1
2 /* -----------------------------------------------------------------------------------------------------------
3 Software License for The Fraunhofer FDK AAC Codec Library for Android
4
5 � Copyright 1995 - 2013 Fraunhofer-Gesellschaft zur F�rderung der angewandten Forschung e.V.
6 All rights reserved.
7
8 1. INTRODUCTION
9 The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software that implements
10 the MPEG Advanced Audio Coding ("AAC") encoding and decoding scheme for digital audio.
11 This FDK AAC Codec software is intended to be used on a wide variety of Android devices.
12
13 AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient general perceptual
14 audio codecs. AAC-ELD is considered the best-performing full-bandwidth communications codec by
15 independent studies and is widely deployed. AAC has been standardized by ISO and IEC as part
16 of the MPEG specifications.
17
18 Patent licenses for necessary patent claims for the FDK AAC Codec (including those of Fraunhofer)
19 may be obtained through Via Licensing (www.vialicensing.com) or through the respective patent owners
20 individually for the purpose of encoding or decoding bit streams in products that are compliant with
21 the ISO/IEC MPEG audio standards. Please note that most manufacturers of Android devices already license
22 these patent claims through Via Licensing or directly from the patent owners, and therefore FDK AAC Codec
23 software may already be covered under those patent licenses when it is used for those licensed purposes only.
24
25 Commercially-licensed AAC software libraries, including floating-point versions with enhanced sound quality,
26 are also available from Fraunhofer. Users are encouraged to check the Fraunhofer website for additional
27 applications information and documentation.
28
29 2. COPYRIGHT LICENSE
30
31 Redistribution and use in source and binary forms, with or without modification, are permitted without
32 payment of copyright license fees provided that you satisfy the following conditions:
33
34 You must retain the complete text of this software license in redistributions of the FDK AAC Codec or
35 your modifications thereto in source code form.
36
37 You must retain the complete text of this software license in the documentation and/or other materials
38 provided with redistributions of the FDK AAC Codec or your modifications thereto in binary form.
39 You must make available free of charge copies of the complete source code of the FDK AAC Codec and your
40 modifications thereto to recipients of copies in binary form.
41
42 The name of Fraunhofer may not be used to endorse or promote products derived from this library without
43 prior written permission.
44
45 You may not charge copyright license fees for anyone to use, copy or distribute the FDK AAC Codec
46 software or your modifications thereto.
47
48 Your modified versions of the FDK AAC Codec must carry prominent notices stating that you changed the software
49 and the date of any change. For modified versions of the FDK AAC Codec, the term
50 "Fraunhofer FDK AAC Codec Library for Android" must be replaced by the term
51 "Third-Party Modified Version of the Fraunhofer FDK AAC Codec Library for Android."
52
53 3. NO PATENT LICENSE
54
55 NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without limitation the patents of Fraunhofer,
56 ARE GRANTED BY THIS SOFTWARE LICENSE. Fraunhofer provides no warranty of patent non-infringement with
57 respect to this software.
58
59 You may use this FDK AAC Codec software or modifications thereto only for purposes that are authorized
60 by appropriate patent licenses.
61
62 4. DISCLAIMER
63
64 This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright holders and contributors
65 "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, including but not limited to the implied warranties
66 of merchantability and fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
67 CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary, or consequential damages,
68 including but not limited to procurement of substitute goods or services; loss of use, data, or profits,
69 or business interruption, however caused and on any theory of liability, whether in contract, strict
70 liability, or tort (including negligence), arising in any way out of the use of this software, even if
71 advised of the possibility of such damage.
