1page.title=Power Profiles for Android 2@jd:body 3 4<!-- 5 Copyright 2015 The Android Open Source Project 6 7 Licensed under the Apache License, Version 2.0 (the "License"); 8 you may not use this file except in compliance with the License. 9 You may obtain a copy of the License at 10 11 http://www.apache.org/licenses/LICENSE-2.0 12 13 Unless required by applicable law or agreed to in writing, software 14 distributed under the License is distributed on an "AS IS" BASIS, 15 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 16 See the License for the specific language governing permissions and 17 limitations under the License. 18--> 19<div id="qv-wrapper"> 20 <div id="qv"> 21 <h2>In this document</h2> 22 <ol id="auto-toc"></ol> 23 </div> 24</div> 25 26<p>Battery usage information is derived from battery usage statistics and power profile values.</p> 27 28<h2 id="usage-statistics">Battery Usage Statistics</h2> 29 30<p>The framework automatically determines battery usage statistics by tracking how long device 31components spend in different states. As components (Wi-Fi chipset, cellular radio, Bluetooth, GPS, 32display, CPU) change states (OFF/ON, idle/full power, low/high brightness, etc.), the controlling 33service reports to the framework BatteryStats service. BatteryStats collects information over time and 34stores it for use across reboots. The service doesn’t track battery current draw directly, 35but instead collects timing information that can be used to approximate battery 36consumption by different components.</p> 37 38<p>The framework gathers statistics using the following methods:</p> 39 40<ul> 41<li><strong>Push</strong>. Services aware of component changes push state changes to the 42BatteryStats service.</li> 43<li><strong>Pull</strong>. For components such as the CPU usage by apps, the framework automatically 44pulls the data at transition points (such as starting or stopping an activity) to take a 45snapshot.</li> 46</ul> 47 48<p>Resource consumption is associated with the application using the resource. When multiple 49applications simultaneously use a resource (such as wakelocks that prevent the system from 50suspending), the framework spreads consumption across those applications, although not necessarily 51equally.</p> 52 53<p>To avoid losing usage statistics for a shutdown event, which may indicate battery power 54consumption problems (i.e. shutdown occurs because the battery reached zero remaining capacity), the 55framework flashes statistics approximately every 30 minutes.</p> 56 57<p>Battery usage statistics are handled entirely by the framework and do not require OEM 58modifications.</p> 59 60<h2 id="profile-values">Power Profile Values</h2> 61 62<p class="caution"><strong>Caution:</strong> Device manufacturers must 63provide a component power profile that defines the current consumption value 64for the component and the approximate battery drain caused by the component 65over time. This profile is defined in <a 66href="https://android.googlesource.com/platform/frameworks/base/+/master/core/res/res/xml/power_profile.xml">platform/frameworks/base/core/res/res/xml/power_profile.xml</a>. 67See the <a href="#power-values">Power Values</a> table for guidance on these 68settings.</p> 69 70<p>Within a power profile, power consumption is specified in milliamps (mA) of 71current draw at a nominal voltage and can be a fractional value specified in microamps (uA). The 72value should be the mA consumed at the battery and not a value applicable to a power rail that does 73not correspond to current consumed from the battery.</p> 74 75<p>For example, a display power profile specifies the mA of current required to keep the display on 76at minimum brightness and at maximum brightness. To determine the power cost (i.e the battery 77drained by the display component) of keeping the display on, the framework tracks the time spent at 78each brightness level, then multiplies those time intervals by an interpolated display brightness 79cost.</p> 80 81<p>The framework also multiplies the CPU time for each application by the mA required to run the CPU 82at a specific speed. This calculation establishes a comparative ranking of how much battery an 83application consumes by executing CPU code (time as the foreground app and total time including 84background activity are reported separately).