the switch opcode, not of this table. 1029 </td> 1030</tr> 1031</tbody> 1032</table> 1033 1034<p><b>Note:</b> The total number of code units for an instance of this 1035table is <code>(size * 2) + 4</code>.</p> 1036 1037<h2 id="sparse-switch">sparse-switch-payload format</h2> 1038 1039<table class="supplement"> 1040<thead> 1041<tr> 1042 <th>Name</th> 1043 <th>Format</th> 1044 <th>Description</th> 1045</tr> 1046</thead> 1047<tbody> 1048<tr> 1049 <td>ident</td> 1050 <td>ushort = 0x0200</td> 1051 <td>identifying pseudo-opcode</td> 1052</tr> 1053<tr> 1054 <td>size</td> 1055 <td>ushort</td> 1056 <td>number of entries in the table</td> 1057</tr> 1058<tr> 1059 <td>keys</td> 1060 <td>int[]</td> 1061 <td>list of <code>size</code> key values, sorted low-to-high</td> 1062</tr> 1063<tr> 1064 <td>targets</td> 1065 <td>int[]</td> 1066 <td>list of <code>size</code> relative branch targets, each corresponding 1067 to the key value at the same index. The targets are 1068 relative to the address of the switch opcode, not of this table. 1069 </td> 1070</tr> 1071</tbody> 1072</table> 1073 1074<p><b>Note:</b> The total number of code units for an instance of this 1075table is <code>(size * 4) + 2</code>.</p> 1076 1077<h2 id="fill-array">fill-array-data-payload format</h2> 1078 1079<table class="supplement"> 1080<thead> 1081<tr> 1082 <th>Name</th> 1083 <th>Format</th> 1084 <th>Description</th> 1085</tr> 1086</thead> 1087<tbody> 1088<tr> 1089 <td>ident</td> 1090 <td>ushort = 0x0300</td> 1091 <td>identifying pseudo-opcode</td> 1092</tr> 1093<tr> 1094 <td>element_width</td> 1095 <td>ushort</td> 1096 <td>number of bytes in each element</td> 1097</tr> 1098<tr> 1099 <td>size</td> 1100 <td>uint</td> 1101 <td>number of elements in the table</td> 1102</tr> 1103<tr> 1104 <td>data</td> 1105 <td>ubyte[]</td> 1106 <td>data values</td> 1107</tr> 1108</tbody> 1109</table> 1110 1111<p><b>Note:</b> The total number of code units for an instance of this 1112table is <code>(size * element_width + 1) / 2 + 4</code>.</p> 1113 1114 1115<h2 id="math">Mathematical operation details</h2> 1116 1117<p><b>Note:</b> Floating point operations must follow IEEE 754 rules, using 1118round-to-nearest and gradual underflow, except where stated otherwise.</p> 1119 1120<table class="math"> 1121<thead> 1122<tr> 1123 <th>Opcode</th> 1124 <th>C Semantics</th> 1125 <th>Notes</th> 1126</tr> 1127</thead> 1128<tbody> 1129<tr> 1130 <td>neg-int</td> 1131 <td>int32 a;<br/> 1132 int32 result = -a; 1133 </td> 1134 <td>Unary twos-complement.</td> 1135</tr> 1136<tr> 1137 <td>not-int</td> 1138 <td>int32 a;<br/> 1139 int32 result = ~a; 1140 </td> 1141 <td>Unary ones-complement.</td> 1142</tr> 1143<tr> 1144 <td>neg-long</td> 1145 <td>int64 a;<br/> 1146 int64 result = -a; 1147 </td> 1148 <td>Unary twos-complement.</td> 1149</tr> 1150<tr> 1151 <td>not-long</td> 1152 <td>int64 a;<br/> 1153 int64 result = ~a; 1154 </td> 1155 <td>Unary ones-complement.</td> 1156</tr> 1157<tr> 1158 <td>neg-float</td> 1159 <td>float a;<br/> 1160 float result = -a; 1161 </td> 1162 <td>Floating point negation.</td> 1163</tr> 1164<tr> 1165 <td>neg-double</td> 1166 <td>double a;<br/> 1167 double result = -a; 1168 </td> 1169 <td>Floating point negation.</td> 1170</tr> 1171<tr> 1172 <td>int-to-long</td> 1173 <td>int32 a;<br/> 1174 int64 result = (int64) a; 1175 </td> 1176 <td>Sign extension of <code>int32</code> into <code>int64</code>.