72
73 5. CONTACT INFORMATION
74
75 Fraunhofer Institute for Integrated Circuits IIS
76 Attention: Audio and Multimedia Departments - FDK AAC LL
77 Am Wolfsmantel 33
78 91058 Erlangen, Germany
79
80 www.iis.fraunhofer.de/amm
81 amm-info@iis.fraunhofer.de
82 ----------------------------------------------------------------------------------------------------------- */
83
84 /*************************** Fraunhofer IIS FDK Tools **********************
85
86 Author(s): M. Lohwasser, M. Gayer
87 Description:
88
89 ******************************************************************************/
90
91 #include "fft_rad2.h"
92
93 #include "scramble.h"
94
95 #define __FFT_RAD2_CPP__
96
97 #if defined(__arm__) /* cppp replaced: elif */
98 #include "arm/fft_rad2_arm.cpp"
99
100 #elif defined(__GNUC__) && defined(__mips__) && defined(__mips_dsp) /* cppp replaced: elif */
101 #include "mips/fft_rad2_mips.cpp"
102
103 #endif
104
105
106
107 /*****************************************************************************
108
109 functionname: dit_fft (analysis)
110 description: dit-tukey-algorithm
111 scrambles data at entry
112 i.e. loop is made with scrambled data
113 returns:
114 input:
115 output:
116
117 *****************************************************************************/
118
119 #ifndef FUNCTION_dit_fft
120
dit_fft(FIXP_DBL * x,const INT ldn,const FIXP_STP * trigdata,const INT trigDataSize)121 void dit_fft(FIXP_DBL *x, const INT ldn, const FIXP_STP *trigdata, const INT trigDataSize)
122 {
123 const INT n=1<<ldn;
124 INT trigstep,i,ldm;
125
126 scramble(x,n);
127 /*
128 * 1+2 stage radix 4
129 */
130
131 for (i=0;i<n*2;i+=8)
132 {
133 FIXP_DBL a00, a10, a20, a30;
134 a00 = (x[i + 0] + x[i + 2])>>1; /* Re A + Re B */
135 a10 = (x[i + 4] + x[i + 6])>>1; /* Re C + Re D */
136 a20 = (x[i + 1] + x[i + 3])>>1; /* Im A + Im B */
137 a30 = (x[i + 5] + x[i + 7])>>1; /* Im C + Im D */
138
139 x[i + 0] = a00 + a10; /* Re A' = Re A + Re B + Re C + Re D */
140 x[i + 4] = a00 - a10; /* Re C' = Re A + Re B - Re C - Re D */
141 x[i + 1] = a20 + a30; /* Im A' = Im A + Im B + Im C + Im D */
142 x[i + 5] = a20 - a30; /* Im C' = Im A + Im B - Im C - Im D */
143
144 a00 = a00 - x[i + 2]; /* Re A - Re B */
145 a10 = a10 - x[i + 6]; /* Re C - Re D */
146 a20 = a20 - x[i + 3]; /* Im A - Im B */
147 a30 = a30 - x[i + 7]; /* Im C - Im D */
148
149 x[i + 2] = a00 + a30; /* Re B' = Re A - Re B + Im C - Im D */
150 x[i + 6] = a00 - a30; /* Re D' = Re A - Re B - Im C + Im D */
151 x[i + 3] = a20 - a10; /* Im B' = Im A - Im B - Re C + Re D */
152 x[i + 7] = a20 + a10; /* Im D' = Im A - Im B + Re C - Re D */
153 }
154
155 for(ldm=3; ldm<=ldn; ++ldm)
156 {
157 INT m=(1<<ldm);
158 INT mh=(m>>1);
159 INT j,r;
160
161 trigstep=((trigDataSize << 2)>>ldm);
162
163 FDK_ASSERT(trigstep > 0);
164
165 /* Do first iteration with c=1.0 and s=0.0 separately to avoid loosing to much precision.