</p> 85 86<h2 id="component-power">Measuring Component Power</h2> 87 88<p>You can determine individual component power consumption by comparing the current drawn by the 89device when the component is in the desired state (on, active, scanning, etc.) and when the 90component is off. Measure the average instantaneous current drawn on the device at a 91nominal voltage using an external power monitor, such as a bench power supply or specialized 92battery-monitoring tools (such as Monsoon Solution Inc. Power Monitor and Power Tool software).</p> 93 94<p class="note"> 95<strong>Note:</strong> Manufacturers often supply information about the current consumed by an 96individual component. Use this information if it accurately represents the current drawn from the 97device battery in practice. However, validate manufacturer-provided values before 98using those values in your device power profile.</p> 99 100<p>When measuring, ensure the device does not have a connection to an external charge source, such 101as a USB connection to a development host used when running Android Debug Bridge (adb). The device 102under test might draw current from the host, thus lowering measurements at the battery. Avoid USB 103On-The-Go (OTG) connections, as the OTG device might draw current from the device under test.</p> 104 105<p>Excluding the component being measured, the system should run at a constant level of power 106consumption to avoid inaccurate measurements caused by changes in other components. System 107activities that can introduce unwanted changes to power measurements include:</p> 108 109<ul> 110<li><strong>Cellular, Wi-Fi, and Bluetooth receive, transmit, or scanning activity</strong>. When 111not measuring cell radio power, set the device to airplane mode and enable Wi-Fi or Bluetooth as 112appropriate.</li> 113<li><strong>Screen on/off</strong>. Colors displayed while the screen is on can affect power draw on 114some screen technologies. Turn the screen off when measuring values for non-screen components.</li> 115<li><strong>System suspend/resume</strong>. A screen off state can trigger a system suspension, 116placing parts of the device in a low-power or off state. This can affect power consumption of the 117component being measured and introduce large variances in power readings as the system periodically 118resumes to send alarms, etc. For details, see <a href="#control-suspend">Controlling System 119Suspend</a>.</li> 120<li><strong>CPUs changing speed and entering/exiting low-power scheduler idle state</strong>. During 121normal operation, the system makes frequent adjustments to CPU speeds, the number of online CPU 122cores, and other system core states such as memory bus speed and voltages of power rails associated 123with CPUs and memory. During testing, these adjustments affect power measurements: 124 125<ul> 126<li>CPU speed scaling operations can reduce the amount of clock and voltage scaling of memory buses 127and other system core components.</li> 128<li>Scheduling activity can affect the percentage of the time CPUs spend in low-power idle states. 129For details on preventing these adjustments from occurring during testing, see 130<a href="#control-cpu">Controlling CPU Speeds</a>.</li> 131</ul> 132 133</li> 134</ul> 135 136<p>For example, Joe Droid wants to compute the <code>screen.on</code> value for a device. He enables 137airplane mode on the device, runs the device at a stable current state, holds the CPU speed constant 138, and uses a partial wakelock to prevent system suspend. Joe then turns the device screen off and 139takes a measurement (200mA). Next, Joe turns the device screen on at minimum brightness and takes 140another measurement (300mA). The <code>screen.on</code> value is 100mA (300 - 200).</p> 141 142<p>For components that don’t have a flat waveform of current consumption when active (such as 143cellular radio or Wi-Fi), measure the average current over time using a power monitoring tool.