</td> 1177</tr> 1178<tr> 1179 <td>int-to-float</td> 1180 <td>int32 a;<br/> 1181 float result = (float) a; 1182 </td> 1183 <td>Conversion of <code>int32</code> to <code>float</code>, using 1184 round-to-nearest. This loses precision for some values. 1185 </td> 1186</tr> 1187<tr> 1188 <td>int-to-double</td> 1189 <td>int32 a;<br/> 1190 double result = (double) a; 1191 </td> 1192 <td>Conversion of <code>int32</code> to <code>double</code>.</td> 1193</tr> 1194<tr> 1195 <td>long-to-int</td> 1196 <td>int64 a;<br/> 1197 int32 result = (int32) a; 1198 </td> 1199 <td>Truncation of <code>int64</code> into <code>int32</code>.</td> 1200</tr> 1201<tr> 1202 <td>long-to-float</td> 1203 <td>int64 a;<br/> 1204 float result = (float) a; 1205 </td> 1206 <td>Conversion of <code>int64</code> to <code>float</code>, using 1207 round-to-nearest. This loses precision for some values. 1208 </td> 1209</tr> 1210<tr> 1211 <td>long-to-double</td> 1212 <td>int64 a;<br/> 1213 double result = (double) a; 1214 </td> 1215 <td>Conversion of <code>int64</code> to <code>double</code>, using 1216 round-to-nearest. This loses precision for some values. 1217 </td> 1218</tr> 1219<tr> 1220 <td>float-to-int</td> 1221 <td>float a;<br/> 1222 int32 result = (int32) a; 1223 </td> 1224 <td>Conversion of <code>float</code> to <code>int32</code>, using 1225 round-toward-zero. <code>NaN</code> and <code>-0.0</code> (negative zero) 1226 convert to the integer <code>0</code>. Infinities and values with 1227 too large a magnitude to be represented get converted to either 1228 <code>0x7fffffff</code> or <code>-0x80000000</code> depending on sign. 1229 </td> 1230</tr> 1231<tr> 1232 <td>float-to-long</td> 1233 <td>float a;<br/> 1234 int64 result = (int64) a; 1235 </td> 1236 <td>Conversion of <code>float</code> to <code>int64</code>, using 1237 round-toward-zero. The same special case rules as for 1238 <code>float-to-int</code> apply here, except that out-of-range values 1239 get converted to either <code>0x7fffffffffffffff</code> or 1240 <code>-0x8000000000000000</code> depending on sign. 1241 </td> 1242</tr> 1243<tr> 1244 <td>float-to-double</td> 1245 <td>float a;<br/> 1246 double result = (double) a; 1247 </td> 1248 <td>Conversion of <code>float</code> to <code>double</code>, preserving 1249 the value exactly. 1250 </td> 1251</tr> 1252<tr> 1253 <td>double-to-int</td> 1254 <td>double a;<br/> 1255 int32 result = (int32) a; 1256 </td> 1257 <td>Conversion of <code>double</code> to <code>int32</code>, using 1258 round-toward-zero. The same special case rules as for 1259 <code>float-to-int</code> apply here. 1260 </td> 1261</tr> 1262<tr> 1263 <td>double-to-long</td> 1264 <td>double a;<br/> 1265 int64 result = (int64) a; 1266 </td> 1267 <td>Conversion of <code>double</code> to <code>int64</code>, using 1268 round-toward-zero. The same special case rules as for 1269 <code>float-to-long</code> apply here. 1270 </td> 1271</tr> 1272<tr> 1273 <td>double-to-float</td> 1274 <td>double a;<br/> 1275 float result = (float) a; 1276 </td> 1277 <td>Conversion of <code>double</code> to <code>float</code>, using 1278 round-to-nearest. This loses precision for some values. 1279 </td> 1280</tr> 1281<tr> 1282 <td>int-to-byte</td> 1283 <td>int32 a;<br/> 1284 int32 result = (a << 24) >> 24; 1285 </td> 1286 <td>Truncation of <code>int32</code> to <code>int8</code>, sign 1287 extending the result. 