166 Beware: The impact on the overal FFT precision is rather large. */
167 {
168 j = 0;
169
170 for(r=0; r<n; r+=m)
171 {
172 INT t1 = (r+j)<<1;
173 INT t2 = t1 + (mh<<1);
174 FIXP_DBL vr,vi,ur,ui;
175
176 //cplxMultDiv2(&vi, &vr, x[t2+1], x[t2], (FIXP_SGL)1.0, (FIXP_SGL)0.0);
177 vi = x[t2+1]>>1;
178 vr = x[t2]>>1;
179
180 ur = x[t1]>>1;
181 ui = x[t1+1]>>1;
182
183 x[t1] = ur+vr;
184 x[t1+1] = ui+vi;
185
186 x[t2] = ur-vr;
187 x[t2+1] = ui-vi;
188
189 t1 += mh;
190 t2 = t1+(mh<<1);
191
192 //cplxMultDiv2(&vr, &vi, x[t2+1], x[t2], (FIXP_SGL)1.0, (FIXP_SGL)0.0);
193 vr = x[t2+1]>>1;
194 vi = x[t2]>>1;
195
196 ur = x[t1]>>1;
197 ui = x[t1+1]>>1;
198
199 x[t1] = ur+vr;
200 x[t1+1] = ui-vi;
201
202 x[t2] = ur-vr;
203 x[t2+1] = ui+vi;
204 }
205 }
206 for(j=1; j<mh/4; ++j)
207 {
208 FIXP_STP cs;
209
210 cs = trigdata[j*trigstep];
211
212 for(r=0; r<n; r+=m)
213 {
214 INT t1 = (r+j)<<1;
215 INT t2 = t1 + (mh<<1);
216 FIXP_DBL vr,vi,ur,ui;
217
218 cplxMultDiv2(&vi, &vr, x[t2+1], x[t2], cs);
219
220 ur = x[t1]>>1;
221 ui = x[t1+1]>>1;
222
223 x[t1] = ur+vr;
224 x[t1+1] = ui+vi;
225
226 x[t2] = ur-vr;
227 x[t2+1] = ui-vi;
228
229 t1 += mh;
230 t2 = t1+(mh<<1);
231
232 cplxMultDiv2(&vr, &vi, x[t2+1], x[t2], cs);
233
234 ur = x[t1]>>1;
235 ui = x[t1+1]>>1;
236
237 x[t1] = ur+vr;
238 x[t1+1] = ui-vi;
239
240 x[t2] = ur-vr;
241 x[t2+1] = ui+vi;
242
243 /* Same as above but for t1,t2 with j>mh/4 and thus cs swapped */
244 t1 = (r+mh/2-j)<<1;
245 t2 = t1 + (mh<<1);
246
247 cplxMultDiv2(&vi, &vr, x[t2], x[t2+1], cs);
248
249 ur = x[t1]>>1;
250 ui = x[t1+1]>>1;
251
252 x[t1] = ur+vr;
253 x[t1+1] = ui-vi;
254
255 x[t2] = ur-vr;
256 x[t2+1] = ui+vi;
257
258 t1 += mh;
259 t2 = t1+(mh<<1);
260
261 cplxMultDiv2(&vr, &vi, x[t2], x[t2+1], cs);
262
263 ur = x[t1]>>1;
264 ui = x[t1+1]>>1;
265
266 x[t1] = ur-vr;
267 x[t1+1] = ui-vi;
268
269 x[t2] = ur+vr;
270 x[t2+1] = ui+vi;
271 }
272 }
273 {
274 j = mh/4;
275
276 for(r=0; r<n; r+=m)
277 {
278 INT t1 = (r+j)<<1;
279 INT t2 = t1 + (mh<<1);
280 FIXP_DBL vr,vi,ur,ui;
281
282 cplxMultDiv2(&vi, &vr, x[t2+1], x[t2], STC(0x5a82799a), STC(0x5a82799a));
283
284 ur = x[t1]>>1;
285 ui = x[t1+1]>>1;
286
287 x[t1] = ur+vr;
288 x[t1+1] = ui+vi;
289
290 x[t2] = ur-vr;
291 x[t2+1] = ui-vi;
292
293 t1 += mh;
294 t2 = t1+(mh<<1);
295