</p> 144 145<p>When using an external power source in place of the device battery, the system might experience 146problems due to an unconnected battery thermistor or integrated fuel gauge pins (i.e. an invalid 147reading for battery temperature or remaining battery capacity could shut down the kernel or Android 148system). Fake batteries can provide signals on thermistor or fuel gauge pins that mimic temperature 149and state of charge readings for a normal system, and may also provide convenient leads for 150connecting to external power supplies. Alternatively, you can modify the system to ignore the 151invalid data from the missing battery.</p> 152 153<h3 id="control-suspend">Controlling System Suspend</h3> 154 155<p>This section describes how to avoid system suspend state when you don’t want it to interfere with 156other measurements, and how to measure the power draw of system suspend state when you do want to 157measure it.</p> 158 159<h4>Preventing System Suspend</h4> 160 161<p>System suspend can introduce unwanted variance in power measurements and place system components 162in low-power states inappropriate for measuring active power use. To prevent the system from 163suspending while the screen is off, use a temporary partial wakelock. Using a USB cable, connect the 164device to a development host, then issue the following command:</p> 165 166<pre> 167$ adb shell "echo temporary > /sys/power/wake_lock" 168</pre> 169 170<p>While in wake_lock, the screen off state does not trigger a system suspend. (Remember to 171disconnect the USB cable from the device before measuring power consumption.)</p> 172 173<p>To remove the wakelock:</p> 174 175<pre> 176$ adb shell "echo temporary > /sys/power/wake_unlock" 177</pre> 178 179<h4>Measuring System Suspend</h4> 180 181<p>To measure the power draw during the system suspend state, measure the value of cpu.idle in the 182power profile. Before measuring: 183 184<ul> 185<li>Remove existing wakelocks (as described above).</li> 186<li>Place the device in airplane mode to avoid concurrent activity by the cellular radio, which 187might run on a processor separate from the SoC portions controlled by the system suspend.</li> 188<li>Ensure the system is in suspend state by: 189<ul> 190<li>Confirming current readings settle to a steady value. Readings should be within the expected 191range for the power consumption of the SoC suspend state plus the power consumption of system 192components that remain powered (such as the USB PHY).</li> 193<li>Checking the system console output.</li> 194<li>Watching for external indications of system status (such as an LED turning off when not in 195suspend).</li> 196</ul> 197</li> 198</ul> 199 200<h3 id="control-cpu">Controlling CPU Speeds</h3> 201 202<p>Active CPUs can be brought online or put offline, have their clock speeds and associated voltages 203changed (possibly also affecting memory bus speeds and other system core power states), and 204can enter lower power idle states while in the kernel idle loop. When measuring different CPU power 205states for the power profile, avoid the power draw variance when measuring other parameters. The 206power profile assumes all CPUs have the same available speeds and power characteristics.</p> 207 208<p>While measuring CPU power, or while holding CPU power constant to make other measurements, keep 209the number of CPUs brought online constant (such as having one CPU online and the rest 210offline/hotplugged out). Keeping all CPUs except one in scheduling idle may product acceptable 211results. Stopping the Android framework with <code>adb shell stop</code> can reduce system 212scheduling activity.</p> 213 214<p>You must specify the available CPU speeds for your device in the power profile cpu.speeds 215entry. To get a list of available CPU speeds, run:</p> 216 217<pre> 218adb shell cat /sys/devices/system/cpu/cpu0/cpufreq/stats/time_in_state 219</pre> 220 221<p>These speeds match the corresponding power measurements in value <code>cpu.active</code>.