1288 </td> 1289</tr> 1290<tr> 1291 <td>int-to-char</td> 1292 <td>int32 a;<br/> 1293 int32 result = a & 0xffff; 1294 </td> 1295 <td>Truncation of <code>int32</code> to <code>uint16</code>, without 1296 sign extension. 1297 </td> 1298</tr> 1299<tr> 1300 <td>int-to-short</td> 1301 <td>int32 a;<br/> 1302 int32 result = (a << 16) >> 16; 1303 </td> 1304 <td>Truncation of <code>int32</code> to <code>int16</code>, sign 1305 extending the result. 1306 </td> 1307</tr> 1308<tr> 1309 <td>add-int</td> 1310 <td>int32 a, b;<br/> 1311 int32 result = a + b; 1312 </td> 1313 <td>Twos-complement addition.</td> 1314</tr> 1315<tr> 1316 <td>sub-int</td> 1317 <td>int32 a, b;<br/> 1318 int32 result = a - b; 1319 </td> 1320 <td>Twos-complement subtraction.</td> 1321</tr> 1322<tr> 1323 <td>rsub-int</td> 1324 <td>int32 a, b;<br/> 1325 int32 result = b - a; 1326 </td> 1327 <td>Twos-complement reverse subtraction.</td> 1328</tr> 1329<tr> 1330 <td>mul-int</td> 1331 <td>int32 a, b;<br/> 1332 int32 result = a * b; 1333 </td> 1334 <td>Twos-complement multiplication.</td> 1335</tr> 1336<tr> 1337 <td>div-int</td> 1338 <td>int32 a, b;<br/> 1339 int32 result = a / b; 1340 </td> 1341 <td>Twos-complement division, rounded towards zero (that is, truncated to 1342 integer). This throws <code>ArithmeticException</code> if 1343 <code>b == 0</code>. 1344 </td> 1345</tr> 1346<tr> 1347 <td>rem-int</td> 1348 <td>int32 a, b;<br/> 1349 int32 result = a % b; 1350 </td> 1351 <td>Twos-complement remainder after division. The sign of the result 1352 is the same as that of <code>a</code>, and it is more precisely 1353 defined as <code>result == a - (a / b) * b</code>. This throws 1354 <code>ArithmeticException</code> if <code>b == 0</code>. 1355 </td> 1356</tr> 1357<tr> 1358 <td>and-int</td> 1359 <td>int32 a, b;<br/> 1360 int32 result = a & b; 1361 </td> 1362 <td>Bitwise AND.</td> 1363</tr> 1364<tr> 1365 <td>or-int</td> 1366 <td>int32 a, b;<br/> 1367 int32 result = a | b; 1368 </td> 1369 <td>Bitwise OR.</td> 1370</tr> 1371<tr> 1372 <td>xor-int</td> 1373 <td>int32 a, b;<br/> 1374 int32 result = a ^ b; 1375 </td> 1376 <td>Bitwise XOR.</td> 1377</tr> 1378<tr> 1379 <td>shl-int</td> 1380 <td>int32 a, b;<br/> 1381 int32 result = a << (b & 0x1f); 1382 </td> 1383 <td>Bitwise shift left (with masked argument).</td> 1384</tr> 1385<tr> 1386 <td>shr-int</td> 1387 <td>int32 a, b;<br/> 1388 int32 result = a >> (b & 0x1f); 1389 </td> 1390 <td>Bitwise signed shift right (with masked argument).</td> 1391</tr> 1392<tr> 1393 <td>ushr-int</td> 1394 <td>uint32 a, b;<br/> 1395 int32 result = a >> (b & 0x1f); 1396 </td> 1397 <td>Bitwise unsigned shift right (with masked argument).</td> 1398</tr> 1399<tr> 1400 <td>add-long</td> 1401 <td>int64 a, b;<br/> 1402 int64 result = a + b; 1403 </td> 1404 <td>Twos-complement addition.</td> 1405</tr> 1406<tr> 1407 <td>sub-long</td> 1408 <td>int64 a, b;<br/> 1409 int64 result = a - b; 1410 </td> 1411 <td>Twos-complement subtraction.</td> 1412</tr> 1413<tr> 1414 <td>mul-long</td> 1415 <td>int64 a, b;<br/> 1416 int64 result = a * b; 1417 </td> 1418 <td>Twos-complement multiplication.