296 cplxMultDiv2(&vr, &vi, x[t2+1], x[t2], STC(0x5a82799a), STC(0x5a82799a));
297
298 ur = x[t1]>>1;
299 ui = x[t1+1]>>1;
300
301 x[t1] = ur+vr;
302 x[t1+1] = ui-vi;
303
304 x[t2] = ur-vr;
305 x[t2+1] = ui+vi;
306 }
307 }
308 }
309 }
310 #endif
311
312
313 /*****************************************************************************
314
315 functionname: dit_ifft (synthesis)
316 description: dit-tukey-algorithm
317 scrambles data at entry
318 i.e. loop is made with scrambled data
319 returns:
320 input:
321 output:
322
323 *****************************************************************************/
324
325 #if !defined(FUNCTION_dit_ifft)
dit_ifft(FIXP_DBL * x,const INT ldn,const FIXP_STP * trigdata,const INT trigDataSize)326 void dit_ifft(FIXP_DBL *x, const INT ldn, const FIXP_STP *trigdata, const INT trigDataSize)
327 {
328 const INT n=1<<ldn;
329 INT trigstep,i,ldm;
330
331 scramble(x,n);
332
333 /*
334 1+2 stage radix 4
335 */
336
337 for (i=0;i<n*2;i+=8)
338 {
339 FIXP_DBL a0, a1, a2, a3, a00, a10, a20, a30;
340
341 a00 = (x[i + 0] + x[i + 2])>>1; /* Re A + Re B */
342 a10 = (x[i + 4] + x[i + 6])>>1; /* Re C + Re D */
343 a20 = (x[i + 1] + x[i + 3])>>1; /* Im A + Im B */
344 a30 = (x[i + 5] + x[i + 7])>>1; /* Im C + Im D */
345 a0 = (x[i + 0] - x[i + 2])>>1; /* Re A - Re B */
346 a2 = (x[i + 4] - x[i + 6])>>1; /* Re C - Re D */
347 a3 = (x[i + 1] - x[i + 3])>>1; /* Im A - Im B */
348 a1 = (x[i + 5] - x[i + 7])>>1; /* Im C - Im D */
349
350 x[i + 0] = a00 + a10; /* Re A' = Re A + Re B + Re C + Re D */
351 x[i + 4] = a00 - a10; /* Re C' = Re A + Re B - Re C - Re D */
352 x[i + 1] = a20 + a30; /* Im A' = Im A + Im B + Im C + Im D */
353 x[i + 5] = a20 - a30; /* Im C' = Im A + Im B - Im C - Im D */
354 x[i + 2] = a0 - a1; /* Re B' = Re A - Re B - Im C + Im D */
355 x[i + 6] = a0 + a1; /* Re D' = Re A - Re B + Im C - Im D */
356 x[i + 3] = a3 + a2; /* Im B' = Im A - Im B + Re C - Re D */
357 x[i + 7] = a3 - a2; /* Im D' = Im A - Im B - Re C + Re D */
358 }
359
360 for(ldm=3; ldm<=ldn; ++ldm)
361 {
362 const INT m=(1<<ldm);
363 const INT mh=(m>>1);
364
365 INT j,r;
366
367 trigstep=((trigDataSize << 2)>>ldm);
368
369 {
370 j = 0;
371
372 for(r=0; r<n; r+=m)
373 {
374 INT t1 = (r+j)<<1;
375 INT t2 = t1 + (mh<<1);
376 FIXP_DBL vr,vi,ur,ui;
377
378 //cplxMultDiv2(&vr, &vi, x[t2], x[t2+1], FL2FXCONST_SGL(1.0), (FIXP_SGL)0.0);