</p> 222 223<p>For platforms where number of cores brought online significantly affects power consumption, you 224might need to modify the cpufreq driver or governor for the platform. Most platforms support 225controlling CPU speed using the “userspace” cpufreq governor and using sysfs interfaces to 226set the speed. For example, to set speed for 200MHz on a system with only 1 CPU or all CPUs sharing 227a common cpufreq policy, use the system console or adb shell to run the following commands:</p> 228 229<pre> 230echo userspace > /sys/devices/system/cpu/cpu0/cpufreq/scaling_governor 231echo 200000 > /sys/devices/system/cpu/cpu0/cpufreq/scaling_max_freq 232echo 200000 > /sys/devices/system/cpu/cpu0/cpufreq/scaling_min_freq 233echo 200000 > /sys/devices/system/cpu/cpu0/cpufreq/scaling_setspeed 234cat /sys/devices/system/cpu/cpu0/cpufreq/scaling_cur_freq 235</pre> 236 237<p class="note"> 238<strong>Note</strong>: The exact commands differ depending on the platform cpufreq implementation. 239</p> 240 241<p>These commands ensure the new speed is not outside the allowed bounds, set the new speed, then 242print the speed at which the CPU is actually running (for verification). If the current 243minimum speed prior to execution is higher than 200000, you might need to reverse the order 244of the first two lines, or execute the first line again to drop the minimum speed prior to 245setting the maximum speed.</p> 246 247<p>To measure current consumed by a CPU running at various speeds, use the system console place the 248CPU in a CPU-bound loop using the command:</p> 249<pre> 250# while true; do true; done 251</pre> 252 253<p>Take the measurement while the loop executes.</p> 254 255<p>Some devices can limit maximum CPU speed while performing thermal throttling due to a high 256temperature measurement (i.e. after running CPUs at high speeds for sustained periods). Watch for 257such limiting, either using the system console output when taking measurements or by checking the 258kernel log after measuring.</p> 259 260<p>For the <code>cpu.awake</code> value, measure the power consumed when the system is not in 261suspend and not executing tasks. The CPU should be in a low-power scheduler <em>idle loop 262</em>, possibly executing an ARM Wait For Event instruction or in an SoC-specific low-power state 263with a fast-exit latency suitable for idle use.</p> 264 265<p>For the <code>cpu.active</code> value, power needs to be measured when the 266system is not in suspend mode and not executing tasks. One of the CPU (usually 267the primary CPU) should be running the task, and all the other CPUs should be in 268an idle state.</p> 269 270<h3 id="screen-power">Measuring Screen Power</h3> 271 272<p>When measuring screen on power, ensure that other devices normally turned on when the screen is 273enabled are also on. For example, if the touchscreen and display backlight would normally be on when 274the screen is on, ensure these devices are on when you measure to get a realistic example of screen 275on power usage.</p> 276 277<p>Some display technologies vary in power consumption according to the colors displayed, causing 278power measurements to vary considerably depending on what is displayed on the screen at the time of 279measurement. When measuring, ensure the screen is displaying something that has power 280characteristics of a realistic screen. Aim between the extremes of an all-black screen (which 281consumes the lowest power for some technologies) and an all-white screen. A common choice is a view 282of a schedule in the calendar app, which has a mix of white background and non-white elements.</p> 283 284<p>Measure screen on power at <em>minimum</em> and <em>maximum</em> display/backlight brightness. 285To set minimum brightness:</p> 286 287<ul> 288<li><strong>Use the Android UI</strong> (not recommended). Set the Settings > Display Brightness 289slider to the minimum display brightness. However, the Android UI allows setting brightness only to 290a minimum of 10-20% of the possible panel/backlight brightness, and does not allow setting 291brightness so low that the screen might not be visible without great effort.</li> 292<li><strong>Use a sysfs file</strong> (recommended). If available, use a sysfs file to control panel 293brightness all the way down to the minimum brightness supported by the hardware.</li> 294</ul> 295 296<p>Additionally, if the platform sysfs file enables turning the LCD panel, backlight, and 297touchscreen on and off, use the file to take measurements with the screen on and off. Otherwise, 298set a partial wakelock so the system does not suspend, then turn on and off the 299screen with the power button.