</td> 1419</tr> 1420<tr> 1421 <td>div-long</td> 1422 <td>int64 a, b;<br/> 1423 int64 result = a / b; 1424 </td> 1425 <td>Twos-complement division, rounded towards zero (that is, truncated to 1426 integer). This throws <code>ArithmeticException</code> if 1427 <code>b == 0</code>. 1428 </td> 1429</tr> 1430<tr> 1431 <td>rem-long</td> 1432 <td>int64 a, b;<br/> 1433 int64 result = a % b; 1434 </td> 1435 <td>Twos-complement remainder after division. The sign of the result 1436 is the same as that of <code>a</code>, and it is more precisely 1437 defined as <code>result == a - (a / b) * b</code>. This throws 1438 <code>ArithmeticException</code> if <code>b == 0</code>. 1439 </td> 1440</tr> 1441<tr> 1442 <td>and-long</td> 1443 <td>int64 a, b;<br/> 1444 int64 result = a & b; 1445 </td> 1446 <td>Bitwise AND.</td> 1447</tr> 1448<tr> 1449 <td>or-long</td> 1450 <td>int64 a, b;<br/> 1451 int64 result = a | b; 1452 </td> 1453 <td>Bitwise OR.</td> 1454</tr> 1455<tr> 1456 <td>xor-long</td> 1457 <td>int64 a, b;<br/> 1458 int64 result = a ^ b; 1459 </td> 1460 <td>Bitwise XOR.</td> 1461</tr> 1462<tr> 1463 <td>shl-long</td> 1464 <td>int64 a, b;<br/> 1465 int64 result = a << (b & 0x3f); 1466 </td> 1467 <td>Bitwise shift left (with masked argument).</td> 1468</tr> 1469<tr> 1470 <td>shr-long</td> 1471 <td>int64 a, b;<br/> 1472 int64 result = a >> (b & 0x3f); 1473 </td> 1474 <td>Bitwise signed shift right (with masked argument).</td> 1475</tr> 1476<tr> 1477 <td>ushr-long</td> 1478 <td>uint64 a, b;<br/> 1479 int64 result = a >> (b & 0x3f); 1480 </td> 1481 <td>Bitwise unsigned shift right (with masked argument).</td> 1482</tr> 1483<tr> 1484 <td>add-float</td> 1485 <td>float a, b;<br/> 1486 float result = a + b; 1487 </td> 1488 <td>Floating point addition.</td> 1489</tr> 1490<tr> 1491 <td>sub-float</td> 1492 <td>float a, b;<br/> 1493 float result = a - b; 1494 </td> 1495 <td>Floating point subtraction.</td> 1496</tr> 1497<tr> 1498 <td>mul-float</td> 1499 <td>float a, b;<br/> 1500 float result = a * b; 1501 </td> 1502 <td>Floating point multiplication.</td> 1503</tr> 1504<tr> 1505 <td>div-float</td> 1506 <td>float a, b;<br/> 1507 float result = a / b; 1508 </td> 1509 <td>Floating point division.</td> 1510</tr> 1511<tr> 1512 <td>rem-float</td> 1513 <td>float a, b;<br/> 1514 float result = a % b; 1515 </td> 1516 <td>Floating point remainder after division. This function is different 1517 than IEEE 754 remainder and is defined as 1518 <code>result == a - roundTowardZero(a / b) * b</code>. 1519 </td> 1520</tr> 1521<tr> 1522 <td>add-double</td> 1523 <td>double a, b;<br/> 1524 double result = a + b; 1525 </td> 1526 <td>Floating point addition.</td> 1527</tr> 1528<tr> 1529 <td>sub-double</td> 1530 <td>double a, b;<br/> 1531 double result = a - b; 1532 </td> 1533 <td>Floating point subtraction.</td> 1534</tr> 1535<tr> 1536 <td>mul-double</td> 1537 <td>double a, b;<br/> 1538 double result = a * b; 1539 </td> 1540 <td>Floating point multiplication.</td> 1541</tr> 1542<tr> 1543 <td>div-double</td> 1544 <td>double a, b;<br/> 1545 double result = a / b; 1546 </td> 1547 <td>Floating point division.</td> 1548</tr> 1549<tr> 1550 <td>rem-double</td> 1551 <td>double a, b;<br/> 1552 double result = a % b; 1553 </td> 1554 <td>Floating point remainder after division. This function is different 1555 than IEEE 754 remainder and is defined as 1556 <code>result == a - roundTowardZero(a / b) * b</code>. 1557 </td> 1558</tr> 1559</tbody> 1560</table> 1561