379 vi = x[t2+1]>>1;
380 vr = x[t2]>>1;
381
382 ur = x[t1]>>1;
383 ui = x[t1+1]>>1;
384
385 x[t1] = ur+vr;
386 x[t1+1] = ui+vi;
387
388 x[t2] = ur-vr;
389 x[t2+1] = ui-vi;
390
391 t1 += mh;
392 t2 = t1+(mh<<1);
393
394 //cplxMultDiv2(&vi, &vr, x[t2], x[t2+1], FL2FXCONST_SGL(1.0), FL2FXCONST_SGL(0.0));
395 vr = x[t2+1]>>1;
396 vi = x[t2]>>1;
397
398 ur = x[t1]>>1;
399 ui = x[t1+1]>>1;
400
401 x[t1] = ur-vr;
402 x[t1+1] = ui+vi;
403
404 x[t2] = ur+vr;
405 x[t2+1] = ui-vi;
406 }
407 }
408 for(j=1; j<mh/4; ++j)
409 {
410 FIXP_STP cs;
411
412 cs = trigdata[j*trigstep];
413
414 for(r=0; r<n; r+=m)
415 {
416 INT t1 = (r+j)<<1;
417 INT t2 = t1 + (mh<<1);
418 FIXP_DBL vr,vi,ur,ui;
419
420 cplxMultDiv2(&vr, &vi, x[t2], x[t2+1], cs);
421
422 ur = x[t1]>>1;
423 ui = x[t1+1]>>1;
424
425 x[t1] = ur+vr;
426 x[t1+1] = ui+vi;
427
428 x[t2] = ur-vr;
429 x[t2+1] = ui-vi;
430
431 t1 += mh;
432 t2 = t1+(mh<<1);
433
434 cplxMultDiv2(&vi, &vr, x[t2], x[t2+1], cs);
435
436 ur = x[t1]>>1;
437 ui = x[t1+1]>>1;
438
439 x[t1] = ur-vr;
440 x[t1+1] = ui+vi;
441
442 x[t2] = ur+vr;
443 x[t2+1] = ui-vi;
444
445 /* Same as above but for t1,t2 with j>mh/4 and thus cs swapped */
446 t1 = (r+mh/2-j)<<1;
447 t2 = t1 + (mh<<1);
448
449 cplxMultDiv2(&vr, &vi, x[t2+1], x[t2], cs);
450
451 ur = x[t1]>>1;
452 ui = x[t1+1]>>1;
453
454 x[t1] = ur-vr;
455 x[t1+1] = ui+vi;
456
457 x[t2] = ur+vr;
458 x[t2+1] = ui-vi;
459
460 t1 += mh;
461 t2 = t1+(mh<<1);
462
463 cplxMultDiv2(&vi, &vr, x[t2+1], x[t2], cs);
464
465 ur = x[t1]>>1;
466 ui = x[t1+1]>>1;
467
468 x[t1] = ur-vr;
469 x[t1+1] = ui-vi;
470
471 x[t2] = ur+vr;
472 x[t2+1] = ui+vi;
473 }
474 }
475 {
476 j = mh/4;
477 for(r=0; r<n; r+=m)
478 {
479 INT t1 = (r+mh/2-j)<<1;
480 INT t2 = t1 + (mh<<1);
481 FIXP_DBL vr,vi,ur,ui;
482
483 cplxMultDiv2(&vr, &vi, x[t2], x[t2+1], STC(0x5a82799a), STC(0x5a82799a));
484
485 ur = x[t1]>>1;
486 ui = x[t1+1]>>1;
487
488 x[t1] = ur+vr;
489 x[t1+1] = ui+vi;
490
491 x[t2] = ur-vr;
492 x[t2+1] = ui-vi;
493
494 t1 += mh;
495 t2 = t1+(mh<<1);
496
497 cplxMultDiv2(&vi, &vr, x[t2], x[t2+1], STC(0x5a82799a), STC(0x5a82799a));
498
499 ur = x[t1]>>1;
500 ui = x[t1+1]>>1;
501
502 x[t1] = ur-vr;
503 x[t1+1] = ui+vi;
504
505 x[t2] = ur+vr;
506 x[t2+1] = ui-vi;
507 }
508 }
509 }
510 }
511 #endif
512
513