</p> 300 301<h3 id="wifi-power">Measuring Wi-Fi Power</h3> 302 303<p>Perform Wi-Fi measurements on a relatively quiet network. Avoid introducing additional work 304processing high volumes of broadcast traffic that is unrelated to the activity being measured.</p> 305 306<p>The <code>wifi.on</code> value measures the power consumed when Wi-Fi is enabled but not actively 307transmitting or receiving. This is often measured as the delta between the current draw in 308system suspend (sleep) state with Wi-Fi enabled vs. disabled.</p> 309 310<p>The <code>wifi.scan</code> value measures the power consumed during a Wi-Fi scan for access 311points. Applications can trigger Wi-Fi scans using the WifiManager class 312<a href ="http://developer.android.com/reference/android/net/wifi/WifiManager.html"> 313<code>startScan()</code>API</a>. You can also open Settings > Wi-Fi, which performs access point 314scans every few seconds with an apparent jump in power consumption, but you must subtract screen 315power from these measurements.</p> 316 317<p class="note"> 318<strong>Note</strong>: Use a controlled setup (such as 319<a href="http://en.wikipedia.org/wiki/Iperf">iperf</a>) to generate network receive and transmit 320traffic.</p> 321 322<h2 id="device-power">Measuring Device Power</h2> 323 324<p>You can determine device power consumption for Android devices that include a battery fuel gauge 325such as a Summit SMB347 or Maxim MAX17050 (available on many Nexus devices). Use the in-system 326battery fuel gauge when external measurement equipment is not available or is inconvenient to 327connect to a device (such as in mobile usage).</p> 328 329<p>Measurements can include instantaneous current, remaining charge, battery capacity at test start 330and end, and more depending on the supported properties of the device (see below). For best results, 331perform device power measurements during long-running A/B tests that use the same device type with 332the same fuel gauge and same current sense resistor. Ensure the starting battery charge is the same 333for each device to avoid differing fuel gauge behavior at different points in the battery discharge 334curve.</p> 335 336<p>Even with identical test environments, measurements are not guaranteed to be of high absolute 337accuracy. However, most inaccuracies specific to the fuel gauge and sense resistor are consistent 338between test runs, making comparisons between identical devices useful. We recommend running 339multiple tests in different configurations to identify significant differences and relative power 340consumption between configurations.</p> 341 342<h3 id="power-consumption">Reading Power Consumption</h3> 343 344<p>To read power consumption data, insert calls to the API in your testing code.</p> 345 346<pre> 347import android.os.BatteryManager; 348import android.os.ServiceManager; 349import android.content.Context; 350BatteryManager mBatteryManager = 351(BatteryManager)Context.getSystemService(Context.BATTERY_SERVICE); 352Long energy = 353mBatteryManager.getLongProperty(BatteryManager.BATTERY_PROPERTY_ENERGY_COUNTER); 354Slog.i(TAG, "Remaining energy = " + energy + "nWh"); 355</pre> 356 357<h3 id="avail-props">Available Properties</h3> 358 359<p>Android supports the following battery fuel gauge properties:</p> 360 361<pre> 362BATTERY_PROPERTY_CHARGE_COUNTER Remaining battery capacity in microampere-hours 363BATTERY_PROPERTY_CURRENT_NOW Instantaneous battery current in microamperes 364BATTERY_PROPERTY_CURRENT_AVERAGE Average battery current in microamperes 365BATTERY_PROPERTY_CAPACITY Remaining battery capacity as an integer percentage 366BATTERY_PROPERTY_ENERGY_COUNTER Remaining energy in nanowatt-hours 367</pre> 368 369<p>Most properties are read from kernel power_supply subsystem attributes of similar names. 370However, the exact properties, resolution of property values, and update frequency 371available for a specific device depend on:</p> 372 373<ul> 374<li>Fuel gauge hardware, such as a Summit SMB347 or Maxim MAX17050.</li> 375<li>Fuel gauge-to-system connection, such as the value of external current sense resistors.</li> 376<li>Fuel gauge chip software configuration, such as values chosen for average current computation 377intervals in the kernel driver.</li> 378</ul> 379 380<p>For details, see the properties available for <a href="#nexus-devices">Nexus devices</a>.</p> 381 382<h3 id="maxim-fuel">Maxim Fuel Gauge</h3> 383 384<p>When determining battery state-of-charge over a long period of time, the Maxim fuel gauge 385(MAX17050, BC15) corrects for coulomb-counter offset measurements. For measurements made over a 386short period of time (such as power consumption metering tests), the fuel gauge does not make 387corrections, making the offset the primary source of error when current measurements are too small 388(although no amount of time can eliminate the offset error completely).</p> 389 390<p>For a typical 10mOhm sense resistor design, the offset current should be better than 1.5mA, 391meaning any measurement is +/-1.5mA (PCBoard layout can also affect this variation). For example, 392when measuring a large current (200mA) you can expect the following:</p> 393 394<ul> 395<li>2mA (1% gain error of 200mA due to fuel gauge gain error)</li> 396<li>+2mA (1% gain error of 200mA due to sense resistor error)</li> 397<li>+1.5mA (current sense offset error from fuel gauge)</li> 398</ul> 399 400<p>The total error is 5.5mA (2.75%). Compare this to a medium current (50mA) where the same error 401percentages give a total error of 7% or to a small current (15mA) where +/-1.5mA gives a total error 402of 10%.</p> 403 404<p>For best results, we recommend measuring greater than 20mA. Gain measurement errors are 405systematic and repeatable, enabling you to test a device in multiple modes and get clean relative 406measurements (with exceptions for the 1.5mA offset).</p> 407 408<p>For +/-100uA relative measurements, required measurement time depends on:</p> 409 410<ul> 411<li><b>ADC sampling noise</b>. The MAX17050 with its normal factory configuration produces +/-1.5mA 412sample-to-sample variation due to noise, with each sample delivered at 175.8ms. You can expect a 413rough +/-100uA for a 1 minute test window and a clean 3-sigma noise less than 100uA (or 1-sigma 414noise at 33uA) for a 6 minute test window.</li> 415<li><b>Sample Aliasing because of load variation</b>. Variation exaggerates errors, so for samples 416with variation inherent in the loading, consider using a longer test window.</li> 417</ul> 418 419<h3 id="nexus-devices">Supported Nexus Devices</h3> 420 421<h5 id="nexus-5">Nexus 5</h5> 422 423<table> 424<tbody> 425<tr> 426<th>Model</th> 427<td>Nexus 5</td> 428</tr> 429<tr> 430<th>Fuel Gauge</th> 431<td>Maxim MAX17048 fuel gauge (ModelGauge™, no coulomb counter)</td> 432</tr> 433<tr> 434<th>Properties</th> 435<td>BATTERY_PROPERTY_CAPACITY</td> 436</tr> 437<tr> 438<th>Measurements</th> 439<td>The fuel gauge does not support any measurements other than battery State Of Charge to a 440resolution of %/256 (1/256th of a percent of full battery capacity).</td> 441</tr> 442</tbody> 443</table> 444 445 446<h5 id="nexus-6">Nexus 6</h5> 447 448<table> 449<tbody> 450<tr> 451<th>Model</th> 452<td>Nexus 6</td> 453</tr> 454<tr> 455<th>Fuel Gauge</th> 456<td>Maxim MAX17050 fuel gauge (a coulomb counter with Maxim ModelGauge™ adjustments), and a 10mohm 457current sense resistor.</td> 458</tr> 459<tr> 460<th>Properties</th> 461<td>BATTERY_PROPERTY_CAPACITY<br> 462BATTERY_PROPERTY_CURRENT_NOW<br> 463BATTERY_PROPERTY_CURRENT_AVERAGE<br> 464BATTERY_PROPERTY_CHARGE_COUNTER<br> 465BATTERY_PROPERTY_ENERGY_COUNTER</td> 466</tr> 467<tr> 468<th>Measurements</th> 469<td>CURRENT_NOW resolution 156.25uA, update period is 175.8ms.<br> 470CURRENT_AVERAGE resolution 156.25uA, update period configurable 0.7s - 6.4h, default 11.25 secs.<br> 471CHARGE_COUNTER (accumulated current, non-extended precision) resolution is 500uAh (raw coulomb 472counter read, not adjusted by fuel gauge for coulomb counter offset, plus inputs from the ModelGauge 473m3 algorithm including empty compensation).<br> 474CHARGE_COUNTER_EXT (extended precision in kernel) resolution 8nAh.<br> 475ENERGY_COUNTER is CHARGE_COUNTER_EXT at nominal voltage of 3.7V.</td> 476</tr> 477</tbody> 478</table> 479 480 481<h5 id="nexus-9">Nexus 9</h5> 482 483<table> 484<tbody> 485<tr> 486<th>Model</th> 487<td>Nexus 9</td> 488</tr> 489<tr> 490<th>Fuel Gauge</th> 491<td>Maxim MAX17050 fuel gauge (a coulomb counter with Maxim ModelGauge™ adjustments), and a 10mohm 492current sense resistor.</td> 493</tr> 494<tr> 495<th>Properties</th> 496<td>BATTERY_PROPERTY_CAPACITY<br> 497BATTERY_PROPERTY_CURRENT_NOW<br> 498BATTERY_PROPERTY_CURRENT_AVERAGE<br> 499BATTERY_PROPERTY_CHARGE_COUNTER<br> 500BATTERY_PROPERTY_ENERGY_COUNTER</td> 501</tr> 502<tr> 503<th>Measurements</th> 504<td>CURRENT_NOW resolution 156.25uA, update period is 175.8ms.<br> 505CURRENT_AVERAGE resolution 156.25uA, update period configurable 0.7s - 6.4h, default 11.25 secs.<br> 506CHARGE_COUNTER (accumulated current, non-extended precision) resolution is 500uAh.<br> 507CHARGE_COUNTER_EXT (extended precision in kernel) resolution 8nAh.<br> 508ENERGY_COUNTER is CHARGE_COUNTER_EXT at nominal voltage of 3.7V.<br> 509Accumulated current update period 175.8ms.<br> 510ADC sampled at 175ms quantization with a 4ms sample period. Can adjust duty cycle.</td> 511</tr> 512</tbody> 513</table> 514 515 516<h5 id="nexus-10">Nexus 10</h5> 517 518<table> 519<tbody> 520<tr> 521<th>Model</th> 522<td>Nexus 10</td> 523</tr> 524<tr> 525<th>Fuel Gauge</th> 526<td>Dallas Semiconductor DS2784 fuel gauge (a coulomb counter), with a 10mohm current sense 527resistor.</td> 528</tr> 529<tr> 530<th>Properties</th> 531<td>BATTERY_PROPERTY_CAPACITY<br> 532BATTERY_PROPERTY_CURRENT_NOW<br> 533BATTERY_PROPERTY_CURRENT_AVERAGE<br> 534BATTERY_PROPERTY_CHARGE_COUNTER<br> 535BATTERY_PROPERTY_ENERGY_COUNTER</td> 536</tr> 537<tr> 538<th>Measurements</th> 539<td>Current measurement (instantaneous and average) resolution is 156.3uA.<br> 540CURRENT_NOW instantaneous current update period is 3.5 seconds.<br> 541CURRENT_AVERAGE update period is 28 seconds (not configurable).<br> 542CHARGE_COUNTER (accumulated current, non-extended precision) resolution is 625uAh.<br> 543CHARGE_COUNTER_EXT (extended precision in kernel) resolution is 144nAh.<br> 544ENERGY_COUNTER is CHARGE_COUNTER_EXT at nominal voltage of 3.7V.<br> 545Update period for all is 3.5 seconds.</td> 546</tr> 547</tbody> 548</table> 549 550 551<h2 id="viewing-usage">Viewing Battery Usage Data</h2> 552 553See <a href="{@docRoot}devices/tech/power/batterystats.html">Viewing Battery Usage Data</a>. 554 555<h2 id="power-values">Power Values</h2> 556 557<p>Device manufacturers must provide a component power profile defined in 558<em><device></em>/frameworks/base/core/res/res/xml/power_profile.xml. To 559determine these values, use hardware that measures the power being used by 560the device and perform the various operations for which information is needed. 561Measure the power use during those operations and compute the values (deriving 562differences from other base-line power uses as appropriate).</p> 563 564<table> 565<tr> 566 <th>Name</th> 567 <th>Description</th> 568 <th>Example Value</th> 569 <th>Notes</th> 570</tr> 571<tr> 572 <td>none</td> 573 <td>Nothing</td> 574 <td>0</td> 575 <td></td> 576</tr> 577 578<tr> 579 <td>screen.on</td> 580 <td>Additional power used when screen is turned on at minimum brightness.</td> 581 <td>200mA</td> 582 <td>Includes touch controller and display backlight. At 0 brightness, not the Android minimum which tends to be 10 or 20%.</td> 583</tr> 584 585<tr> 586 <td>screen.full</td> 587 <td>Additional power used when screen is at maximum brightness, compared to screen at minimum brightness.</td> 588 <td>100mA-300mA</td> 589 <td>A fraction of this value (based on screen brightness) is added to the screen.on value to compute the power usage of the screen.</td> 590</tr> 591 592<tr> 593 <td>bluetooth.active</td> 594 <td>Additional power used when playing audio through bluetooth A2DP.</td> 595 <td>14mA</td> 596 <td></td> 597</tr> 598 599<tr> 600 <td>bluetooth.on</td> 601 <td>Additional power used when bluetooth is turned on but idle.</td> 602 <td>1.4mA</td> 603 <td></td> 604</tr> 605 606<tr> 607 <td>wifi.on</td> 608 <td>Additional power used when Wi-Fi is turned on but not receiving, transmitting, or scanning.</td> 609 <td>2mA</td> 610 <td></td> 611</tr> 612 613<tr> 614 <td>wifi.active</td> 615 <td>Additional power used when transmitting or receiving over Wi-Fi.</td> 616 <td>31mA</td> 617 <td></td> 618</tr> 619 620<tr> 621 <td>wifi.scan</td> 622 <td>Additional power used when Wi-Fi is scanning for access points.</td> 623 <td>100mA</td> 624 <td></td> 625</tr> 626 627<tr> 628 <td>dsp.audio</td> 629 <td>Additional power used when audio decoding/encoding via DSP.</td> 630 <td>14.1mA</td> 631 <td>Reserved for future use.</td> 632</tr> 633 634 635<tr> 636 <td>dsp.video</td> 637 <td>Additional power used when video decoding via DSP.</td> 638 <td>54mA</td> 639 <td>Reserved for future use.</td> 640</tr> 641 642<tr> 643 <td>gps.on</td> 644 <td>Additional power used when GPS is acquiring a signal.</td> 645 <td>50mA</td> 646 <td></td> 647</tr> 648 649<tr> 650 <td>radio.active</td> 651 <td>Additional power used when cellular radio is transmitting/receiving.</td> 652 <td>100mA-300mA</td> 653 <td></td> 654</tr> 655 656<tr> 657 <td>radio.scanning</td> 658 <td>Additional power used when cellular radio is paging the tower.</td> 659 <td>1.2mA</td> 660 <td></td> 661</tr> 662 663<tr> 664 <td>radio.on</td> 665 <td>Additional power used when the cellular radio is on. Multi-value entry, one per signal strength (no signal, weak, moderate, strong).</td> 666 <td>1.2mA</td> 667 <td>Some radios boost power when they search for a cell tower and do not detect a signal. These 668 numbers could all be the same or decreasing with increasing signal strength. If you provide only 669 one value, the same value will be used for all strengths. If you provide 2 values, the first will 670 be for no-signal and the second for all other strengths, and so on.</td> 671</tr> 672 673<tr> 674 <td>cpu.speeds</td> 675 <td>Multi-value entry that lists each possible CPU speed in KHz.</td> 676 <td>125000KHz, 250000KHz, 500000KHz, 1000000KHz, 1500000KHz</td> 677 <td>The number and order of entries must correspond to the mA entries in cpu.active.</td> 678</tr> 679 680<tr> 681 <td>cpu.idle</td> 682 <td>Total power drawn by the system when CPUs (and the SoC) are in system suspend state.</td> 683 <td>3mA</td> 684 <td></td> 685</tr> 686 687<tr> 688 <td>cpu.awake</td> 689 <td>Additional power used when CPUs are in scheduling idle state (kernel idle loop); system is not 690 in system suspend state.</td> 691 <td>50mA</td> 692 <td>Your platform might have more than one idle state in use with differing 693levels of power consumption; choose a representative idle state for longer 694periods of scheduler idle (several milliseconds). Examine the power graph on 695your measurement equipment and choose samples where the CPU is at its lowest 696consumption, discarding higher samples where the CPU exited idle.</td> 697</tr> 698 699<tr> 700 <td>cpu.active</td> 701 <td>Additional power used by CPUs when running at different speeds.</td> 702 <td>100mA, 120mA, 140mA, 160mA, 200mA</td> 703 <td>Set the max speed in the kernel to each of the allowed speeds and peg the CPU at that 704speed. The number of entries here correspond to the number of entries in cpu.speeds, in the 705same order.</td> 706</tr> 707 708<tr> 709 <td>battery.capacity</td> 710 <td>The total battery capacity in mAh.</td> 711 <td>3000mAh</td> 712 <td></td> 713</tr> 714 715</table> 716 717<h3 id="sample">Sample file</h3> 718 719<pre> 720<!-- Most values are the incremental current used by a feature, in mA (measured at 721nominal voltage). OEMs must measure and provide actual values before shipping a device. 722Example real-world values are given, but are dependent on the platform 723and can vary significantly, so should be measured on the shipping platform with a power meter. 724--> 7250 726200 727160 72810 729<!-- Bluetooth stereo audio playback 10.0 mA --> 7301.3 7310.5 73230 733100 73412 73550 73650 73775 7381.1 739<!-- Strength 0 to BINS-1 (4) --> 7401.1 741 742<!-- Different CPU speeds as reported in 743/sys/devices/system/cpu/cpu0/cpufreq/stats/time_in_state --> 744 745250000 <!-- 250 MHz --> 746500000 <!-- 500 MHz --> 747750000 <!-- 750 MHz --> 7481000000 <!-- 1 GHz --> 7491200000 <!-- 1.2 GHz --> 750 751<!-- Power consumption when CPU is idle --> 7523.0 75350.1 754<!-- Power consumption at different speeds --> 755 756100 <!-- 250 MHz --> 757120 <!-- 500 MHz --> 758140 <!-- 750 MHz --> 759155 <!-- 1 GHz --> 760175 <!-- 1.2 GHz --> 761 762<!-- This is the battery capacity in mAh --> 7633000 764<!-- Battery capacity is 3000 mAH (at 3.6 Volts) --> 765 766</pre> 767